1
|
Bortolami FP, Zuma AA, de Souza W, Motta MCM. Plant-derived compounds that target histone acetyltransferases inhibit Trypanosoma cruzi proliferation and viability and affect parasite ultrastructure. Micron 2024; 188:103729. [PMID: 39432977 DOI: 10.1016/j.micron.2024.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, exhibits a chromatin structure and organization similar to that of other eukaryotes, undergoing certain epigenetic modifications, such as histone acetylation and deacetylation. Histone acetyltransferase inhibitors have been frequently applied as therapy agents against tumor cells, but their effects on protozoa have not yet been adequately explored. In this study, the effects of three acetyltransferase inhibitors, curcumin, triptolide and anacardic acid, were investigated on T. cruzi. Curcumin was able to inhibit epimastigote and amastigote proliferation and was the most effective compound. Triptolide also impaired T. cruzi proliferation and, along with curcumin, promoted the unpacking of nuclear heterochromatin and nucleolus disorganization. Anacardic acid did not alter parasite growth or viability, but caused ultrastructural changes, such as mitochondrial swelling and cristae enlargement. None of these compounds affected the microtubule cytoskeleton. These findings indicate that histone acetyltransferase inhibitors, especially curcumin, display the potential to be applied in chemotherapeutic studies against T. cruzi. Our results reinforce the necessity of developing new compounds that can be used successfully in therapy against neglected diseases.
Collapse
Affiliation(s)
- Fernanda Pereira Bortolami
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil
| | - Aline Araujo Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil.
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, RJ, Brazil
| | - Maria Cristina Machado Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ 21491-590, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, RJ, Brazil
| |
Collapse
|
2
|
Dernovšek J, Zajec Ž, Poje G, Urbančič D, Sturtzel C, Goričan T, Grissenberger S, Ciura K, Woziński M, Gedgaudas M, Zubrienė A, Grdadolnik SG, Mlinarič-Raščan I, Rajić Z, Cotman AE, Zidar N, Distel M, Tomašič T. Exploration and optimisation of structure-activity relationships of new triazole-based C-terminal Hsp90 inhibitors towards in vivo anticancer potency. Biomed Pharmacother 2024; 177:116941. [PMID: 38889640 DOI: 10.1016/j.biopha.2024.116941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
The development of new anticancer agents is one of the most urgent topics in drug discovery. Inhibition of molecular chaperone Hsp90 stands out as an approach that affects various oncogenic proteins in different types of cancer. These proteins rely on Hsp90 to obtain their functional structure, and thus Hsp90 is indirectly involved in the pathophysiology of cancer. However, the most studied ATP-competitive inhibition of Hsp90 at the N-terminal domain has proven to be largely unsuccessful clinically. Therefore, research has shifted towards Hsp90 C-terminal domain (CTD) inhibitors, which are also the focus of this study. Our recent discovery of compound C has provided us with a starting point for exploring the structure-activity relationship and optimising this new class of triazole-based Hsp90 inhibitors. This investigation has ultimately led to a library of 33 analogues of C that have suitable physicochemical properties and several inhibit the growth of different cancer types in the low micromolar range. Inhibition of Hsp90 was confirmed by biophysical and cellular assays and the binding epitopes of selected inhibitors were studied by STD NMR. Furthermore, the most promising Hsp90 CTD inhibitor 5x was shown to induce apoptosis in breast cancer (MCF-7) and Ewing sarcoma (SK-N-MC) cells while inducing cause cell cycle arrest in MCF-7 cells. In MCF-7 cells, it caused a decrease in the levels of ERα and IGF1R, known Hsp90 client proteins. Finally, 5x was tested in zebrafish larvae xenografted with SK-N-MC tumour cells, where it limited tumour growth with no obvious adverse effects on normal zebrafish development.
Collapse
Affiliation(s)
- Jaka Dernovšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Živa Zajec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Goran Poje
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb 10000, Croatia
| | - Dunja Urbančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Caterina Sturtzel
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, Vienna 1090, Austria
| | - Tjaša Goričan
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1001, Slovenia
| | - Sarah Grissenberger
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, Vienna 1090, Austria
| | - Krzesimir Ciura
- Department of Physical Chemistry, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Mateusz Woziński
- Department of Physical Chemistry, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Marius Gedgaudas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1001, Slovenia
| | - Irena Mlinarič-Raščan
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Zrinka Rajić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, Zagreb 10000, Croatia
| | - Andrej Emanuel Cotman
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, Vienna 1090, Austria
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
3
|
Su Y, Wu M, Zhou B, Bai Z, Pang R, Liu Z, Zhao W. Paclitaxel mediates the PI3K/AKT/mTOR pathway to reduce proliferation of FLT3‑ITD + AML cells and promote apoptosis. Exp Ther Med 2024; 27:161. [PMID: 38476887 PMCID: PMC10928971 DOI: 10.3892/etm.2024.12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Acute myeloid leukemia (AML) with internal tandem duplication (ITD) mutations in the FLT3 tyrosine kinase tend to have a poor prognosis. FLT3-ITD can promote the progress of AML by activating the PI3K/AKT/mTOR pathway. Paclitaxel (PTX) is a natural anticancer drug that has been widely used in chemotherapy for multiple malignancies. The present study used the CCK-8 assay, flow cytometry, PCR and western blotting to explore the anti-leukemia effect and possible mechanisms of PTX on MV4-11 cells with the FLT3-ITD mutation and the underlying mechanism. As a result, it was found that PTX could inhibit proliferation of MV4-11 cells and promoted apoptosis by inhibiting the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yanyun Su
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Meiqing Wu
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Baowen Zhou
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ziwen Bai
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ruli Pang
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhenfang Liu
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Weihua Zhao
- Department of Hematology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
4
|
Wang Q, Kong X, Guo W, Liu L, Tian Y, Tao X, Lin N, Su X. HSP90 Exacerbates Bone Destruction in Rheumatoid Arthritis by Activating TRAF6/NFATc1 Signaling. Inflammation 2024; 47:363-375. [PMID: 37902841 DOI: 10.1007/s10753-023-01914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by a notably high disability rate, primarily attributed to cartilage and bone degradation. The involvement of heat shock protein 90 (HSP90) as a molecular chaperone in the inflammatory response of RA has been established, but its role in bone destruction remains uncertain. In the present study, the expression of HSP90 was augmented in osteoclasts induced by the receptor activator of nuclear factor-κB ligand. Additionaly, it was observed that the outcomes revealed a noteworthy inhibition of osteoclast formation and differentation when triptolide was utilized to hinder the expression of HSP90. Furthermore, the positive influence of HSP90 in osteoclast differentiation was substantiated by overexpressing HSP90 in osteoclast precursor cells. Mechanically, HSP90 significantly activated the TNF receptor-associated factor 6 (TRAF6)/Nuclear factor of activated T cells 1 (NFATc1) signaling axis, accompanied by markedly promoting osteoclast differentiation. This effect was consistently observed in the destructive joint of rats with collagen-induced arthritis, where HSP90 effectively activated osteoclasts and contributed to arthritic bone destruction by activating the TRAF6/NFATc1 signaling. Overall, the findings of this study provide compelling evidence that HSP90 exacerbates bone destruction in RA by promoting osteoclast differentiation through the activation of TRAF6/NFATc1 signaling, and interference with HSP90 may be a promising strategy for the discovery of anti-arthritic bone destruction agents.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Wanyi Guo
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Liling Liu
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Yage Tian
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Xueying Tao
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Na Lin
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China.
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China.
| |
Collapse
|
5
|
Gao J, Zhou C, Zhong Y, Shi L, Luo X, Su H, Li M, Xu Y, Zhang N, Zhou H. Dipyridamole interacts with the N-terminal domain of HSP90 and antagonizes the function of the chaperone in multiple cancer cell lines. Biochem Pharmacol 2023; 207:115376. [PMID: 36513142 DOI: 10.1016/j.bcp.2022.115376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Molecular chaperone HSP90 has been considered as a promising target for anti-cancer drug development for years. However, due to the heat shock response induced by the ATP competitive inhibitors against HSP90, the therapeutic efficacies of the compounds are compromised, which consequently restricts the clinical use of HSP90-targeted inhibitors. Therefore, there is a need to discover novel HSP90-targeted modulators which exhibit acceptable inhibition activity against the chaperone and do not induce significant heat shock response in the meantime. Here in this study, we firstly developed a tip-based affinity selection-mass spectrometry platform with optimized experimental conditions/parameters for HSP90-targeted active compound screening, and then applied it to fish out inhibitors against HSP90 from a collection of 2,395 compounds composed of FDA-approved drugs and drug candidates. Dipyridamole, which acts as an anti-thrombotic agent by modulating multiple targets and has a long history of safe use, was identified to interact with HSP90's N-terminal domain. The following conducted biophysical and biochemical experiments demonstrated that Dipyridamole could bind to HSP90's ATP binding pocket and function as an ATP competitive inhibitor of the chaperone. Finally, cellular-based assays including CESTA, cell viability assessment and proteomic analysis etc. were performed to evaluate whether the interaction between HSP90 and Dipyridamole contributes to the anti-tumor effects of the compound. We then found that Dipyridamole inhibits the growth and proliferation of human cancer cells by downregulating cell cycle regulators and upregulating apoptotic cell signaling, which are potentially mediated by the binding of Dipyridamole to HSP90 and to PDEs (phosphodiesterases), respectively.
Collapse
Affiliation(s)
- Jing Gao
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chen Zhou
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yan Zhong
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Li Shi
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xuanyang Luo
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Minjun Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Naixia Zhang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Hu Zhou
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
6
|
Lu Q, Guo P, Li H, Liu Y, Yuan L, Zhang B, Wu Q, Wang X. Targeting the lncMST-EPRS/HSP90AB1 complex as novel therapeutic strategy for T-2 toxin-induced growth retardation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114243. [PMID: 36332407 DOI: 10.1016/j.ecoenv.2022.114243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Growth retardation is a global public health problem that is highly prevalent especially in low-and middle-income countries, which is closely related to the consumption of grains contaminated with T-2 toxin, a risk for human and animal health. However, the possible targets that can relieve T-2 toxin-induced growth retardation still need to be explored. In the present study, T-2 toxin was used as an environmental exposure factor to induce growth retardation and further explore the regulatory role of lncRNA in growth retardation. The present study systematically characterised the expression profiles of lncRNAs and identified a lncRNA lncMST that is related to growth retardation in T-2 toxin-administered rats. Functionally, lncMST could alleviate cell cycle arrest and apoptosis in T-2 toxin-treated GH3 cells. Mechanistically, lncMST, serve as an inducible chaperone RNA, involved in the paradigm "Chemical-induced stress related growth retardation", through recruiting the EPRS/HSP90AB1 complex to increase HDAC6 expression, thus further alleviating T-2 toxin-induced growth retardation. These findings for the first time demonstrate that the probable therapeutic relationship between lncMST and growth retardation, providing an explanation and therapeutic targets for the pathogenesis of growth retardation.
Collapse
Affiliation(s)
- Qirong Lu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Pu Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan 430023, China; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Houpeng Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Yanan Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Ling Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Boyue Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China.
| |
Collapse
|
7
|
Donahue K, Xie H, Li M, Gao A, Ma M, Wang Y, Tipton R, Semanik N, Primeau T, Li S, Li L, Tang W, Xu W. Diptoindonesin G is a middle domain HSP90 modulator for cancer treatment. J Biol Chem 2022; 298:102700. [PMID: 36395883 PMCID: PMC9771721 DOI: 10.1016/j.jbc.2022.102700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022] Open
Abstract
HSP90 inhibitors can target many oncoproteins simultaneously, but none have made it through clinical trials due to dose-limiting toxicity and induction of heat shock response, leading to clinical resistance. We identified diptoindonesin G (dip G) as an HSP90 modulator that can promote degradation of HSP90 clients by binding to the middle domain of HSP90 (Kd = 0.13 ± 0.02 μM) without inducing heat shock response. This is likely because dip G does not interfere with the HSP90-HSF1 interaction like N-terminal inhibitors, maintaining HSF1 in a transcriptionally silent state. We found that binding of dip G to HSP90 promotes degradation of HSP90 client protein estrogen receptor α (ER), a major oncogenic driver protein in most breast cancers. Mutations in the ER ligand-binding domain (LBD) are an established mechanism of endocrine resistance and decrease the binding affinity of mainstay endocrine therapies targeting ER, reducing their ability to promote ER degradation or transcriptionally silence ER. Because dip G binds to HSP90 and does not bind to the LBD of ER, unlike endocrine therapies, it is insensitive to ER LBD mutations that drive endocrine resistance. Additionally, we determined that dip G promoted degradation of WT and mutant ER with similar efficacy, downregulated ER- and mutant ER-regulated gene expression, and inhibited WT and mutant cell proliferation. Our data suggest that dip G is not only a molecular probe to study HSP90 biology and the HSP90 conformation cycle, but also a new therapeutic avenue for various cancers, particularly endocrine-resistant breast cancer harboring ER LBD mutations.
Collapse
Affiliation(s)
- Kristine Donahue
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Haibo Xie
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Miyang Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ang Gao
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rose Tipton
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Nicole Semanik
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Tina Primeau
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Shunqiang Li
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA,For correspondence: Wei Xu; Weiping Tang
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA,For correspondence: Wei Xu; Weiping Tang
| |
Collapse
|
8
|
Pan- and isoform-specific inhibition of Hsp90: Design strategy and recent advances. Eur J Med Chem 2022; 238:114516. [DOI: 10.1016/j.ejmech.2022.114516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/11/2022]
|
9
|
Peng S, Woodruff J, Pathak PK, Matts RL, Deng J. Crystal structure of the middle and C-terminal domains of Hsp90α labeled with a coumarin derivative reveals a potential allosteric binding site as a drug target. Acta Crystallogr D Struct Biol 2022; 78:571-585. [PMID: 35503206 PMCID: PMC9063849 DOI: 10.1107/s2059798322002261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/26/2022] [Indexed: 12/01/2022] Open
Abstract
The 90 kDa heat-shock protein (Hsp90) is an abundant molecular chaperone that is essential to activate, stabilize and regulate the function of a plethora of client proteins. As drug targets for the treatment of cancer and neurodegenerative diseases, Hsp90 inhibitors that bind to the N-terminal ATP-binding site of Hsp90 have shown disappointing efficacy in clinical trials. Thus, allosteric regulation of the function of Hsp90 by compounds that interact with its middle and C-terminal (MC) domains is now being pursued as a mechanism to inhibit the ATPase activity and client protein-binding activity of Hsp90 without concomitant induction of the heat-shock response. Here, the crystal structure of the Hsp90αMC protein covalently linked to a coumarin derivative, MDCC {7-diethylamino-3-[N-(2-maleimidoethyl)carbamoyl]coumarin}, which is located in a hydrophobic pocket that is formed at the Hsp90αMC hexamer interface, is reported. MDCC binding leads to the hexamerization of Hsp90, and the stabilization and conformational changes of three loops that are critical for its function. A fluorescence competition assay demonstrated that other characterized coumarin and isoflavone-containing Hsp90 inhibitors compete with MDCC binding, suggesting that they could bind at a common site or that they might allosterically alter the structure of the MDCC binding site. This study provides insights into the mechanism by which the coumarin class of allosteric inhibitors potentially disrupt the function of Hsp90 by regulating its oligomerization and the burial of interaction sites involved in the ATP-dependent folding of Hsp90 clients. The hydrophobic binding pocket characterized here will provide new structural information for future drug design.
Collapse
Affiliation(s)
- Shuxia Peng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Jeff Woodruff
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Prabhat Kumar Pathak
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Robert L. Matts
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| |
Collapse
|
10
|
Stofberg ML, Caillet C, de Villiers M, Zininga T. Inhibitors of the Plasmodium falciparum Hsp90 towards Selective Antimalarial Drug Design: The Past, Present and Future. Cells 2021; 10:2849. [PMID: 34831072 PMCID: PMC8616389 DOI: 10.3390/cells10112849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Malaria is still one of the major killer parasitic diseases in tropical settings, posing a public health threat. The development of antimalarial drug resistance is reversing the gains made in attempts to control the disease. The parasite leads a complex life cycle that has adapted to outwit almost all known antimalarial drugs to date, including the first line of treatment, artesunate. There is a high unmet need to develop new strategies and identify novel therapeutics to reverse antimalarial drug resistance development. Among the strategies, here we focus and discuss the merits of the development of antimalarials targeting the Heat shock protein 90 (Hsp90) due to the central role it plays in protein quality control.
Collapse
Affiliation(s)
| | | | | | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (M.L.S.); (C.C.); (M.d.V.)
| |
Collapse
|
11
|
Banerjee M, Hatial I, Keegan BM, Blagg BSJ. Assay design and development strategies for finding Hsp90 inhibitors and their role in human diseases. Pharmacol Ther 2021; 221:107747. [PMID: 33245994 PMCID: PMC8744950 DOI: 10.1016/j.pharmthera.2020.107747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that facilitates the maturation of its client proteins including protein kinases, transcription factors, and steroid hormone receptors which are structurally and functionally diverse. These client proteins are involved in various cellular signaling pathways, and Hsp90 is implicated in various human diseases including cancer, inflammation, and diseases associated with protein misfolding; thus making Hsp90 a promising target for drug discovery. Some of its client proteins are well-known cancer targets. Instead of targeting these client proteins individually, however, targeting Hsp90 is more practical for cancer drug development. Efforts have been invested in recognizing potential drugs for clinical use that inhibit Hsp90 activity and result in the prevention of Hsp90 client maturation and dampening of subsequent signaling cascades. Here, we discuss current assays and technologies used to find and characterize Hsp90 inhibitors that include biophysical, biochemical, cell-based assays and computational modeling. This review highlights recent discoveries that N-terminal isoform-selective compounds and inhibitors that target the Hsp90 C-terminus that may offer the potential to overcome some of the detriments observed with pan Hsp90 inhibitors. The tools and assays summarized in this review should be used to develop Hsp90-targeting drugs with high specificity, potency, and drug-like properties that may prove immensely useful in the clinic.
Collapse
Affiliation(s)
- Monimoy Banerjee
- Department of Chemistry & Biochemistry, Warren Family Research Center for Drug Discovery and Development, 305 McCourtney Hall, University of Norte Dame, Norte Dame, IN 46656, USA
| | - Ishita Hatial
- Department of Chemistry & Biochemistry, Warren Family Research Center for Drug Discovery and Development, 305 McCourtney Hall, University of Norte Dame, Norte Dame, IN 46656, USA
| | - Bradley M Keegan
- Department of Chemistry & Biochemistry, Warren Family Research Center for Drug Discovery and Development, 305 McCourtney Hall, University of Norte Dame, Norte Dame, IN 46656, USA
| | - Brian S J Blagg
- Department of Chemistry & Biochemistry, Warren Family Research Center for Drug Discovery and Development, 305 McCourtney Hall, University of Norte Dame, Norte Dame, IN 46656, USA.
| |
Collapse
|
12
|
Liu HJ, Wang M, Hu X, Shi S, Xu P. Enhanced Photothermal Therapy through the In Situ Activation of a Temperature and Redox Dual-Sensitive Nanoreservoir of Triptolide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003398. [PMID: 32797711 PMCID: PMC7983299 DOI: 10.1002/smll.202003398] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/29/2020] [Indexed: 05/30/2023]
Abstract
Photothermal therapy (PTT) has attracted tremendous attention due to its noninvasiveness and localized treatment advantages. However, heat shock proteins (HSPs) associated self-preservation mechanisms bestow cancer cells thermoresistance to protect them from the damage of PTT. To minimize the thermoresistance of cancer cells and improve the efficacy of PTT, an integrated on-demand nanoplatform composed of a photothermal conversion core (gold nanorod, GNR), a cargo of a HSPs inhibitor (triptolide, TPL), a mesoporous silica based nanoreservoir, and a photothermal and redox di-responsive polymer shell is developed. The nanoplatform can be enriched in the tumor site, and internalized into cancer cells, releasing the encapsulated TPL under the trigger of intracellular elevated glutathione and near-infrared laser irradiation. Ultimately, the liberated TPL could diminish thermoresistance of cancer cells by antagonizing the PTT induced heat shock response via multiple mechanisms to maximize the PTT effect for cancer treatment.
Collapse
Affiliation(s)
- Hai-Jun Liu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Mingming Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Xiangxiang Hu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Shanshan Shi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| |
Collapse
|
13
|
Sanchez-Martin C, Serapian SA, Colombo G, Rasola A. Dynamically Shaping Chaperones. Allosteric Modulators of HSP90 Family as Regulatory Tools of Cell Metabolism in Neoplastic Progression. Front Oncol 2020; 10:1177. [PMID: 32766157 PMCID: PMC7378685 DOI: 10.3389/fonc.2020.01177] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022] Open
Abstract
Molecular chaperones have recently emerged as fundamental regulators of salient biological routines, including metabolic adaptations to environmental changes. Yet, many of the molecular mechanisms at the basis of their functions are still unknown or at least uncertain. This is in part due to the lack of chemical tools that can interact with the chaperones to induce measurable functional perturbations. In this context, the use of small molecules as modulators of protein functions has proven relevant for the investigation of a number of biomolecular systems. Herein, we focus on the functions, interactions and signaling pathways of the HSP90 family of molecular chaperones as possible targets for the discovery of new molecular entities aimed at tuning their activity and interactions. HSP90 and its mitochondrial paralog, TRAP1, regulate the activity of crucial metabolic circuitries, making cells capable of efficiently using available energy sources, with relevant implications both in healthy conditions and in a variety of disease states and especially cancer. The design of small-molecules targeting the chaperone cycle of HSP90 and able to inhibit or stimulate the activity of the protein can provide opportunities to finely dissect their biochemical activities and to obtain lead compounds to develop novel, mechanism-based drugs.
Collapse
Affiliation(s)
| | | | - Giorgio Colombo
- Dipartimento di Chimica, Università di Pavia, Pavia, Italy.,Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | - Andrea Rasola
- Dipartimento di Scienze Biomediche, Università di Padova, Padua, Italy
| |
Collapse
|
14
|
Wu Q, Bao G, Pan Y, Qian X, Gao F. Discovery of potential targets of Triptolide through inverse docking in ovarian cancer cells. PeerJ 2020; 8:e8620. [PMID: 32219016 PMCID: PMC7085293 DOI: 10.7717/peerj.8620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Triptolide (TPL) is proposed as an effective anticancer agent known for its anti-proliferation of a variety of cancer cells including ovarian cancer cells. Although some studies have been conducted, the mechanism by which TPL acts on ovarian cancer remains to be clearly described. Herein, systematic work based on bioinformatics was carried out to discover the potential targets of TPL in SKOV-3 cells. TPL induces the early apoptosis of SKOV-3 cells in a dose- and time-dependent manner with an IC50 = 40 ± 0.89 nM when cells are incubated for 48 h. Moreover, 20 nM TPL significantly promotes early apoptosis at a rate of 40.73%. Using a self-designed inverse molecular docking protocol, we fish the top 19 probable targets of TPL from the target library, which was built on 2,250 proteins extracted from the Protein Data Bank. The 2D-DIGE assay reveals that the expression of eight genes is affected by TPL. The results of western blotting and qRT-PCR assay suggest that 40 nM of TPL up-regulates the level of Annexin A5 (6.34 ± 0.07 fold) and ATP syn thase (4.08 ± 0.08 fold) and down-regulates the level of β-Tubulin (0.11 ± 0.12 fold) and HSP90 (0.21 ± 0.09 fold). More details of TPL affecting on Annexin A5 signaling pathway will be discovered in the future. Our results define some potential targets of TPL, with the hope that this agent could be used as therapy for the preclinical treatment of ovarian cancer.
Collapse
Affiliation(s)
- Qinhang Wu
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Gang Bao
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Pan
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoqi Qian
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Furong Gao
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Zhao Y, Tao M, Wei M, Du S, Wang H, Wang X. Mesenchymal stem cells derived exosomal miR-323-3p promotes proliferation and inhibits apoptosis of cumulus cells in polycystic ovary syndrome (PCOS). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3804-3813. [PMID: 31549864 DOI: 10.1080/21691401.2019.1669619] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous reproductive disease. Adipose mesenchymal stem cells (AMSCs) can produce a mass of exosomes. The objective of this study was to determine the effects of exosomal miR-323-3p on cumulus cells (CCs) of PCOS patients. Exosomal miR-323-3p were collected from modified AMSCs. Real-time PCR, western blots, MTT assays, flow cytometry, luciferase reporter assays and a letrozole-induced PCOS mouse model were used to identify mechanisms of exosomal miR-323-3p on CCs. The results revealed that miR-323-3p expression was upregulated in AMSCs, exosomes and CCs. Upregulated miR-323-3p promoted cell proliferation and suppressed apoptosis in CCs, while miR-323-3p inhibitor exerted opposite roles in exosome-treated CCs. Moreover, PDCD4 was upregulated in PCOS CCs, displayed an inverse expression pattern to those of miR-323-3p, and was a direct target of miR-323-3p. Overexpression of PDCD4 reversed the effects of upregulated miR-323-3p on CCs. Serum FSH, LH and testosterone were upregulated while E2 levels were downregulated in the PCOS mice. Upregulation of miR-323-3p alleviated PCOS by suppressing CCs' apoptosis through targeting PDCD4 in vivo. The results demonstrated that exosomal miR-323-3p promoted cell proliferation and inhibited apoptosis in CCs through targeting PDCD4 in PCOS. This study provides insight into developing new therapeutic strategies for PCOS.
Collapse
Affiliation(s)
- Yinghui Zhao
- Gynecology Department, Jinan City People Hospital , Jinan , Shandong , China
| | - Mei Tao
- Gynecology Department, Jinan City People Hospital , Jinan , Shandong , China
| | - Meiling Wei
- Gynecology Department, Jinan City People Hospital , Jinan , Shandong , China
| | - Shengye Du
- Gynecology Department, Jinan City People Hospital , Jinan , Shandong , China
| | - Hongping Wang
- Gynecology Department, Jinan City People Hospital , Jinan , Shandong , China
| | - Xiaohong Wang
- Gynecology Department, Jinan City People Hospital , Jinan , Shandong , China
| |
Collapse
|
16
|
Liu L, Wang L, Li X, Tian P, Xu H, Li Z, Liu E. Effect of miR-21 on apoptosis in hepatoblastoma cell through activating ASPP2/p38 signaling pathway in vitro and in vivo. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3729-3736. [PMID: 31535570 DOI: 10.1080/21691401.2019.1664561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The objective of this study was to investigate the mechanism underlying miR-21-associated apoptosis in HB. In this study, HB and adjacent tissues were collected from patients with HB. RT-PCR, FISH, western blot, apoptosis assay, migration, invasion and wound healing assays, caspase activity assay, luciferase reporter assays, and xenografts mouse model were used to determine the effects of miR-21 on HB cell apoptosis. The results revealed that miR-21 was up-regulated in both HB cell and tissue and was associated with progression of HB. MiR-21 inhibitor enhanced the apoptosis level in HB cells. MiR-21 inhibitor showed reduced abilities of migration and invasion. ASPP2 was a target gene of miR-21. Inhibition of ASPP2 increased abilities of migration and invasion in HB cells. Furthermore, miR-21 inhibitor caused increased activity p-38 signaling. In a xenografts mouse model, miR-21 inhibitor could significantly suppress tumor growth in nude mice along with enhanced expressions of ASPP2 and p38. Taken together, the results suggest that upregulation of miR-21 is related to HB progression and miR-21-associated apoptosis in HB is mediated through ASPP2/p38 signaling pathway in vitro and in vivo. This study provides novel insight into the effects of miR-21 on HB apoptosis and clue to develop new therapies.
Collapse
Affiliation(s)
- Lili Liu
- Department of Pathology, Linyi People's Hospital , Linyi , China
| | - Likun Wang
- Department of Infectious Diseases, Linyi People's Hospital , Linyi , China
| | - Xidong Li
- Department of Infectious Diseases, Linyi People's Hospital , Linyi , China
| | - Ping Tian
- Department of Infectious Diseases, Linyi People's Hospital , Linyi , China
| | - Hao Xu
- Department of Infectious Diseases, Linyi People's Hospital , Linyi , China
| | - Zenglian Li
- Department of Infectious Diseases, Linyi People's Hospital , Linyi , China
| | - Enqin Liu
- Department of Infectious Diseases, Linyi People's Hospital , Linyi , China
| |
Collapse
|
17
|
Zhou C, Zhang C, Zhu H, Liu Z, Su H, Zhang X, Chen T, Zhong Y, Hu H, Xiong M, Zhou H, Xu Y, Zhang A, Zhang N. Allosteric Regulation of Hsp90α's Activity by Small Molecules Targeting the Middle Domain of the Chaperone. iScience 2020; 23:100857. [PMID: 32058968 PMCID: PMC6997908 DOI: 10.1016/j.isci.2020.100857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Hsp90 is a target for anti-cancer drug development. Both the conformational events tuned by ATP/ADP and co-chaperones and the chaperoning cycle timing are required for Hsp90's fully functional display. Interfering with either one of the conformational events or the cycle timing will down-regulate Hsp90's function. In this manuscript, non-covalent allosteric modulators (SOMCL-16-171 and SOMCL-16-175) targeting Hsp90α’s middle domain (Hsp90M) were developed for the first time. Multiple techniques were then applied to characterize the interactions between two active compounds and Hsp90α. Two loops and one α-helix (F349-N360, K443-E451, and D372-G387) in Hsp90M were identified responsible for the recognition of SOMCL-16-171 and SOMCL-16-175. Meanwhile, the binding of SOMCL-16-171 and SOMCL-16-175 to Hsp90M was demonstrated to allosterically modulate the structure and function of Hsp90α’s N-terminal domain. Finally, cellular assays were conducted to evaluate the cellular activity of SOMCL-16-175, and the results indicate that SOMCL-16-175 destabilizes Hsp90's client proteins and reduces cell viability. Allosteric modulators targeting Hsp90α's middle domain were developed for the first time Key elements in Hsp90M for the recognition of allosteric modulators were identified Compound SOMCL-16-175 promotes Hsp90α’s ATPase activity and reduces cell viability SOMCL-16-175 destabilizes Hsp90's clients without triggering heat shock response
Collapse
Affiliation(s)
- Chen Zhou
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chi Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongwen Zhu
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Haixia Su
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xianglei Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tingting Chen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yan Zhong
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Huifang Hu
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Muya Xiong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hu Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Naixia Zhang
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
18
|
Cui Y, Lu C, Zhang Z, Mao A, Feng L, Fu L, Gu F, Ma X, He D. A Long Non-coding RNA Lnc712 Regulates Breast Cancer Cell Proliferation. Int J Biol Sci 2020; 16:162-171. [PMID: 31892853 PMCID: PMC6930380 DOI: 10.7150/ijbs.36429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/29/2019] [Indexed: 12/22/2022] Open
Abstract
Great quantity of intergenic noncoding RNAs (lncRNAs) have been identified in the mammalian genome and involved in various biological processes, especially in the development and metastasis of cancer. In this study, we identified one lncRNA, lncRNA NONHSAT028712 (Lnc712), was highly expressed in breast cancer cell lines and tissues based on microarray screening. Knockdown of Lnc712 largely inhibited breast cancer cell proliferation. Mechanistically, Lnc712 bound specifically to heat-shock protein 90 (HSP90). Interaction between Lnc712 and HSP90 is required for HSP90 binding to cell division cycle 37 (Cdc37). The Lnc712/HSP90/Cdc37 complex regulated cyclin-dependent kinase 2 (CDK2) activation and then triggered breast cancer cell proliferation. In summary, our results identified a new lncRNA regulate breast cancer proliferation though interaction with HSP90.
Collapse
Affiliation(s)
- Yue Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Chunxiao Lu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhiming Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Aiqin Mao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Li Fu
- Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,✉ Corresponding authors: Dongxu He, Ph.D. School of Food Science and Technology, Jiangnan University, Wuxi, China. ; Xin Ma, Ph.D. Wuxi School of Medicine, Jiangnan University, Wuxi, China. ; Feng Gu, M.D. Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China. ; Li Fu, M.D. Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Feng Gu
- Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.,✉ Corresponding authors: Dongxu He, Ph.D. School of Food Science and Technology, Jiangnan University, Wuxi, China. ; Xin Ma, Ph.D. Wuxi School of Medicine, Jiangnan University, Wuxi, China. ; Feng Gu, M.D. Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China. ; Li Fu, M.D. Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,✉ Corresponding authors: Dongxu He, Ph.D. School of Food Science and Technology, Jiangnan University, Wuxi, China. ; Xin Ma, Ph.D. Wuxi School of Medicine, Jiangnan University, Wuxi, China. ; Feng Gu, M.D. Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China. ; Li Fu, M.D. Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Dongxu He
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,✉ Corresponding authors: Dongxu He, Ph.D. School of Food Science and Technology, Jiangnan University, Wuxi, China. ; Xin Ma, Ph.D. Wuxi School of Medicine, Jiangnan University, Wuxi, China. ; Feng Gu, M.D. Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China. ; Li Fu, M.D. Department of Breast Cancer Pathology and Research Laboratory, State Key Laboratory of Breast Cancer Research, Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
19
|
Identification of Isoform-Selective Ligands for the Middle Domain of Heat Shock Protein 90 (Hsp90). Int J Mol Sci 2019; 20:ijms20215333. [PMID: 31717777 PMCID: PMC6862331 DOI: 10.3390/ijms20215333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/01/2019] [Accepted: 10/23/2019] [Indexed: 12/17/2022] Open
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) is a current inhibition target for the treatment of diseases, including cancer. In humans, there are two major cytosolic isoforms of Hsp90 (Hsp90α and Hsp90β). Hsp90α is inducible and Hsp90β is constitutively expressed. Most Hsp90 inhibitors are pan-inhibitors that target both cytosolic isoforms of Hsp90. The development of isoform-selective inhibitors of Hsp90 may enable better clinical outcomes. Herein, by using virtual screening and binding studies, we report our work in the identification and characterisation of novel isoform-selective ligands for the middle domain of Hsp90β. Our results pave the way for further development of isoform-selective Hsp90 inhibitors.
Collapse
|
20
|
Hang S, Wang X, Li H. RETRACTED: Triptolide inhibits viability and migration while promotes apoptosis in nephroblastoma cells by regulation of miR-193b-3p. Exp Mol Pathol 2019; 108:80-88. [PMID: 30978333 DOI: 10.1016/j.yexmp.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 12/14/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief as panels from Figure 1E appear similar to panels from Figures 1G, 3D and 5D. Given the comments of Dr Elisabeth Bik regarding this article “This paper belongs to a set of over 400 papers (as per February 2020) that share very similar Western blots with tadpole-like shaped bands, the same background pattern, and striking similarities in title structures, paper layout, bar graph design, and - in a subset - flow cytometry panels”, the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Shiying Hang
- Department of Pediatric Surgery, Jining No.1 People's Hospital, Jining 272011, China; Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272011, China
| | - Xianghong Wang
- Department of Pediatric Surgery, Jining No.1 People's Hospital, Jining 272011, China
| | - Hai Li
- Department of Pediatric Surgery, Jining No.1 People's Hospital, Jining 272011, China.
| |
Collapse
|