1
|
Razi S, Khojini JY, Norioun H, Hayati MJ, Naseri N, Tajbaksh A, Gheibihayat SM. MicroRNA-mediated regulation of Ferroptosis: Implications for disease pathogenesis and therapeutic interventions. Cell Signal 2024; 125:111503. [PMID: 39510403 DOI: 10.1016/j.cellsig.2024.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Ferroptosis, a form of iron-dependent regulated cell death, is characterized by the accumulation of lipid peroxides and distinctive morphological features. Moreover, the reduction of intracellular antioxidant enzyme expression or activity, specifically glutathione peroxidase 4 (GPX4) results in activation of the endogenous pathway of ferroptosis. In this review, we aimed to explore the intricate interplay between microRNAs (miRNAs) and ferroptosis, shedding light on its implications in various disease pathologies. This review delves into the role of miRNAs in modulating key regulators of ferroptosis, including genes involved in iron metabolism, lipid peroxidation, and antioxidant defenses. Furthermore, the potential of targeting miRNAs for therapeutic interventions in ferroptosis-related diseases, such as cancer, neurodegenerative disorders, and ischemia/reperfusion injury, is highlighted.
Collapse
Affiliation(s)
- Shokufeh Razi
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Norioun
- Medical Genetics Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Naseri
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amir Tajbaksh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Deboever N, Jones CM, Yamashita K, Ajani JA, Hofstetter WL. Advances in diagnosis and management of cancer of the esophagus. BMJ 2024; 385:e074962. [PMID: 38830686 DOI: 10.1136/bmj-2023-074962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Esophageal cancer is the seventh most common malignancy worldwide, with over 470 000 new cases diagnosed each year. Two distinct histological subtypes predominate, and should be considered biologically separate disease entities.1 These subtypes are esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). Outcomes remain poor regardless of subtype, with most patients presenting with late stage disease.2 Novel strategies to improve early detection of the respective precursor lesions, squamous dysplasia, and Barrett's esophagus offer the potential to improve outcomes. The introduction of a limited number of biologic agents, as well as immune checkpoint inhibitors, is resulting in improvements in the systemic treatment of locally advanced and metastatic esophageal cancer. These developments, coupled with improvements in minimally invasive surgical and endoscopic treatment approaches, as well as adaptive and precision radiotherapy technologies, offer the potential to improve outcomes still further. This review summarizes the latest advances in the diagnosis and management of esophageal cancer, and the developments in understanding of the biology of this disease.
Collapse
Affiliation(s)
- Nathaniel Deboever
- Department of Thoracic and Cardiovascular Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher M Jones
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kohei Yamashita
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Strauss AL, Falk GW. New Techniques to Screen for Barrett Esophagus. Gastroenterol Hepatol (N Y) 2023; 19:383-390. [PMID: 37771620 PMCID: PMC10524417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Barrett esophagus (BE) is the only known precursor to esophageal adenocarcinoma (EAC), a cancer that continues to have a poor 5-year survival rate of 20%. Current BE screening strategies aim to detect BE and EAC at early, curable stages, but the majority of patients with EAC are diagnosed outside of BE screening and surveillance programs. Guidelines around the world suggest screening for BE in patients with gastroesophageal reflux disease (GERD) and additional demographic and clinical risk factors using high-definition white-light endoscopy (HDWLE). However, current strategies relying on HDWLE are problematic with high direct and indirect costs, procedural risks, and limitations in patient selection owing to the low sensitivity of GERD as a risk factor for detection of BE. In an effort to address these shortcomings, a variety of other screening strategies are under investigation, including risk prediction algorithms, noninvasive cell collection devices, and other new technologies to make screening more efficient and cost-effective. At this time, only cell collection devices have been integrated into professional guidelines, and clinical implementation of alternatives to endoscopy has lagged. In the future, screening may be personalized using a combination of different screening modalities. This article discusses the current state of BE screening and new approaches that may alter the future of screening.
Collapse
Affiliation(s)
- Alexandra L. Strauss
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine and Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gary W. Falk
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine and Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Li HS, Chu CL. Intestinal metaplasia in progression of Barrett's esophagus to esophageal adenocarcinoma. Shijie Huaren Xiaohua Zazhi 2023; 31:41-47. [DOI: 10.11569/wcjd.v31.i2.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The incidence of esophageal adenocarcinoma (EAC) has been increasing year by year. The prognosis of EAC is poor, and the 5-year survival rate is less than 20%. Barrett's esophagus (BE) is the only known precancerous lesion of EAC. BE with intestinal metaplasia (IM) has a higher risk of progressing to EAC. Exploring the mechanism of IM and finding targeted therapeutic targets for BE has become an important measure for tumor prevention. Bile acid reflux is considered an important factor in the occurrence of IM and promotes the progression of BE to EAC. However, the molecular regulatory mechanism of bile reflux induced IM and carcinogenesis remains unclear. This article reviews the environment, significance, and cell origin theory of IM, toxic effects of bile reflux, and molecular changes of IM progression to tumor, aiming to improve clinicians' understanding of IM in BE and provide evidence for early intervention of BE and prevention and treatment of EAC.
Collapse
Affiliation(s)
- Hai-Su Li
- Jinan Central Hospital, Jinan Key Translational Gastroenterology Laboratory, Jinan Digestive Diseases Clinical Research Center, Jinan 250013, Shandong Province, China
| | - Chuan-Lian Chu
- Jinan Central Hospital, Jinan Key Translational Gastroenterology Laboratory, Jinan Digestive Diseases Clinical Research Center, Jinan 250013, Shandong Province, China
| |
Collapse
|
5
|
Shahverdi M, Darvish M. Exosomal microRNAs: A Diagnostic and Therapeutic Small Bio-molecule in Esophageal Cancer. Curr Mol Med 2023; 23:312-323. [PMID: 35319366 DOI: 10.2174/1566524022666220321125134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Esophageal cancer (EC) is one of the major causes of cancer-related death worldwide. EC is usually diagnosed at a late stage, and despite aggressive therapy, the five-year survival rate of patients remains poor. Exosomes play important roles in cancer biology. Indeed, exosomes are implicated in tumor proliferation, angiogenesis, and invasion. They contain bioactive molecules such as lipids, proteins, and non-coding RNAs. Exosome research has recently concentrated on microRNAs, which are tiny noncoding endogenous RNAs that can alter gene expression and are linked to nearly all physiological and pathological processes, including cancer. It is suggested that deregulation of miRNAs results in cancer progression and directly induces tumor initiation. In esophageal cancer, miRNA dysregulation plays an important role in cancer prognosis and patients' responsiveness to therapy, indicating that miRNAs are important in tumorigenesis. In this review, we summarize the impact of exosomal miRNAs on esophageal cancer pathogenesis and their potential applications for EC diagnosis and therapy.
Collapse
Affiliation(s)
- Mahshid Shahverdi
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
6
|
Shahsavari D, Kudaravalli P, Yap JEL, Vega KJ. Expanding beyond endoscopy: A review of non-invasive modalities in Barrett’s esophagus screening and surveillance. World J Gastroenterol 2022; 28:4516-4526. [PMID: 36157931 PMCID: PMC9476875 DOI: 10.3748/wjg.v28.i32.4516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/14/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Barrett’s esophagus (BE) is a condition that results from replacement of the damaged normal squamous esophageal mucosa to intestinal columnar mucosa and is the most significant predisposing factor for development of esophageal adenocarcinoma. Current guidelines recommend endoscopic evaluation for screening and surveillance based on various risk factors which has limitations such as invasiveness, availability of a trained specialist, patient logistics and cost. Trans-nasal endoscopy is a less invasive modality but still has similar limitations such as limited availability of trained specialist and costs. Non-endoscopic modalities, in comparison, require minimal intervention, can be done in an office visit and has the potential to be a more ideal choice for mass public screening and surveillance, particularly in patents at low risk for BE. These include newer generations of esophageal capsule endoscopy which provides direct visualization of BE, and tethered capsule endomicroscopy which can obtain high-resolution images of the esophagus. Various cell collection devices coupled with biomarkers have been used for BE screening. Cytosponge, in combination with TFF3, as well as EsophaCap and EsoCheck have shown promising results in various studies when used with various biomarkers. Other modalities including circulatory microRNAs and volatile organic compounds that have demonstrated favorable outcomes. Use of these cell collection methods for BE surveillance is a potential area of future research.
Collapse
Affiliation(s)
- Dariush Shahsavari
- Division of Gastroenterology and Hepatology, Augusta University-Medical College of Georgia, Augusta, GA 30912, United States
| | - Praneeth Kudaravalli
- Division of Gastroenterology and Hepatology, Augusta University-Medical College of Georgia, Augusta, GA 30912, United States
| | - John Erikson L Yap
- Division of Gastroenterology and Hepatology, Augusta University-Medical College of Georgia, Augusta, GA 30912, United States
| | - Kenneth J Vega
- Division of Gastroenterology and Hepatology, Augusta University-Medical College of Georgia, Augusta, GA 30912, United States
| |
Collapse
|
7
|
Sugano K, Spechler SJ, El-Omar EM, McColl KEL, Takubo K, Gotoda T, Fujishiro M, Iijima K, Inoue H, Kawai T, Kinoshita Y, Miwa H, Mukaisho KI, Murakami K, Seto Y, Tajiri H, Bhatia S, Choi MG, Fitzgerald RC, Fock KM, Goh KL, Ho KY, Mahachai V, O'Donovan M, Odze R, Peek R, Rugge M, Sharma P, Sollano JD, Vieth M, Wu J, Wu MS, Zou D, Kaminishi M, Malfertheiner P. Kyoto international consensus report on anatomy, pathophysiology and clinical significance of the gastro-oesophageal junction. Gut 2022; 71:1488-1514. [PMID: 35725291 PMCID: PMC9279854 DOI: 10.1136/gutjnl-2022-327281] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE An international meeting was organised to develop consensus on (1) the landmarks to define the gastro-oesophageal junction (GOJ), (2) the occurrence and pathophysiological significance of the cardiac gland, (3) the definition of the gastro-oesophageal junctional zone (GOJZ) and (4) the causes of inflammation, metaplasia and neoplasia occurring in the GOJZ. DESIGN Clinical questions relevant to the afore-mentioned major issues were drafted for which expert panels formulated relevant statements and textural explanations.A Delphi method using an anonymous system was employed to develop the consensus, the level of which was predefined as ≥80% of agreement. Two rounds of voting and amendments were completed before the meeting at which clinical questions and consensus were finalised. RESULTS Twenty eight clinical questions and statements were finalised after extensive amendments. Critical consensus was achieved: (1) definition for the GOJ, (2) definition of the GOJZ spanning 1 cm proximal and distal to the GOJ as defined by the end of palisade vessels was accepted based on the anatomical distribution of cardiac type gland, (3) chemical and bacterial (Helicobacter pylori) factors as the primary causes of inflammation, metaplasia and neoplasia occurring in the GOJZ, (4) a new definition of Barrett's oesophagus (BO). CONCLUSIONS This international consensus on the new definitions of BO, GOJ and the GOJZ will be instrumental in future studies aiming to resolve many issues on this important anatomic area and hopefully will lead to better classification and management of the diseases surrounding the GOJ.
Collapse
Affiliation(s)
- Kentaro Sugano
- Division of Gastroenterology, Department of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Stuart Jon Spechler
- Division of Gastroenterology, Center for Esophageal Diseases, Baylor University Medical Center, Dallas, Texas, USA
| | - Emad M El-Omar
- Microbiome Research Centre, St George & Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine & Health, Sydney, New South Wales, Australia
| | - Kenneth E L McColl
- Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Kaiyo Takubo
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Takuji Gotoda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsunori Iijima
- Department of Gastroenterology, Akita University Graduate School of Medicine, Akita, Japan
| | - Haruhiro Inoue
- Digestive Disease Center, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Takashi Kawai
- Department of Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | | | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine, Kobe, Japan
| | - Ken-Ichi Mukaisho
- Education Center for Medicine and Nursing, Shiga University of Medical Science, Otsu, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Oita University Faculty of Medicine, Yuhu, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hisao Tajiri
- Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | | | - Myung-Gyu Choi
- Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, The Republic of Korea
| | - Rebecca C Fitzgerald
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK
| | - Kwong Ming Fock
- Department of Gastroenterology and Hepatology, Duke NUS School of Medicine, National University of Singapore, Singapore
| | | | - Khek Yu Ho
- Department of Medicine, National University of Singapore, Singapore
| | - Varocha Mahachai
- Center of Excellence in Digestive Diseases, Thammasat University and Science Resarch and Innovation, Bangkok, Thailand
| | - Maria O'Donovan
- Department of Histopathology, Cambridge University Hospital NHS Trust UK, Cambridge, UK
| | - Robert Odze
- Department of Pathology, Tuft University School of Medicine, Boston, Massachusetts, USA
| | - Richard Peek
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Massimo Rugge
- Department of Medicine DIMED, Surgical Pathology and Cytopathology Unit, University of Padova, Padova, Italy
| | - Prateek Sharma
- Department of Gastroenterology and Hepatology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Jose D Sollano
- Department of Medicine, University of Santo Tomas, Manila, Philippines
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander University Erlangen, Nurenberg, Germany
| | - Justin Wu
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Peter Malfertheiner
- Medizinixhe Klinik und Poliklinik II, Ludwig Maximillian University Klinikum, Munich, Germany
- Klinik und Poliklinik für Radiologie, Ludwig Maximillian University Klinikum, Munich, Germany
| |
Collapse
|
8
|
Comprehensive RNA dataset of tissue and plasma from patients with esophageal cancer or precursor lesions. Sci Data 2022; 9:86. [PMID: 35288573 PMCID: PMC8921197 DOI: 10.1038/s41597-022-01176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
AbstractIn the past decades, the incidence of esophageal adenocarcinoma has increased dramatically in Western populations. Better understanding of disease etiology along with the identification of novel prognostic and predictive biomarkers are urgently needed to improve the dismal survival probabilities. Here, we performed comprehensive RNA (coding and non-coding) profiling in various samples from 17 patients diagnosed with esophageal adenocarcinoma, high-grade dysplastic or non-dysplastic Barrett’s esophagus. Per patient, a blood plasma sample, and a healthy and disease esophageal tissue sample were included. In total, this comprehensive dataset consists of 102 sequenced libraries from 51 samples. Based on this data, 119 expression profiles are available for three biotypes, including miRNA (51), mRNA (51) and circRNA (17). This unique resource allows for discovery of novel biomarkers and disease mechanisms, comparison of tissue and liquid biopsy profiles, integration of coding and non-coding RNA patterns, and can serve as a validation dataset in other RNA landscaping studies. Moreover, structural RNA differences can be identified in this dataset, including protein coding mutations, fusion genes, and circular RNAs.
Collapse
|
9
|
Masqué-Soler N, Gehrung M, Kosmidou C, Li X, Diwan I, Rafferty C, Atabakhsh E, Markowetz F, Fitzgerald RC. Computational pathology aids derivation of microRNA biomarker signals from Cytosponge samples. EBioMedicine 2022; 76:103814. [PMID: 35051729 PMCID: PMC8883000 DOI: 10.1016/j.ebiom.2022.103814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Non-endoscopic cell collection devices combined with biomarkers can detect Barrett's intestinal metaplasia and early oesophageal cancer. However, assays performed on multi-cellular samples lose information about the cell source of the biomarker signal. This cross-sectional study examines whether a bespoke artificial intelligence-based computational pathology tool could ascertain the cellular origin of microRNA biomarkers, to inform interpretation of the disease pathology, and confirm biomarker validity. METHODS The microRNA expression profiles of 110 targets were assessed with a custom multiplexed panel in a cohort of 117 individuals with reflux that took a Cytosponge test. A computational pathology tool quantified the amount of columnar epithelium present in pathology slides, and results were correlated with microRNA signals. An independent cohort of 139 Cytosponges, each from an individual patient, was used to validate the findings via qPCR. FINDINGS Seventeen microRNAs are upregulated in BE compared to healthy squamous epithelia, of which 13 remain upregulated in dysplasia. A pathway enrichment analysis confirmed association to neoplastic and cell cycle regulation processes. Ten microRNAs positively correlated with columnar epithelium content, with miRNA-192-5p and -194-5p accurately detecting the presence of gastric cells (AUC 0.97 and 0.95). In contrast, miR-196a-5p is confirmed as a specific BE marker. INTERPRETATION Computational pathology tools aid accurate cellular attribution of molecular signals. This innovative design with multiplex microRNA coupled with artificial intelligence has led to discovery of a quality control metric suitable for large scale application of the Cytosponge. Similar approaches could aid optimal interpretation of biomarkers for clinical use. FUNDING Funded by the NIHR Cambridge Biomedical Research Centre, the Medical Research Council, the Rosetrees and Stoneygate Trusts, and CRUK core grants.
Collapse
Affiliation(s)
- Neus Masqué-Soler
- MRC Cancer Unit, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| | - Marcel Gehrung
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Cassandra Kosmidou
- MRC Cancer Unit, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Xiaodun Li
- MRC Cancer Unit, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Izzuddin Diwan
- Abcam Inc., 1 Kendall Sq B2304, Cambridge, MA, 02139, United States
| | - Conor Rafferty
- Abcam Inc., 1 Kendall Sq B2304, Cambridge, MA, 02139, United States
| | - Elnaz Atabakhsh
- Abcam Inc., 1 Kendall Sq B2304, Cambridge, MA, 02139, United States
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | | |
Collapse
|
10
|
Chen S, Ju G, Gu J, Shi M, Wang Y, Wu X, Wang Q, Zheng L, Xiao T, Fan Y. Competing endogenous RNA network for esophageal cancer progression. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1473. [PMID: 34734025 PMCID: PMC8506737 DOI: 10.21037/atm-21-4478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/18/2021] [Indexed: 11/27/2022]
Abstract
Background Esophageal cancer (ESCA) constitutes one of the most common cancers worldwide. The identification of potential biomarkers is important to improving the diagnostic accuracy and treatment efficiency for patients with ESCA. In this study, we aimed to identify biomarkers related to ESCA progression through a comprehensive analysis of long non-coding RNAs (lncRNAs), microRNA (miRNAs), and mRNA expression profiles in ESCA. Methods Differentially expressed lncRNAs, miRNAs, and mRNAs (DElncRNAs, DEmiRNAs, and DEmRNAs, respectively) in ESCA samples compared with normal controls were obtained. A competing endogenous RNA (ceRNA) network consisting of interacting DElncRNAs, DEmiRNAs, and DEmRNAs was constructed using a combination of the miRCode and TargetScan databases. Relationships between RNAs in the ceRNA network and overall survival in patients with EC were explored through another independent ESCA dataset from The Cancer Genome Atlas. Results A total of 1,014 DElncRNAs, 3,677 DEmRNAs, and 35 DEmiRNAs were identified in ESCA samples compared with normal samples. Functional enrichment analysis indicated that the DEmRNAs were involved in cell activity, inflammatory response, and oxygen metabolism-related biological processes. A ceRNA network containing 5 DEmiRNAs, 582 DEmRNAs and 764 DElncRNAs was obtained. In the survival analysis, 39 genes were found to be significantly associated with overall survival in patients with EC, including GOLGA7, NFYB, TOP1, and TMTC3. Conclusions Our study constructed a ceRNA network for ESCA for the first time, which will be helpful for the disease’s diagnosis and treatment.
Collapse
Affiliation(s)
- Saihua Chen
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Guanjun Ju
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Jianmei Gu
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Minxin Shi
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Yilang Wang
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Xiaodan Wu
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Qing Wang
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Liyun Zheng
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Ting Xiao
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Yihui Fan
- Department of Thoracic Surgery, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| |
Collapse
|
11
|
Karkhane M, Lashgarian HE, Hormozi M, Fallahi S, Cheraghipour K, Marzban A. Oncogenesis and Tumor Inhibition by MicroRNAs and its Potential Therapeutic Applications: A Systematic Review. Microrna 2021; 9:198-215. [PMID: 31686643 DOI: 10.2174/2211536608666191104103834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/01/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs appear as small molecule modifiers, which improve many new findings and mechanical illustrations for critically important biological phenomena and pathologic events. The best-characterized non-coding RNA family consists of about 2600 human microRNAs. Rich evidence has revealed their crucial importance in maintaining normal development, differentiation, growth control, aging, modulation of cell survival or apoptosis, as well as migration and metastasis as microRNAs dysregulation leads to cancer incidence and progression. By far, microRNAs have recently emerged as attractive targets for therapeutic intervention. The rationale for developing microRNA therapeutics is based on the premise that aberrantly expressed microRNAs play a significant role in the emergence of a variety of human diseases ranging from cardiovascular defects to cancer, and that repairing these microRNA deficiencies by either antagonizing or restoring microRNA function may yield a therapeutic benefit. Although microRNA antagonists are conceptually similar to other inhibitory therapies, improving the performance of microRNAs by microRNA replacement or inhibition that is a less well- described attitude. In this assay, we have condensed the last global knowledge and concepts regarding the involvement of microRNAs in cancer emergence, which has been achieved from the previous studies, consisting of the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response and the disruption of profile expression in human cancer. Here, we have reviewed the special characteristics of microRNA replacement and inhibition therapies and discussed explorations linked with the delivery of microRNA mimics in turmeric cells. Besides, the achievement of biomarkers based on microRNAs in clinics is considered as novel non-invasive biomarkers in diagnostic and prognostic assessments.
Collapse
Affiliation(s)
- Maryam Karkhane
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Esmaeil Lashgarian
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Hormozi
- Department of Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shirzad Fallahi
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
12
|
Yusuf A, Fitzgerald RC. Screening for Barrett's Oesophagus: Are We Ready for it? ACTA ACUST UNITED AC 2021; 19:321-336. [PMID: 33746508 PMCID: PMC7962426 DOI: 10.1007/s11938-021-00342-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 01/10/2023]
Abstract
Purpose of review The targeted approach adopted for Barrett’s oesophagus (BO) screening is sub-optimal considering the large proportion of BO cases that are currently missed. We reviewed the literature highlighting recent technological advancements in efforts to counteract this challenge. We also provided insights into strategies that can improve the outcomes from current BO screening practises. Recent findings The standard method for BO detection, endoscopy, is invasive and expensive and therefore inappropriate for mass screening. On the other hand, endoscopy is more cost-effective for screening a high-risk population. A consensus has however not been reached on who should be screened. Risk prediction algorithms have been tested as an enrichment pre-screening tool reporting modest AUC’s but require more prospective evaluation studies. Less invasive endoscopy methods like trans-nasal endoscopy, oesophageal capsule endsocopy and non-endoscopic cell collection devices like the Cytosponge coupled with biomarker analysis have shown promise in BO detection with randomised clinical trial evidence. Summary A three-tier precision cancer programme whereby risk prediction algorithms and non-endoscopic minimally invasive cell collection devices are used to triage test a wider pool of individuals may improve the detection rate of current screening practises with minimal cost implications.
Collapse
Affiliation(s)
- Aisha Yusuf
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ United Kingdom
| | - Rebecca C Fitzgerald
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, CB2 0XZ United Kingdom
| |
Collapse
|
13
|
Alteration of protein expression and spliceosome pathway activity during Barrett's carcinogenesis. J Gastroenterol 2021; 56:791-807. [PMID: 34227026 PMCID: PMC8370908 DOI: 10.1007/s00535-021-01802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 06/18/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Barrett's esophagus (BE) is a known precursor lesion and the strongest risk factor for esophageal adenocarcinoma (EAC), a common and lethal type of cancer. Prediction of risk, the basis for efficient intervention, is commonly solely based on histologic examination. This approach is challenged by problems such as inter-observer variability in the face of the high heterogeneity of dysplastic tissue. Molecular markers might offer an additional way to understand the carcinogenesis and improve the diagnosis-and eventually treatment. In this study, we probed significant proteomic changes during dysplastic progression from BE into EAC. METHODS During endoscopic mucosa resection, epithelial and stromal tissue samples were collected by laser capture microdissection from 10 patients with normal BE and 13 patients with high-grade dysplastic/EAC. Samples were analyzed by mass spectrometry-based proteomic analysis. Expressed proteins were determined by label-free quantitation, and gene set enrichment was used to find differentially expressed pathways. The results were validated by immunohistochemistry for two selected key proteins (MSH6 and XPO5). RESULTS Comparing dysplastic/EAC to non-dysplastic BE, we found in equal volumes of epithelial tissue an overall up-regulation in terms of protein abundance and diversity, and determined a set of 226 differentially expressed proteins. Significantly higher expressions of MSH6 and XPO5 were validated orthogonally and confirmed by immunohistochemistry. CONCLUSIONS Our results demonstrate that disease-related proteomic alterations can be determined by analyzing minute amounts of cell-type-specific collected tissue. Further analysis indicated that alterations of certain pathways associated with carcinogenesis, such as micro-RNA trafficking, DNA damage repair, and spliceosome activity, exist in dysplastic/EAC.
Collapse
|
14
|
Valenzano MC, Rybakovsky E, Chen V, Leroy K, Lander J, Richardson E, Yalamanchili S, McShane S, Mathew A, Mayilvaganan B, Connor L, Urbas R, Huntington W, Corcoran A, Trembeth S, McDonnell E, Wong P, Newman G, Mercogliano G, Zitin M, Etemad B, Thornton J, Daum G, Raines J, Kossenkov A, Fong LY, Mullin JM. Zinc Gluconate Induces Potentially Cancer Chemopreventive Activity in Barrett's Esophagus: A Phase 1 Pilot Study. Dig Dis Sci 2021; 66:1195-1211. [PMID: 32415564 PMCID: PMC7677901 DOI: 10.1007/s10620-020-06319-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/02/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Chemopreventive effects of zinc for esophageal cancer have been well documented in animal models. This prospective study explores if a similar, potentially chemopreventive action can be seen in Barrett's esophagus (BE) in humans. AIMS To determine if molecular evidence can be obtained potentially indicating zinc's chemopreventive action in Barrett's metaplasia. METHODS Patients with a prior BE diagnosis were placed on oral zinc gluconate (14 days of 26.4 mg zinc BID) or a sodium gluconate placebo, prior to their surveillance endoscopy procedure. Biopsies of Barrett's mucosa were then obtained for miRNA and mRNA microarrays, or protein analyses. RESULTS Zinc-induced mRNA changes were observed for a large number of transcripts. These included downregulation of transcripts encoding proinflammatory proteins (IL32, IL1β, IL15, IL7R, IL2R, IL15R, IL3R), upregulation of anti-inflammatory mediators (IL1RA), downregulation of transcripts mediating epithelial-to-mesenchymal transition (EMT) (LIF, MYB, LYN, MTA1, SRC, SNAIL1, and TWIST1), and upregulation of transcripts that oppose EMT (BMP7, MTSS1, TRIB3, GRHL1). miRNA arrays showed significant upregulation of seven miRs with tumor suppressor activity (-125b-5P, -132-3P, -548z, -551a, -504, -518, and -34a-5P). Of proteins analyzed by Western blot, increased expression of the pro-apoptotic protein, BAX, and the tight junctional protein, CLAUDIN-7, along with decreased expression of BCL-2 and VEGF-R2 were noteworthy. CONCLUSIONS When these mRNA, miRNA, and protein molecular data are considered collectively, a cancer chemopreventive action by zinc in Barrett's metaplasia may be possible for this precancerous esophageal tissue. These results and the extensive prior animal model studies argue for a future prospective clinical trial for this safe, easily-administered, and inexpensive micronutrient, that could determine if a chemopreventive action truly exists.
Collapse
Affiliation(s)
- M C Valenzano
- The Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA
| | - E Rybakovsky
- The Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA
| | - V Chen
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - K Leroy
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - J Lander
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - E Richardson
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - S Yalamanchili
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - S McShane
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - A Mathew
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - B Mayilvaganan
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - L Connor
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - R Urbas
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - W Huntington
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - A Corcoran
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - S Trembeth
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - E McDonnell
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - P Wong
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - G Newman
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - G Mercogliano
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - M Zitin
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - B Etemad
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - J Thornton
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA
| | - G Daum
- The Department of Pathology, Lankenau Medical Center, Wynnewood, USA
| | - J Raines
- The Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA
| | | | - L Y Fong
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J M Mullin
- The Division of Gastroenterology, Lankenau Medical Center, Wynnewood, USA.
- The Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA, 19096, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Abstract
OBJECTIVES: Barrett's esophagus (BE) is the precursor lesion and a major risk factor for esophageal adenocarcinoma (EAC). Although patients with BE undergo routine endoscopic surveillance, current screening methodologies have proven ineffective at identifying individuals at risk of EAC. Since microRNAs (miRNAs) have potential diagnostic and prognostic value as disease biomarkers, we sought to identify an miRNA signature of BE and EAC. METHODS: High-throughput sequencing of miRNAs was performed on serum and tissue biopsies from 31 patients identified either as normal, gastroesophageal reflux disease (GERD), BE, BE with low-grade dysplasia (LGD), or EAC. Logistic regression modeling of miRNA profiles with Lasso regularization was used to identify discriminating miRNA. Quantitative reverse transcription polymerase chain reaction was used to validate changes in miRNA expression using 46 formalin-fixed, paraffin-embedded specimens obtained from normal, GERD, BE, BE with LGD or HGD, and EAC subjects. RESULTS: A 3-class predictive model was able to classify tissue samples into normal, GERD/BE, or LGD/EAC classes with an accuracy of 80%. Sixteen miRNAs were identified that predicted 1 of the 3 classes. Our analysis confirmed previous reports indicating that miR-29c-3p and miR-193b-5p expressions are altered in BE and EAC and identified miR-4485-5p as a novel biomarker of esophageal dysplasia. Quantitative reverse transcription polymerase chain reaction validated 11 of 16 discriminating miRNAs. DISCUSSION: Our data provide an miRNA signature of normal, precancerous, and cancerous tissue that may stratify patients at risk of progressing to EAC. We found that serum miRNAs have a limited ability to distinguish between disease states, thus limiting their potential utility in early disease detection.
Collapse
|
16
|
Goes CP, Vieceli FM, De La Cruz SM, Simões-Costa M, Yan CYI. Scratch2, a Snail Superfamily Member, Is Regulated by miR-125b. Front Cell Dev Biol 2020; 8:769. [PMID: 32984310 PMCID: PMC7477046 DOI: 10.3389/fcell.2020.00769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Scratch2 is a transcription factor expressed in a very restricted population of vertebrate embryonic neural cell precursors involved in their survival, differentiation, and migration. The mechanisms that control its expression remain unknown and could contribute towards our understanding of gene regulation during neural differentiation and evolution. Here we investigate the role of microRNAs (miRNAs) in the Scrt2 post-transcriptional regulatory mechanism. We identified binding sites for miR-125b and -200b in the Scrt2 3′UTR in silico. We confirmed the repressive-mediated activity of the Scrt2 3′UTR through electroporation of luciferase constructs into chick embryos. Further, both CRISPR/Cas9-mediated deletion of miR-125b/-200b responsive elements from chicken Scrt2 3′UTR and expression of miRNAs sponges increased Scrt2 expression field, suggesting a role for these miRNAs as post-transcriptional regulators of Scrt2. The biological effect of miR-125b titration was much more pronounced than that of miR-200b. Therefore, we propose that, after transcription, miR-125b fine-tunes the Scrt2 expression domain.
Collapse
Affiliation(s)
- Carolina Purcell Goes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Felipe Monteleone Vieceli
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Shirley Mirna De La Cruz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcos Simões-Costa
- Department of Molecular Biology and Genetics, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Chao Yun Irene Yan
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Badgery H, Chong L, Iich E, Huang Q, Georgy SR, Wang DH, Read M. Recent insights into the biology of Barrett's esophagus. Ann N Y Acad Sci 2020; 1481:198-209. [PMID: 32681541 DOI: 10.1111/nyas.14432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Barrett's esophagus (BE) is the only known precursor to esophageal adenocarcinoma (EAC), an aggressive cancer with a poor prognosis. Our understanding of the pathogenesis and Barrett's metaplasia is incomplete, and this has limited the development of new therapeutic targets and agents, risk stratification ability, and management strategies. This review outlines current insights into the biology of BE and addresses controversies surrounding cell of origin, cellular reprogramming theories, updates on esophageal epithelial barrier function, and the significance of goblet cell metaplasia and its association with malignant change. Further research into the basic biology of BE is vital as it will underpin novel therapies and improve our ability to predict malignant progression and help identify the minority of patients who will develop EAC.
Collapse
Affiliation(s)
- Henry Badgery
- Department of Upper Gastrointestinal Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Lynn Chong
- Department of Upper Gastrointestinal Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Elhadi Iich
- Cancer Biology and Surgical Oncology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Qin Huang
- Department of Pathology and Laboratory Medicine, Veterans Affairs Boston Healthcare System and Harvard Medical School, West Roxbury, Massachusetts
| | - Smitha Rose Georgy
- Department of Anatomic Pathology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - David H Wang
- Department of Hematology and Oncology, UT Southwestern Medical Centre and VA North Texas Health Care System, Dallas, Texas
| | - Matthew Read
- Department of Upper Gastrointestinal Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, St Vincent's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Saller J, Al Diffalha S, Neill K, Bhaskar RA, Oliveri C, Boulware D, Levine H, Kalvaria I, Corbett FS, Khazanchi A, Klapman J, Coppola D. CDX-2 Expression in Esophageal Biopsies Without Goblet Cell Intestinal Metaplasia May Be Predictive of Barrett's Esophagus. Dig Dis Sci 2020; 65:1992-1998. [PMID: 31691172 PMCID: PMC7771382 DOI: 10.1007/s10620-019-05914-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/20/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND CDX-2 is a nuclear homeobox transcription factor not normally expressed in esophageal and gastric epithelia, reported to highlight intestinal metaplasia (IM) in the esophagus. Pathological absence of goblet cells at initial screening via hematoxylin and eosin (HE) and alcian blue (AB) staining results in patient exclusion from surveillance programs. AIMS This study aimed to determine whether non-goblet cell IM, as defined by CDX-2 positivity, can be considered to be a precursor to Barrett's esophagus (BE). METHODS This study received IRB approval (17,284). Patients with gastroesophageal reflux disease (n = 181) who underwent upper-gastrointestinal endoscopy with biopsies of the distal esophagus to rule out BE using HE/AB staining and CDX-2 immunostaining were followed for 3 years. Initial and follow-up staining results were evaluated for age/sex. RESULTS Differences between development of goblet cell IM in CDX-2-negative and CDX-2-positive groups were evaluated. A Kaplan-Meier curve showed that, out of the 134 patients initially positive for CDX-2, 25 (18.7%) had developed goblet cell IM after 2 years and 106 (79.1%) after 3 years. Conversely, of the 47 patients initially negative for CDX-2, 8 (17.9%) developed goblet cell IM after 24 months and only 11 (23.8%) after 40 to 45 months (P = .049; age-adjusted Cox proportional hazard regression model). CONCLUSION In cases that are initially AB negative and CDX-2 positive, CDX-2 was demonstrated to have a potential prognostic utility for early detection of progression to BE. CDX-2 expression is significantly predictive for risk of goblet cell IM development 40 to 45 months after initial biopsy.
Collapse
Affiliation(s)
- James Saller
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sameer Al Diffalha
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kevin Neill
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rahill A Bhaskar
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - David Boulware
- Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Isaac Kalvaria
- Florida Digestive Health Specialists, Lakewood Ranch, FL, USA
| | - F Scott Corbett
- Florida Digestive Health Specialists, Lakewood Ranch, FL, USA
| | - Arun Khazanchi
- Florida Digestive Health Specialists, Lakewood Ranch, FL, USA
| | - Jason Klapman
- Endoscopy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Domenico Coppola
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
19
|
Krishna Chandar A, Sharma A, Chak A. Novel Screening Alternatives for Barrett Esophagus. Gastroenterol Hepatol (N Y) 2020; 16:238-245. [PMID: 34035726 PMCID: PMC8132638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Barrett esophagus (BE) is the only known premalignant precursor to esophageal adenocarcinoma (EAC), a deadly malignancy that carries a dismal prognosis. Guidelines currently recommend screening for BE only in high-risk populations, such as patients with chronic gastroesophageal reflux disease (GERD) and 1 or more additional risk factors. A GERD-centered approach to BE screening likely leads to a large number of missed EAC cases, as the true population prevalence of BE is thought to be much higher than current estimates. Mass screening for BE has been proposed but is fraught with challenges. Esophagogastroduodenoscopy screening is the current gold standard for BE detection, but it is expensive and cumbersome and carries a small potential for unwanted harms. Transnasal endoscopy is simple, cost-effective, and well tolerated, but it has not found widespread acceptance among physicians and patients. Esophageal capsule endoscopy, despite being well tolerated and accepted, has not been shown to be cost-effective. Newer minimally invasive, nonendoscopic techniques for BE screening have shown promise in prospective clinical trials. Pragmatic head-to-head trials comparing these techniques will help determine the path forward and could herald a new future for population-based BE screening.
Collapse
Affiliation(s)
- Apoorva Krishna Chandar
- Dr Chandar is an internal medicine resident in the Department of Medicine at University Hospitals Cleveland Medical Center in Cleveland, Ohio
- Dr Sharma is a clinical gastroenterology fellow at University Hospitals Cleveland Medical Center
- Dr Chak is the Brenda and Marshall B. Brown Master Clinician in Innovation and Discovery at University Hospitals Cleveland Medical Center and professor of medicine and oncology at Case Western Reserve University School of Medicine in Cleveland, Ohio
| | - Anamay Sharma
- Dr Chandar is an internal medicine resident in the Department of Medicine at University Hospitals Cleveland Medical Center in Cleveland, Ohio
- Dr Sharma is a clinical gastroenterology fellow at University Hospitals Cleveland Medical Center
- Dr Chak is the Brenda and Marshall B. Brown Master Clinician in Innovation and Discovery at University Hospitals Cleveland Medical Center and professor of medicine and oncology at Case Western Reserve University School of Medicine in Cleveland, Ohio
| | - Amitabh Chak
- Dr Chandar is an internal medicine resident in the Department of Medicine at University Hospitals Cleveland Medical Center in Cleveland, Ohio
- Dr Sharma is a clinical gastroenterology fellow at University Hospitals Cleveland Medical Center
- Dr Chak is the Brenda and Marshall B. Brown Master Clinician in Innovation and Discovery at University Hospitals Cleveland Medical Center and professor of medicine and oncology at Case Western Reserve University School of Medicine in Cleveland, Ohio
| |
Collapse
|
20
|
Expression of the microRNA-200 Family, microRNA-205, and Markers of Epithelial-Mesenchymal Transition as Predictors for Endoscopic Submucosal Dissection over Esophagectomy in Esophageal Adenocarcinoma: A Single-Center Experience. Cells 2020; 9:cells9020486. [PMID: 32093260 PMCID: PMC7072807 DOI: 10.3390/cells9020486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Endoscopic submucosal dissection (ESD) is an effective treatment of early esophageal adenocarcinomas (EACs). The decision of ESD over esophagectomy is based on clinical evaluation of tumor depth and invasion. On a molecular level, tumor invasion is strongly associated with epithelial-to-mesenchymal transition (EMT). Here, we investigated whether localized ESD-resected and surgically resected EAC samples displayed different expression profiles of EMT protein and microRNA markers and whether these different expression profiles were able to retrospectively discriminate localized and surgically resected samples. By doing this, we aimed to evaluate whether preoperative measurement of EMT marker expression might support the decision regarding ESD over surgery. The results showed that ESD-resected samples displayed an epithelial expression profile, i.e., high expression of epithelial protein markers, whereas surgically resected samples displayed high expression of mesenchymal markers. In addition, the anti-EMT microRNA-205 was significantly more expressed in ESD-resected samples, whereas we found no significant differences in the expression levels of microRNA-200 family members. Furthermore, in our retrospective approach, we have demonstrated that measurement of selected EMT markers and microRNA-205 has significant discrimination power to distinguish ESD-resected and surgically resected samples. We suggest that the assessment of EMT status of EAC samples on a molecular level may support clinical evaluation regarding the applicability of ESD.
Collapse
|
21
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019; 6:91. [PMID: 31750312 PMCID: PMC6843074 DOI: 10.3389/fmolb.2019.00091] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/11/2019] [Indexed: 02/05/2023] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd. Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
22
|
Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R, Karthik K, Tiwari R, Yatoo MI, Bhatt P, Chakraborty S, Singh KP, Iqbal HMN, Chaicumpa W, Joshi SK. Biomarkers in Stress Related Diseases/Disorders: Diagnostic, Prognostic, and Therapeutic Values. Front Mol Biosci 2019. [PMID: 31750312 DOI: 10.3389/fmolb.2019.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Various internal and external factors negatively affect the homeostatic equilibrium of organisms at the molecular to the whole-body level, inducing the so-called state of stress. Stress affects an organism's welfare status and induces energy-consuming mechanisms to combat the subsequent ill effects; thus, the individual may be immunocompromised, making them vulnerable to pathogens. The information presented here has been extensively reviewed, compiled, and analyzed from authenticated published resources available on Medline, PubMed, PubMed Central, Science Direct, and other scientific databases. Stress levels can be monitored by the quantitative and qualitative measurement of biomarkers. Potential markers of stress include thermal stress markers, such as heat shock proteins (HSPs), innate immune markers, such as Acute Phase Proteins (APPs), oxidative stress markers, and chemical secretions in the saliva and urine. In addition, stress biomarkers also play critical roles in the prognosis of stress-related diseases and disorders, and therapy guidance. Moreover, different components have been identified as potent mediators of cardiovascular, central nervous system, hepatic, and nephrological disorders, which can also be employed to evaluate these conditions precisely, but with stringent validation and specificity. Considerable scientific advances have been made in the detection, quantitation, and application of these biomarkers. The present review describes the current progress of identifying biomarkers, their prognostic, and therapeutic values.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Shyma K Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hari Abdul Samad
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan, Mathura, India
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Prakash Bhatt
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, Agartala, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine, Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunil Kumar Joshi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Microbiology & Immunology, Department of Pediatrics, University of Miami School of Medicine, Miami, FL, United States
| |
Collapse
|
23
|
Sun QX, Wang RR, Liu N, Liu C. Dysregulation of miR-204-3p Driven by the Viability and Motility of Retinoblastoma via Wnt/β-catenin Pathway In Vitro and In Vivo. Pathol Oncol Res 2019; 26:1549-1558. [PMID: 31482398 DOI: 10.1007/s12253-019-00722-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022]
Abstract
Retinoblastoma (RB) is a malignant intraocular tumor that frequently occurs in infants and toddlers. Although the most of RB patients in the developed countries could survival from this cancer, the patients in undeveloped areas are still suffering. The human retinal pigment epithelial cell line ARPE-19 and human retinoblastoma (RB) cell lines HXO-RB44, Y79, and WERI-Rb1 were cultured. The mRNA levels of BANCR and miR-204-3p in these cell lines were measured by qRT-PCR. After transfection with sh-BANCR or treatment with miR-204-3p inhibitor in Y79 cells, the cell proliferation rate, growth, invasion, migration, apoptosis and Wnt/β-catenin signaling pathway activity were measured. The regular Y79 and Y79 cells stably expressed sh-BANCR were injected subcutaneously into nude mice, respectively. The volumes and pathohistological futures of tumors were compared. The biochemical features similar to the cell culture were detected and compered. The mRNA measurements showed that BANCR negatively modulate miR-204-3p expression via directly integration with it. Besides, miR-204-3p and Wnt/β-catenin signalling pathway were found to participate in the oncogenic effects of BANCR on RB cell line by Hoechst staining, cell Counting Kit-8 (CCK-8) assay, wound healing assay, transwell assay, and Western blot analysis in vitro. In addition, an in vivo tumorigenesis experiment in nude mice injected with Y79 cells stably expressed sh-BANCR conformed in the effects of BANCR on RB. Taken together, the knockdown of BANCR inhibited cell proliferation, apoptosis, invasion, and migration in RB via targeting miR-204-3p, the mechanism may involve inhibiting Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Qing-Xiu Sun
- Department of Ophthalmology, The Second Clinical Medical College of Qingdao University, Qingdao, China.,The Central Hospital of Qingdao, The Affiliated Central Hospital of Qingdao University, No. 127, Si-Liu South Road, Qingdao, 266000, Shandong Province, China
| | - Rong-Rong Wang
- Department of Ophthalmology, The Second Clinical Medical College of Qingdao University, Qingdao, China.,The Central Hospital of Qingdao, The Affiliated Central Hospital of Qingdao University, No. 127, Si-Liu South Road, Qingdao, 266000, Shandong Province, China
| | - Na Liu
- Department of Ophthalmology, The Second Clinical Medical College of Qingdao University, Qingdao, China.,The Central Hospital of Qingdao, The Affiliated Central Hospital of Qingdao University, No. 127, Si-Liu South Road, Qingdao, 266000, Shandong Province, China
| | - Chao Liu
- Department of Ophthalmology, The Second Clinical Medical College of Qingdao University, Qingdao, China. .,The Central Hospital of Qingdao, The Affiliated Central Hospital of Qingdao University, No. 127, Si-Liu South Road, Qingdao, 266000, Shandong Province, China.
| |
Collapse
|
24
|
Caspa Gokulan R, Garcia-Buitrago MT, Zaika AI. From genetics to signaling pathways: molecular pathogenesis of esophageal adenocarcinoma. Biochim Biophys Acta Rev Cancer 2019; 1872:37-48. [PMID: 31152823 PMCID: PMC6692203 DOI: 10.1016/j.bbcan.2019.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Esophageal adenocarcinoma (EAC) has one of the fastest rising incidence rates in the U.S. and many other Western countries. One of the unique risk factors for EAC is gastroesophageal reflux disease (GERD), a chronic digestive condition in which acidic contents from the stomach, frequently mixed with duodenal bile, enter the esophagus resulting in esophageal tissue injury. At the cellular level, progression to EAC is underlined by continuous DNA damage caused by reflux and chronic inflammatory factors that increase the mutation rate and promote genomic instability. Despite recent successes in cancer diagnostics and treatment, EAC remains a poorly treatable disease. Recent research has shed new light on molecular alterations underlying progression to EAC and revealed novel treatment options. This review focuses on the genetic and molecular studies of EAC. The molecular changes that occur during the transformation of normal Barrett's esophagus to esophageal adenocarcinoma are also discussed.
Collapse
Affiliation(s)
| | | | - Alexander I Zaika
- Department of Surgery, University of Miami, Miami, FL, United States of America; Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL, United States of America.
| |
Collapse
|
25
|
Cholapranee A, Trindade AJ. Challenges in Endoscopic Therapy of Dysplastic Barrett's Esophagus. ACTA ACUST UNITED AC 2019; 17:32-47. [PMID: 30663018 DOI: 10.1007/s11938-019-00215-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Barrett's esophagus (BE) is the only known measurable factor associated with esophageal adenocarcinoma. The development of endoscopic eradication therapy (EET) has transformed the way BE is managed. Given the fairly recent development of EET, its role in BE is still evolving. RECENT FINDINGS This paper discusses the challenges that endoscopists face at the preprocedural, intraprocedural, and postprocedural stages of BE management. These include challenges in risk stratification, dysplasia detection, ablation methods and dosimetry, choice of resection technique, and management of refractory disease. Despite the advances in EET in BE, there remain challenges that this review focuses on. Future research into these challenges will optimize ablation techniques and strategies in the future.
Collapse
Affiliation(s)
- Aurada Cholapranee
- Division of Gastroenterology, Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Long Island Jewish Medical Center, 270-05 76th Avenue, New Hyde Park, NY, 11040, USA
| | - Arvind J Trindade
- Division of Gastroenterology, Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, Long Island Jewish Medical Center, 270-05 76th Avenue, New Hyde Park, NY, 11040, USA.
| |
Collapse
|
26
|
Minimal Residual Disease in Head and Neck Cancer and Esophageal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1100:55-82. [DOI: 10.1007/978-3-319-97746-1_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|