1
|
Heritz JA, Backe, SJ, Mollapour M. Molecular chaperones: Guardians of tumor suppressor stability and function. Oncotarget 2024; 15:679-696. [PMID: 39352796 PMCID: PMC11444336 DOI: 10.18632/oncotarget.28653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
The term 'tumor suppressor' describes a widely diverse set of genes that are generally involved in the suppression of metastasis, but lead to tumorigenesis upon loss-of-function mutations. Despite the protein products of tumor suppressors exhibiting drastically different structures and functions, many share a common regulatory mechanism-they are molecular chaperone 'clients'. Clients of molecular chaperones depend on an intracellular network of chaperones and co-chaperones to maintain stability. Mutations of tumor suppressors that disrupt proper chaperoning prevent the cell from maintaining sufficient protein levels for physiological function. This review discusses the role of the molecular chaperones Hsp70 and Hsp90 in maintaining the stability and functional integrity of tumor suppressors. The contribution of cochaperones prefoldin, HOP, Aha1, p23, FNIP1/2 and Tsc1 as well as the chaperonin TRiC to tumor suppressor stability is also discussed. Genes implicated in renal cell carcinoma development-VHL, TSC1/2, and FLCN-will be used as examples to explore this concept, as well as how pathogenic mutations of tumor suppressors cause disease by disrupting protein chaperoning, maturation, and function.
Collapse
Affiliation(s)
- Jennifer A. Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J. Backe,
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Syracuse VA Medical Center, New York VA Health Care, Syracuse, NY 13210, USA
| |
Collapse
|
2
|
Zeng F, Cao J, Li W, Zhou Y, Yuan X. FNIP1: A key regulator of mitochondrial function. Biomed Pharmacother 2024; 177:117146. [PMID: 39013219 DOI: 10.1016/j.biopha.2024.117146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
Folliculin interacting protein 1 (FNIP1), a novel folliculin interacting protein 1, is a key regulatory factor for mitochondrial function. FNIP1 mainly responds to energy signal transduction through physical interactions with 5'-AMP activated protein kinase (AMPK). Simultaneously, it affects the transcription of mitochondria-associated genes by regulating the lysosomal localization of mechanistic target of rapamycin kinase (mTORC1). This article takes FNIP1 as the core and first introduces its involvement in the development of B cells and invariant natural killer T (iNKT) cells, muscle fiber type conversion, and the thermogenic remodeling of adipocytes by regulating mitochondrial function. In addition we discuss the detailed impact of upstream regulatory factors of FNIP1 on its function. Finally, the impact of FNIP1 on the prognosis and treatment of clinically related metabolic diseases is summarized, aiming to provide a new theoretical basis and treatment plans for the diagnosis and treatment of such diseases.
Collapse
Affiliation(s)
- Feng Zeng
- Gastroenterology and Urology Department Ⅱ, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China.
| | - Xia Yuan
- Gastroenterology and Urology Department Ⅱ, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan 410013, China.
| |
Collapse
|
3
|
Loss of Heterozygosity for Tuberous Sclerosis Complex and Mammalian Target of Rapamycin Signaling. Chest 2022; 162:279-280. [DOI: 10.1016/j.chest.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/19/2022] Open
|
4
|
Backe SJ, Sager RA, Regan BR, Sit J, Major LA, Bratslavsky G, Woodford MR, Bourboulia D, Mollapour M. A specialized Hsp90 co-chaperone network regulates steroid hormone receptor response to ligand. Cell Rep 2022; 40:111039. [PMID: 35830801 PMCID: PMC9306012 DOI: 10.1016/j.celrep.2022.111039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein-90 (Hsp90) chaperone machinery is involved in the stability and activity of its client proteins. The chaperone function of Hsp90 is regulated by co-chaperones and post-translational modifications. Although structural evidence exists for Hsp90 interaction with clients, our understanding of the impact of Hsp90 chaperone function toward client activity in cells remains elusive. Here, we dissect the impact of recently identified higher eukaryotic co-chaperones, FNIP1/2 (FNIPs) and Tsc1, toward Hsp90 client activity. Our data show that Tsc1 and FNIP2 form mutually exclusive complexes with FNIP1, and that unlike Tsc1, FNIP1/2 interact with the catalytic residue of Hsp90. Functionally, these co-chaperone complexes increase the affinity of the steroid hormone receptors glucocorticoid receptor and estrogen receptor to their ligands in vivo. We provide a model for the responsiveness of the steroid hormone receptor activation upon ligand binding as a consequence of their association with specific Hsp90:co-chaperone subpopulations.
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bethany R Regan
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Julian Sit
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Lauren A Major
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
5
|
Emerging Link between Tsc1 and FNIP Co-Chaperones of Hsp90 and Cancer. Biomolecules 2022; 12:biom12070928. [PMID: 35883484 PMCID: PMC9312812 DOI: 10.3390/biom12070928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Heat shock protein-90 (Hsp90) is an ATP-dependent molecular chaperone that is tightly regulated by a group of proteins termed co-chaperones. This chaperone system is essential for the stabilization and activation of many key signaling proteins. Recent identification of the co-chaperones FNIP1, FNIP2, and Tsc1 has broadened the spectrum of Hsp90 regulators. These new co-chaperones mediate the stability of critical tumor suppressors FLCN and Tsc2 as well as the various classes of Hsp90 kinase and non-kinase clients. Many early observations of the roles of FNIP1, FNIP2, and Tsc1 suggested functions independent of FLCN and Tsc2 but have not been fully delineated. Given the broad cellular impact of Hsp90-dependent signaling, it is possible to explain the cellular activities of these new co-chaperones by their influence on Hsp90 function. Here, we review the literature on FNIP1, FNIP2, and Tsc1 as co-chaperones and discuss the potential downstream impact of this regulation on normal cellular function and in human diseases.
Collapse
|
6
|
van de Beek I, van Steensel MAM, Houweling AC. Comment on Balsamo et al.: Birt-Hogg-Dubé syndrome with simultaneous hyperplastic polyposis of the gastrointestinal tract: case report and review of the literature. BMC Med Genomics 2022; 15:84. [PMID: 35428286 PMCID: PMC9012006 DOI: 10.1186/s12920-022-01229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
The publication by Balsamo and colleagues describes a patient with Birt-Hogg-Dubé syndrome and hyperplastic polyposis throughout the gastro-intestinal tract. We question whether the diagnosis of BHD in this patient was justified. Using the previously proposed diagnostic criteria for establishing the diagnosis of BHD as a guideline, we systematically describe our concerns. In our opinion, the patient described by Balsamo and colleagues does not meet any of the proposed major and minor criteria for the diagnosis of Birt-Hogg-Dubé syndrome. Therefore, we believe that it is not justified to suggest a possible association between hyperplastic polyposis and Birt-Hogg-Dubé syndrome based on this patient, even though a higher risk for colorectal polyposis in Birt-Hogg-Dubé syndrome has not been excluded so far.
Collapse
|
7
|
Woodford MR, Andreou A, Baba M, van de Beek I, Di Malta C, Glykofridis I, Grimes H, Henske EP, Iliopoulos O, Kurihara M, Lazor R, Linehan WM, Matsumoto K, Marciniak SJ, Namba Y, Pause A, Rajan N, Ray A, Schmidt LS, Shi W, Steinlein OK, Thierauf J, Zoncu R, Webb A, Mollapour M. Seventh BHD international symposium: recent scientific and clinical advancement. Oncotarget 2022; 13:173-181. [PMID: 35070081 PMCID: PMC8780807 DOI: 10.18632/oncotarget.28176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 11/25/2022] Open
Abstract
The 7th Birt-Hogg-Dubé (BHD) International Symposium convened virtually in October 2021. The meeting attracted more than 200 participants internationally and highlighted recent findings in a variety of areas, including genetic insight and molecular understanding of BHD syndrome, structure and function of the tumor suppressor Folliculin (FLCN), therapeutic and clinical advances as well as patients' experiences living with this malady.
Collapse
Affiliation(s)
- Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Avgi Andreou
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Masaya Baba
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Irma van de Beek
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Iris Glykofridis
- Amsterdam UMC, Location VUmc, Human Genetics Department, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hannah Grimes
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Elizabeth P. Henske
- Center for LAM Research and Clinical Care, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Othon Iliopoulos
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Masatoshi Kurihara
- Pneumothorax Research Center and Division of Thoracic Surgery, Nissan Tamagawa Hospital, Setagayaku, Tokyo, Japan
| | - Romain Lazor
- Respiratory Medicine Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kenki Matsumoto
- Department of Respiratory Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Yukiko Namba
- Division of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Arnim Pause
- Department of Biochemistry, Goodman Cancer Research Institute, McGill University, Montréal, Canada
| | - Neil Rajan
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anindita Ray
- Indian Statistical Institute, Kolkata, WB, India
| | - Laura S. Schmidt
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wei Shi
- The Saban Research Institute, Children's Hospital Los Angeles, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ortrud K. Steinlein
- Institute of Human Genetics, University Hospital, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Julia Thierauf
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital and Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Anna Webb
- The BHD Foundation, The Myrovlytis Trust, London, UK
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
8
|
Clausen L, Stein A, Grønbæk-Thygesen M, Nygaard L, Søltoft CL, Nielsen SV, Lisby M, Ravid T, Lindorff-Larsen K, Hartmann-Petersen R. Folliculin variants linked to Birt-Hogg-Dubé syndrome are targeted for proteasomal degradation. PLoS Genet 2020; 16:e1009187. [PMID: 33137092 PMCID: PMC7660926 DOI: 10.1371/journal.pgen.1009187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/12/2020] [Accepted: 10/10/2020] [Indexed: 01/24/2023] Open
Abstract
Germline mutations in the folliculin (FLCN) tumor suppressor gene are linked to Birt-Hogg-Dubé (BHD) syndrome, a dominantly inherited genetic disease characterized by predisposition to fibrofolliculomas, lung cysts, and renal cancer. Most BHD-linked FLCN variants include large deletions and splice site aberrations predicted to cause loss of function. The mechanisms by which missense variants and short in-frame deletions in FLCN trigger disease are unknown. Here, we present an integrated computational and experimental study that reveals that the majority of such disease-causing FLCN variants cause loss of function due to proteasomal degradation of the encoded FLCN protein, rather than directly ablating FLCN function. Accordingly, several different single-site FLCN variants are present at strongly reduced levels in cells. In line with our finding that FLCN variants are protein quality control targets, several are also highly insoluble and fail to associate with the FLCN-binding partners FNIP1 and FNIP2. The lack of FLCN binding leads to rapid proteasomal degradation of FNIP1 and FNIP2. Half of the tested FLCN variants are mislocalized in cells, and one variant (ΔE510) forms perinuclear protein aggregates. A yeast-based stability screen revealed that the deubiquitylating enzyme Ubp15/USP7 and molecular chaperones regulate the turnover of the FLCN variants. Lowering the temperature led to a stabilization of two FLCN missense proteins, and for one (R362C), function was re-established at low temperature. In conclusion, we propose that most BHD-linked FLCN missense variants and small in-frame deletions operate by causing misfolding and degradation of the FLCN protein, and that stabilization and resulting restoration of function may hold therapeutic potential of certain disease-linked variants. Our computational saturation scan encompassing both missense variants and single site deletions in FLCN may allow classification of rare FLCN variants of uncertain clinical significance.
Collapse
Affiliation(s)
- Lene Clausen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Nygaard
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie L. Søltoft
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sofie V. Nielsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Lisby
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tommer Ravid
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Woodford MR, Backe SJ, Sager RA, Bourboulia D, Bratslavsky G, Mollapour M. The Role of Heat Shock Protein-90 in the Pathogenesis of Birt-Hogg-Dubé and Tuberous Sclerosis Complex Syndromes. Urol Oncol 2020; 39:322-326. [PMID: 32327294 DOI: 10.1016/j.urolonc.2020.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
Birt-Hogg-Dubé (BHD) and tuberous sclerosis (TS) syndromes share many clinical features. These two diseases display distinct histologic subtypes of renal tumors: chromophobe renal cell carcinoma and renal angiomyolipoma, respectively. Early work suggested a role for mTOR dysregulation in the pathogenesis of these two diseases, however their detailed molecular link remains elusive. Interestingly, a growing number of case reports describe renal angiomyolipoma in BHD patients, suggesting a common molecular origin. The BHD-associated proteins FNIP1/2 and the TS protein Tsc1 were recently identified as regulators of the molecular chaperone Hsp90. Dysregulation of Hsp90 activity has previously been reported to support tumorigenesis, providing a potential explanation for the overlapping phenotypic manifestations in these two hereditary syndromes.
Collapse
Affiliation(s)
- Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
10
|
Balsamo F, Cardoso PAS, do Amaral Junior SA, Theodoro TR, de Sousa Gehrke F, da Silva Pinhal MA, Bianco B, Waisberg J. Birt-Hogg-Dubé syndrome with simultaneous hyperplastic polyposis of the gastrointestinal tract: case report and review of the literature. BMC MEDICAL GENETICS 2020; 21:52. [PMID: 32171268 PMCID: PMC7071710 DOI: 10.1186/s12881-020-0991-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
Background Birt-Hogg-Dubé syndrome (BHDS) is a rare autosomal dominant genodermatosis characterized by benign growth of the hair follicles, the presence of pulmonary cysts, spontaneous pneumothorax, and bilateral renal tumors that are usually hybrid oncocytic or multifocal chromophobe renal cell carcinoma. The diagnosis is confirmed by the presence of a pathogenic variant in the tumor suppressor folliculin (FLCN) gene mapped at 17p11.2. Although the dermatological lesions typical of BHDS are benign and only cause aesthetic concerns, and the pulmonary manifestations are controllable, the greater tendency of patients with this syndrome to present benign or malignant renal tumors, often bilateral and multifocal, makes the diagnosis of this syndrome important for the prognosis of the patients. The objective was to report the case of a patient with BHDS, without pulmonary manifestations and with hyperplastic polyposis of the gastrointestinal tract, and to perform a literature review. Case presentation A 60-year-old man complained of abdominal pain and diarrhoea for 2 months. Physical examination was normal except for the presence of normochromic papules in the frontal region of the face associated with hyperkeratotic and hyperchromic papules in the dorsal region. The excisional biopsies of the skin lesions indicated trichodiscomas. Esophagogastroduodenoscopy, enteroscopy, and colonoscopy showed the presence of hyperplastic polyps in the stomach, duodenum, jejunum, colon, and rectum. Computed tomography (CT) and magnetic resonance imaging (MRI) of the abdomen revealed multiple expansive solid lesions in both kidneys, with necrotic and calcified areas. Renal magnetic resonance angiography also showed a solid lesion in the right kidney measuring 5 cm in diameter and another solid lesion in the left kidney measuring 8 cm in diameter, both suggestive of renal angiomyolipoma. CT scans of the skull, chest, and temporal bones were normal. The genetic study revealed the presence of a variant of FLCN in the intron 13. Conclusions To the best of our knowledge, this is the first reported case of BHDS with the simultaneous finding of gastrointestinal hyperplastic polyposis, which may represent a possible phenotypic expression of this syndrome that has not yet been described.
Collapse
Affiliation(s)
- Flávia Balsamo
- Section of General Surgery and Gastrointestinal Surgery, Department of Surgery I, Faculdade de Medicina do ABC, Avenida Lauro Gomes, 2000, Santo André/São Paulo, CEP 09060-870, Brazil
| | - Pedro Augusto Soffner Cardoso
- Section of General Surgery and Gastrointestinal Surgery, Department of Surgery I, Faculdade de Medicina do ABC, Avenida Lauro Gomes, 2000, Santo André/São Paulo, CEP 09060-870, Brazil
| | - Sergio Aparecido do Amaral Junior
- Section of General Surgery and Gastrointestinal Surgery, Department of Surgery I, Faculdade de Medicina do ABC, Avenida Lauro Gomes, 2000, Santo André/São Paulo, CEP 09060-870, Brazil
| | - Therésè Rachell Theodoro
- Section of Biochemistry, Department of Morfology and Physiology, Faculdade de Medicina do ABC, Avenida Lauro Gomes, 2000, Santo André/São Paulo, CEP 09060-870, Brazil
| | - Flavia de Sousa Gehrke
- Section of General Surgery and Gastrointestinal Surgery, Department of Surgery I, Faculdade de Medicina do ABC, Avenida Lauro Gomes, 2000, Santo André/São Paulo, CEP 09060-870, Brazil
| | - Maria Aparecida da Silva Pinhal
- Section of Biochemistry, Department of Morfology and Physiology, Faculdade de Medicina do ABC, Avenida Lauro Gomes, 2000, Santo André/São Paulo, CEP 09060-870, Brazil
| | - Bianca Bianco
- Section of Sexual and Reproductive Health and Populational Genetics, Department of Collective Health, Faculdade de Medicina do ABC, Avenida Lauro Gomes, 2000, Santo André/São Paulo, CEP 09060-870, Brazil.
| | - Jaques Waisberg
- Section of General Surgery and Gastrointestinal Surgery, Department of Surgery I, Faculdade de Medicina do ABC, Avenida Lauro Gomes, 2000, Santo André/São Paulo, CEP 09060-870, Brazil
| |
Collapse
|
11
|
Valianou M, Filippidou N, Johnson DL, Vogel P, Zhang EY, Liu X, Lu Y, Yu JJ, Bissler JJ, Astrinidis A. Rapalog resistance is associated with mesenchymal-type changes in Tsc2-null cells. Sci Rep 2019; 9:3015. [PMID: 30816188 PMCID: PMC6395747 DOI: 10.1038/s41598-019-39418-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/24/2019] [Indexed: 01/26/2023] Open
Abstract
Tuberous Sclerosis Complex (TSC) and Lymphangioleiomyomatosis (LAM) are caused by inactivating mutations in TSC1 or TSC2, leading to mTORC1 hyperactivation. The mTORC1 inhibitors rapamycin and analogs (rapalogs) are approved for treating of TSC and LAM. Due to their cytostatic and not cytocidal action, discontinuation of treatment leads to tumor regrowth and decline in pulmonary function. Therefore, life-long rapalog treatment is proposed for the control of TSC and LAM lesions, which increases the chances for the development of acquired drug resistance. Understanding the signaling perturbations leading to rapalog resistance is critical for the development of better therapeutic strategies. We developed the first Tsc2-null rapamycin-resistant cell line, ELT3-245, which is highly tumorigenic in mice, and refractory to rapamycin treatment. In vitro ELT3-245 cells exhibit enhanced anchorage-independent cell survival, resistance to anoikis, and loss of epithelial markers. A key alteration in ELT3-245 is increased β-catenin signaling. We propose that a subset of cells in TSC and LAM lesions have additional signaling aberrations, thus possess the potential to become resistant to rapalogs. Alternatively, when challenged with rapalogs TSC-null cells are reprogrammed to express mesenchymal-like markers. These signaling changes could be further exploited to induce clinically-relevant long-term remissions.
Collapse
Affiliation(s)
- Matthildi Valianou
- Division of Pediatric Nephrology, Department of Pediatrics, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38103, USA.,Tuberous Sclerosis Complex Center of Excellence, Le Bonheur Children's Hospital, Memphis, TN, 38103, USA
| | - Natalia Filippidou
- Division of Pediatric Nephrology, Department of Pediatrics, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38103, USA.,Tuberous Sclerosis Complex Center of Excellence, Le Bonheur Children's Hospital, Memphis, TN, 38103, USA
| | - Daniel L Johnson
- Office of Research Molecular Bioinformatics Core, University of Tennessee Health Sciences Center, Memphis, TN, 38103, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Erik Y Zhang
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Xiaolei Liu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yiyang Lu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jane J Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - John J Bissler
- Division of Pediatric Nephrology, Department of Pediatrics, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38103, USA.,Tuberous Sclerosis Complex Center of Excellence, Le Bonheur Children's Hospital, Memphis, TN, 38103, USA.,Department of Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Aristotelis Astrinidis
- Division of Pediatric Nephrology, Department of Pediatrics, College of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, 38103, USA. .,Tuberous Sclerosis Complex Center of Excellence, Le Bonheur Children's Hospital, Memphis, TN, 38103, USA. .,Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
12
|
Sager RA, Woodford MR, Mollapour M. The mTOR Independent Function of Tsc1 and FNIPs. Trends Biochem Sci 2018; 43:935-937. [PMID: 30361061 DOI: 10.1016/j.tibs.2018.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/30/2018] [Indexed: 01/21/2023]
Abstract
New roles for Tsc1 and FNIP1/2 as regulators of the molecular chaperone Hsp90 were recently identified, demonstrating a broader cellular impact outside of AMPK-mTOR signaling. In studying the function of these proteins we must take a holistic view of the cell, instead of maintaining our focus on a single pathway.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; These authors contributed equally to this work
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; These authors contributed equally to this work
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|