1
|
Ouyang H, Wu S, Li W, Grey MJ, Wu W, Hansen SH. p120 RasGAP and ZO-2 are essential for Hippo signaling and tumor-suppressor function mediated by p190A RhoGAP. Cell Rep 2023; 42:113486. [PMID: 37995182 PMCID: PMC10809936 DOI: 10.1016/j.celrep.2023.113486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/19/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
ARHGAP35, which encodes p190A RhoGAP (p190A), is a major cancer gene. p190A is a tumor suppressor that activates the Hippo pathway. p190A was originally cloned via direct binding to p120 RasGAP (RasGAP). Here, we determine that interaction of p190A with the tight-junction-associated protein ZO-2 is dependent on RasGAP. We establish that both RasGAP and ZO-2 are necessary for p190A to activate large tumor-suppressor (LATS) kinases, elicit mesenchymal-to-epithelial transition, promote contact inhibition of cell proliferation, and suppress tumorigenesis. Moreover, RasGAP and ZO-2 are required for transcriptional modulation by p190A. Finally, we demonstrate that low ARHGAP35 expression is associated with shorter survival in patients with high, but not low, transcript levels of TJP2 encoding ZO-2. Hence, we define a tumor-suppressor interactome of p190A that includes ZO-2, an established constituent of the Hippo pathway, and RasGAP, which, despite strong association with Ras signaling, is essential for p190A to activate LATS kinases.
Collapse
Affiliation(s)
- Hanyue Ouyang
- GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| | - Shuang Wu
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Wangji Li
- GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael J Grey
- GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Wenchao Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| | - Steen H Hansen
- GI Cell Biology Laboratory, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Ouyang H, Li W, Hansen SH. p120 RasGAP and ZO-2 are essential for Hippo signaling and tumor suppressor function mediated by p190A RhoGAP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541483. [PMID: 37292741 PMCID: PMC10245842 DOI: 10.1101/2023.05.22.541483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
ARHGAP35 , which encodes p190A RhoGAP (p190A), is a major cancer gene. p190A is a tumor suppressor that activates the Hippo pathway. p190A was originally cloned via direct binding to p120 RasGAP (RasGAP). Here, we determine that a novel interaction of p190A with the tight junction-associated protein ZO-2 is dependent on RasGAP. We establish that both RasGAP and ZO-2 are necessary for p190A to activate LATS kinases, elicit mesenchymal-to-epithelial transition, promote contact inhibition of cell proliferation and suppress tumorigenesis. Moreover, RasGAP and ZO-2 are required for transcriptional modulation by p190A. Finally, we demonstrate that low ARHGAP35 expression is associated with shorter survival in patients with high, but not low, transcript levels of TJP2 encoding ZO-2. Hence, we define a tumor suppressor interactome of p190A that includes ZO-2, an established constituent of the Hippo pathway, and RasGAP, which despite strong association with Ras signaling, is essential for p190A to activate LATS kinases.
Collapse
|
3
|
Musculoskeletal Tumor Registry, Time to Act and Take Steps Forward. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.119280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Gargallo P, Oltra S, Yáñez Y, Juan-Ribelles A, Calabria I, Segura V, Lázaro M, Balaguer J, Tormo T, Dolz S, Fernández JM, Fuentes C, Torres B, Andrés M, Tasso M, Castel V, Font de Mora J, Cañete A. Germline Predisposition to Pediatric Cancer, from Next Generation Sequencing to Medical Care. Cancers (Basel) 2021; 13:5339. [PMID: 34771502 PMCID: PMC8582391 DOI: 10.3390/cancers13215339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge about genetic predisposition to pediatric cancer is constantly expanding. The categorization and clinical management of the best-known syndromes has been refined over the years. Meanwhile, new genes for pediatric cancer susceptibility are discovered every year. Our current work shares the results of genetically studying the germline of 170 pediatric patients diagnosed with cancer. Patients were prospectively recruited and studied using a custom panel, OncoNano V2. The well-categorized predisposing syndromes incidence was 9.4%. Likely pathogenic variants for predisposition to the patient's tumor were identified in an additional 5.9% of cases. Additionally, a high number of pathogenic variants associated with recessive diseases was detected, which required family genetic counseling as well. The clinical utility of the Jongmans MC tool was evaluated, showing a high sensitivity for detecting the best-known predisposing syndromes. Our study confirms that the Jongmans MC tool is appropriate for a rapid assessment of patients; however, the updated version of Ripperger T criteria would be more accurate. Meaningfully, based on our findings, up to 9.4% of patients would present genetic alterations predisposing to cancer. Notably, up to 20% of all patients carry germline pathogenic or likely pathogenic variants in genes related to cancer and, thereby, they also require expert genetic counseling. The most important consideration is that the detection rate of genetic causality outside Jongmans MC et al. criteria was very low.
Collapse
Affiliation(s)
- Pablo Gargallo
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
- Imegen–Health in Code Group, Department of Oncology, Paterna, 46980 Valencia, Spain; (I.C.); (M.L.)
| | - Silvestre Oltra
- Genetics Unit, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain;
- Genetics Department, Universidad de Valencia, 46010 Valencia, Spain
| | - Yania Yáñez
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Antonio Juan-Ribelles
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Inés Calabria
- Imegen–Health in Code Group, Department of Oncology, Paterna, 46980 Valencia, Spain; (I.C.); (M.L.)
| | - Vanessa Segura
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Marián Lázaro
- Imegen–Health in Code Group, Department of Oncology, Paterna, 46980 Valencia, Spain; (I.C.); (M.L.)
| | - Julia Balaguer
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Teresa Tormo
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Sandra Dolz
- Laboratory of Cellular and Molecular Biology, Clinical and Translational Research in Cancer, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (S.D.); (J.F.d.M.)
| | - José María Fernández
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Carolina Fuentes
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Bárbara Torres
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Mara Andrés
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - María Tasso
- Pediatric Oncology Department, Hospital General de Alicante, 03010 Alicante, Spain;
| | - Victoria Castel
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
| | - Jaime Font de Mora
- Laboratory of Cellular and Molecular Biology, Clinical and Translational Research in Cancer, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (S.D.); (J.F.d.M.)
| | - Adela Cañete
- Pediatric Oncology Department, Hospital Universitario y Politécnico La Fe de Valencia, 46026 Valencia, Spain; (Y.Y.); (A.J.-R.); (V.S.); (J.B.); (T.T.); (J.M.F.); (C.F.); (B.T.); (M.A.); (V.C.); (A.C.)
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
5
|
Xu Y, Tsai CW, Chang WS, Xiong GY, Huang M, Torres KE, Bau DT, Gu J. Genetically predicted high circulating insulin-like growth factor-1 and insulin-like growth factor binding protein-3 increase the risks of soft tissue sarcoma. Am J Cancer Res 2021; 11:3980-3989. [PMID: 34522462 PMCID: PMC8414386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/13/2021] [Indexed: 06/13/2023] Open
Abstract
Insulin growth factor-1 (IGF-1) plays important roles in carcinogenesis. Previous studies have linked circulating IGF-1 and its main binding protein, insulin-like growth factor-binding protein-3 (IGFBP-3), to cancer risks. However, no study has been conducted in soft tissue sarcoma (STS). In this study, we investigated the relationship of genetically predicted circulating IGF-1 and IGFBP-3 with STS risks. Recent large genome-wide association studies (GWAS) have identified 413 single nucleotide polymorphisms (SNPs) associated with IGF-1 and 4 SNPs associated with IGFBP-3. We genotyped these SNPs in 821 patients and 851 healthy controls. We constructed weighted genetic risk scores (GRS) to predict circulating IGF-1 and IGFBP-3. We determined the associations of individual SNPs and GRS with the risks of STS using multivariate logistic regression analysis. We found high genetically predicted circulating IGF-1 and IGFBP-3 were both associated with increased STS risks. Dichotomized at the median values of IGF-1 and IGFBP-3 in controls, individuals with high level of IGF-1 exhibited a 27% increased risk of STS (odds ratio [OR]=1.27, 95% confidence interval [CI]=1.04-1.54, P=0.017), whereas the OR for high IGFBP-3 was 1.45 (95% CI=1.20-1.77, P<0.001). Interestingly, the significant association between IGFBP-3 and STS risk was only evident in women (OR=1.88, 95% CI=1.42-2.49, P<0.001), but not in men (OR=1.00, 95% CI=0.75-1.33, P=0.992). In stratified analyses by major STS subtypes, the strongest associations were observed in angiosarcoma for IGF-1, leiomyosarcoma for IGFBP-3, and gastrointestinal stromal tumors for IGFBP-3 in women. In conclusion, high circulating IGF-1 and IGFBP-3 levels were both associated with increased STS risks.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Chia-Wen Tsai
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung, Taiwan
| | - Wen-Shin Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung, Taiwan
| | - Grace Y Xiong
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Keila E Torres
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Da-Tian Bau
- Terry Fox Cancer Research Laboratory, China Medical University HospitalTaichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia UniversityTaichung, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| |
Collapse
|
6
|
Osteosarcoma, chondrosarcoma and Ewing sarcoma: Clinical aspects, biomarker discovery and liquid biopsy. Crit Rev Oncol Hematol 2021; 162:103340. [PMID: 33894338 DOI: 10.1016/j.critrevonc.2021.103340] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
Bone sarcomas, although rare, are associated with significant morbidity and mortality. The most frequent primary bone cancers include osteosarcoma, chondrosarcoma and Ewing sarcoma. The treatment approaches are heterogeneous and mainly chosen based on precise tumour staging. Unfortunately, clinical outcome has not changed significantly in over 30 years and tumour grade is still the best prognosticator of metastatic disease and survival. An option to improve this scenario is to identify molecular biomarkers in the early stage of the disease, or even before the disease onset. Blood-based liquid biopsies are a promising, non-invasive way to achieve this goal and there are an increasing number of studies which investigate their potential application in bone cancer diagnosis, prognosis and personalised therapy. This review summarises the interplay between clinical and molecular aspects of the three main bone sarcomas, alongside biomarker discovery and promising applications of liquid biopsy in each tumour context.
Collapse
|
7
|
Park JH, Jeong GH, Lee KS, Lee KH, Suh JS, Eisenhut M, van der Vliet HJ, Kronbichler A, Stubbs B, Solmi M, Dragioti E, Koyanagi A, Shin JI, Gamerith G. Genetic variations in MicroRNA genes and cancer risk: A field synopsis and meta-analysis. Eur J Clin Invest 2020; 50:e13203. [PMID: 31984489 DOI: 10.1111/eci.13203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cancer risk has been associated with certain gene variations in microRNA (miRNA), but conflicting evidence warrants re-assessing of significant results in meta-analyses. We summarized published meta-analyses that assess the associations between miRNA polymorphism and cancers to show the validity of the findings. METHOD We searched PubMed and investigated the results of meta-analyses published through November 2018. We re-assessed the results based on false-positive report probability (FPRP) to test the noteworthiness of the associations. RESULTS Sixty-eight miRNA polymorphisms in 45 meta-analyses associated with cancer were included. Four (7.4%) and sixteen (25.0%) single nucleotide polymorphisms (SNPs) were noteworthy (FPRP < 0.2) at a prior probability of 0.001 for interesting candidate genes and a statistical power to detect an odds ratio (OR) of 1.1 and 1.5, respectively. The four miRNA SNPs noteworthy at an OR of 1.1 were as follows: miR-146a/rs2910164 Cvs.G; miR-27a/rs895819 Cvs.T; miR-423/rs6505162 Cvs.A; and miR-605/rs2043556 Cvs.T. The 16 SNPs noteworthy at an OR of 1.5 include the four genotype comparisons at an OR of 1.1, and the additional 12 genotype comparisons were as follows: miR-196a2/rs11614913 Tvs.C; miR-27a/rs895819 GGvs.AA + AG; miR-196a2/rs11614913 C vs.T; miR-146a/rs2910164 Gvs.C; miR-196a2/rs11614913 Tvs.C; miR-146a/rs2910164 Cvs.G; miR-499/rs3746444 homozygous model; miR-146a/rs2910164 CCvs.GG + GC; miR-499/rs3746444 TCvs.TT; miR-499/rs3746444 GAvs.AA; miR-146a/rs2910164 CCvs.GG; and miR-499/rs3746444 Gvs.A. No association was noteworthy at a prior probability of 0.000001. CONCLUSION Out of 68 published associations of miRNA polymorphisms with cancer, sixteen have shown noteworthiness in our re-assessing meta-analysis. Our findings summarize the results of meta-analyses on the association of cancer with SNPs and underline the importance of interpreting results with caution.
Collapse
Affiliation(s)
- Jae Hyon Park
- Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Gwang Hun Jeong
- College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Kwang Seob Lee
- Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.,Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, Korea.,Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Soon Suh
- Department of Pediatrics, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Michael Eisenhut
- Luton & Dunstable University Hospital NHS Foundation Trust, Luton, UK
| | - Hans J van der Vliet
- Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, VU University, Amsterdam, The Netherlands
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University of Innsbruck, Innsbruck, Austria
| | - Brendon Stubbs
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,South London and Maudsley NHS Foundation Trust, London, UK.,Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, UK
| | - Marco Solmi
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Elena Dragioti
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Ai Koyanagi
- Parc Sanitari Sant Joan de Déu/CIBERSAM, Universitat de Barcelona, Fundació Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain.,ICREA, Pg. Lluis Companys 23, Barcelona, Spain
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.,Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, Korea.,Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Korea
| | - Gabriele Gamerith
- Department of Internal Medicine V (Hematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| |
Collapse
|
8
|
Švara T, Gombač M, Poli A, Račnik J, Zadravec M. Spontaneous Tumors and Non-Neoplastic Proliferative Lesions in Pet Degus ( Octodon degus). Vet Sci 2020; 7:vetsci7010032. [PMID: 32183187 PMCID: PMC7158670 DOI: 10.3390/vetsci7010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 02/05/2023] Open
Abstract
In recent years, degus (Octodon degus), rodents native to South America, have been becoming increasingly popular as pet animals. Data about neoplastic diseases in this species are still sparse and mainly limited to single-case reports. The aim of this study was to present neoplastic and non-neoplastic proliferative changes in 16/100 pet degus examined at the Veterinary Faculty University of Ljubljana from 2010 to 2015 and to describe the clinic-pathological features of these lesions. Twenty different lesions of the integumentary, musculoskeletal, genitourinary and gastrointestinal systems were diagnosed: amongst these were 13 malignant tumors, six benign tumors, and one non-neoplastic lesion. Cutaneous fibrosarcoma was the most common tumor (7/16 degus). It was detected more often in females (6/7 degus) and lesions were located mainly in hind limbs. The gastrointestinal tract was frequently affected, namely with two malignant neoplasms - an intestinal lymphoma and a mesenteric mesothelioma, four benign tumors - two biliary cystadenomas, an oral squamous papilloma and a hepatocellular adenoma, and a single non-neoplastic proliferative lesion. In one animal, two organic systems were involved in neoplastic lesions.
Collapse
Affiliation(s)
- Tanja Švara
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (T.Š.); (M.G.)
| | - Mitja Gombač
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (T.Š.); (M.G.)
| | - Alessandro Poli
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy
- Correspondence:
| | - Jožko Račnik
- Clinic for Birds, Small mammals and Reptiles, Institute of Poultry, Birds, Small Mammals and Reptiles, Veterinary Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.Z.)
| | - Marko Zadravec
- Clinic for Birds, Small mammals and Reptiles, Institute of Poultry, Birds, Small Mammals and Reptiles, Veterinary Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.Z.)
| |
Collapse
|
9
|
Long Leukocyte Telomere Length Is Associated with Increased Risks of Soft Tissue Sarcoma: A Mendelian Randomization Study. Cancers (Basel) 2020; 12:cancers12030594. [PMID: 32150919 PMCID: PMC7139681 DOI: 10.3390/cancers12030594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Leukocyte telomere length (LTL) has been associated with the risks of several cancers in observational studies. Mendelian randomization (MR) studies, using genetic variants as instrumental variables, have also shown associations of genetically predicted LTL with cancer risks. In this study, we performed the first MR analysis on soft tissue sarcoma (STS) to investigate the causal relationship between LTL and the risk of STS. Methods: Genotypes from eleven LTL-associated single nucleotide polymorphisms (SNPs) in 821 STS cases and 851 cancer-free controls were aggregated into a weighted genetic risk score (GRS) to predict LTL. Multivariate logistic regression was used to assess the association of STS risk with individual SNPs and aggregated GRS. Results: Four SNPs displayed evidence for an individual association between long LTL-conferring allele and increased STS risk: rs7675998 (odds ratio (OR) = 1.21, 95% confidence interval (CI) = 1.02–1.43), rs9420907 (OR = 1.31, 95% CI = 1.08–1.59), rs8105767 (OR = 1.18, 95% CI = 1.02–1.37), and rs412658 (OR = 1.18, 95% CI = 1.02–1.36). Moreover, longer genetically predicted LTL, calculated as GRS, was strongly associated with an increased risk of STS (OR = 1.44, 95% CI = 1.18–1.75, p < 0.001), and there was a significant dose-response association (p for trend <0.001 in tertile and quartile analyses). The association of longer LTL with higher STS risk was more evident in women than in men. In stratified analyses by major STS subtypes, longer LTL was significantly associated with higher risks of leiomyosarcoma and gastrointestinal stromal tumors. Conclusions: Longer LTL is associated with increased risks of STS.
Collapse
|
10
|
Systematic Review of the Current Status of Human Sarcoma Cell Lines. Cells 2019; 8:cells8020157. [PMID: 30781855 PMCID: PMC6406745 DOI: 10.3390/cells8020157] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
Sarcomas are rare mesenchymal malignant tumors with unique biological and clinical features. Given their diversity, heterogeneity, complexity, and rarity, the clinical management of sarcomas is quite challenging. Cell lines have been used as indispensable tools for both basic research and pre-clinical studies. However, empirically, sarcoma cell lines are not readily available. To understand the present status of sarcoma cell lines and identify their current challenges, we systematically reviewed reports on sarcoma cell lines. We searched the cell line database, Cellosaurus, and categorized the sarcoma cell lines according to the WHO classification. We identified the number and availability of sarcoma cell lines with a specific histology. We found 844 sarcoma cell lines in the Cellosaurus database, and 819 of them were named according to the WHO classification. Among the 819 cell lines, 36 multiple and nine single cell lines are available for histology. No cell lines were reported for 133 of the histological subtypes. Among the 844 cell lines, 148 are currently available in public cell banks, with 692 already published. We conclude that there needs to be a larger number of cell lines, with various histological subtypes, to better benefit sarcoma research.
Collapse
|
11
|
Benna C, Rajendran S, Spiro G, Tropea S, Del Fiore P, Rossi CR, Mocellin S. Associations of clock genes polymorphisms with soft tissue sarcoma susceptibility and prognosis. J Transl Med 2018; 16:338. [PMID: 30518396 PMCID: PMC6280400 DOI: 10.1186/s12967-018-1715-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/30/2018] [Indexed: 12/28/2022] Open
Abstract
Background Dysfunction of the circadian clock and polymorphisms of some circadian genes have been linked to cancer development and progression. We investigated the relationship between circadian genes germline variation and susceptibility or prognosis of patients with soft tissue sarcoma. Patients and methods We considered the 14 single nucleotide polymorphisms (SNPs) of 6 core circadian genes that have a minor allele frequency > 5% and that are known to be associated with cancer risk or prognosis. Genotyping was performed by q-PCR. Peripheral blood and clinic-pathological data were available for 162 patients with liposarcoma or leiomyosarcoma and 610 healthy donors. Associations between the selected clock genes polymorphisms and sarcoma susceptibility or prognosis were tested assuming 3 models of inheritance: additive, recessive and dominant. Subgroup analysis based on sarcoma histotype was performed under the additive genetic model. Multivariate logistic regression and multivariate Cox proportional hazard regression analyses were utilized to assess the association between SNPs with patient susceptibility and survival, respectively. Pathway variation analysis was conducted employing the Adaptive Rank Truncated Product method. Results Six out of the 14 analyzed SNPs were statistically significantly associated with susceptibility or prognosis of soft tissue sarcoma (P < 0.05). The present analysis suggested that carriers of the minor allele of the CLOCK polymorphism rs1801260 (C) or of PER2 rs934945 (T) had a reduced predisposition to sarcoma (26% and 35% respectively with the additive model) and liposarcoma (33% and 41% respectively). The minor allele (A) of NPAS2 rs895520 was associated with an increased predisposition to sarcoma of 33% and leiomyosarcoma of 44%. RORA rs339972 C allele was associated with a decreased predisposition to develop sarcoma assuming an additive model (29%) and leiomyosarcoma (36%). PER1 rs3027178 was associated with a reduced predisposition only in liposarcoma subgroup (32%). rs7602358 located upstream PER2 was significantly associated with liposarcoma survival (HR: 1.98; 95% CI 1.02–3.85; P = 0.04). Germline genetic variation in the circadian pathway was associated with the risk of developing soft tissue sarcoma (P = 0.035). Conclusions Genetic variation of circadian genes appears to play a role in the determinism of patient susceptibility and prognosis. These findings prompt further studies to fully dissect the molecular mechanisms. Electronic supplementary material The online version of this article (10.1186/s12967-018-1715-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clara Benna
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy. .,Clinica Chirurgica I, Azienda Ospedaliera Padova, Padua, Italy.
| | | | - Giovanna Spiro
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Saveria Tropea
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy.,Surgical Oncology Unit, Istituto Oncologico Veneto (IOV-IRCCS), Padua, Italy
| | - Paolo Del Fiore
- Surgical Oncology Unit, Istituto Oncologico Veneto (IOV-IRCCS), Padua, Italy
| | - Carlo Riccardo Rossi
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy.,Surgical Oncology Unit, Istituto Oncologico Veneto (IOV-IRCCS), Padua, Italy
| | - Simone Mocellin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy.,Surgical Oncology Unit, Istituto Oncologico Veneto (IOV-IRCCS), Padua, Italy
| |
Collapse
|
12
|
Ballinger ML, Pinese M, Thomas DM. Translating genomic risk into an early detection strategy for sarcoma. Genes Chromosomes Cancer 2018; 58:130-136. [PMID: 30382615 DOI: 10.1002/gcc.22697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 01/07/2023] Open
Abstract
Sarcomas have a strong genetic etiology, and the study of families affected by sarcomas has informed much of what we now understand of modern cancer biology. The recent emergence of powerful genetic technologies has led to astonishing reductions in costs and increased throughput. In the clinic, these technologies are revealing a previously unappreciated and rich landscape of genetic cancer risk. In addition to both known and new cancer risk mutations, genomic tools are cataloguing complex and polygenic risk patterns, collectively explaining between 15-25% of apparently sporadic sarcoma cases. The impact on clinical management is exemplified by Li-Fraumeni Syndrome, the most penetrant sarcoma syndrome. Whole body magnetic resonance imaging can identify surgically resectable cancers in up to one in ten individuals with Li-Fraumeni Syndrome. Taken together, parallel developments in genomics, therapeutics and imaging technologies will drive closer engagement between genetics and multidisciplinary care of the sarcoma patient in the 21st century.
Collapse
Affiliation(s)
- Mandy L Ballinger
- Cancer Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Mark Pinese
- Cancer Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - David M Thomas
- Cancer Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| |
Collapse
|