1
|
Watterston C, Halabi R, McFarlane S, Childs SJ. Endothelial Semaphorin 3fb regulates Vegf pathway-mediated angiogenic sprouting. PLoS Genet 2021; 17:e1009769. [PMID: 34424892 PMCID: PMC8412281 DOI: 10.1371/journal.pgen.1009769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/02/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Vessel growth integrates diverse extrinsic signals with intrinsic signaling cascades to coordinate cell migration and sprouting morphogenesis. The pro-angiogenic effects of Vascular Endothelial Growth Factor (VEGF) are carefully controlled during sprouting to generate an efficiently patterned vascular network. We identify crosstalk between VEGF signaling and that of the secreted ligand Semaphorin 3fb (Sema3fb), one of two zebrafish paralogs of mammalian Sema3F. The sema3fb gene is expressed by endothelial cells in actively sprouting vessels. Loss of sema3fb results in abnormally wide and stunted intersegmental vessel artery sprouts. Although the sprouts initiate at the correct developmental time, they have a reduced migration speed. These sprouts have persistent filopodia and abnormally spaced nuclei suggesting dysregulated control of actin assembly. sema3fb mutants show simultaneously higher expression of pro-angiogenic (VEGF receptor 2 (vegfr2) and delta-like 4 (dll4)) and anti-angiogenic (soluble VEGF receptor 1 (svegfr1)/ soluble Fms Related Receptor Tyrosine Kinase 1 (sflt1)) pathway components. We show increased phospho-ERK staining in migrating angioblasts, consistent with enhanced Vegf activity. Reducing Vegfr2 kinase activity in sema3fb mutants rescues angiogenic sprouting. Our data suggest that Sema3fb plays a critical role in promoting endothelial sprouting through modulating the VEGF signaling pathway, acting as an autocrine cue that modulates intrinsic growth factor signaling.
Collapse
Affiliation(s)
- Charlene Watterston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Rami Halabi
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sarah McFarlane
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Sarah J. Childs
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Jiao B, Liu S, Tan X, Lu P, Wang D, Xu H. Class-3 semaphorins: Potent multifunctional modulators for angiogenesis-associated diseases. Biomed Pharmacother 2021; 137:111329. [PMID: 33545660 DOI: 10.1016/j.biopha.2021.111329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
Semaphorins, the neuronal guidance cues, were shown to have broad influences on pathophysiological processes such as bone remodeling, immune responses, and angiogenesis. In particular, Class-3 Semaphorins (SEMA3) is considered a vital regulator involved in angiogenesis. Scientific evidence has pointed to the role of angiogenesis in many diseases, and numerous efforts have been made to explore the possibilities of curing those diseases by targeting angiogenesis. Nevertheless, the efficacies are limited owing to the complex mechanisms of angiogenesis. Hence, investigating the mechanisms of SEMA3 in angiogenesis may contribute to novel therapeutics for diseases. Previous reviews mainly focused on the various functions of semaphorins in one particular disease, and the specific angiogenesis mechanism of SEMA3 in diverse diseases has not been well elucidated. Additionally, the role of SEMA3 in angiogenesis remains elusive, as contradicting results have been found in different disease types. Some evidence from recent studies implies that, while most SEMA3 molecules inhibit pathological angiogenesis in different diseases, occasionally SEMA3 may also promote angiogenesis. This review summarizes the specific role of SEMA3 in a variety of angiogenesis-associated diseases, and documents SEMA3 may be a promising therapeutic target for treating angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Bo Jiao
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyang Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Tan
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pei Lu
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Danning Wang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Peszek W, Kras P, Grabarek BO, Boroń D, Oplawski M. Cisplatin Changes Expression of SEMA3B in Endometrial Cancer. Curr Pharm Biotechnol 2020; 21:1368-1376. [PMID: 32410560 DOI: 10.2174/1389201021666200514215839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/22/2020] [Accepted: 04/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Semaphorin 3B (SEMA3B) is characterized as a strong suppressing factor of the proliferation of cancerous cells and also by its anti-angiogenic effect. However, the knowledge on the changes in the expression profile of SEMA3B under the influence of cisplatin in endometrial cancer remains fragmented. The aim of this work was to note the changes in expression of SEMA3B when under the influence of cisplatin in the endometrial cancer cell line. METHODS Ishikawa cell line cells were exposed to three different concentrations of cisplatin: 2.5μM; 5μM; 10μM for 12, 24 and 48 hours and were compared to cells untreated by the drug. Changes in the expression profile of SEMA3B were determined based upon RtqPCR (mRNA) alongside the ELISA assay (protein). The Statistica 13.0 PL program was used for statistical analysis (p<0.05). RESULTS Changes on the transcriptome level seem to be more dynamic than on the proteome level. Regardless of the concentration given or the exposition period, the expression of semaphorin 3B was, in fact, higher in cells exposed to cisplatin. Statistically substantial differences (p<0.05) in the expression of SEMA3B mRNA and protein were seen for all incubation periods at the given cisplatin level when compared to the control. CONCLUSION Cisplatin causes a growth in the expression of SEMA3B in an endometrial cancer cell culture, this results in the restoration in the state of cell homeostasis and shows the effectiveness of pharmacotherapy, including a low risk of drug resistance.
Collapse
Affiliation(s)
- Wojciech Peszek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| | - Piotr Kras
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| | - Beniamin O Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Zabrze, Poland,Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Kraków, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland,Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Zabrze, Poland,Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Kraków, Poland
| | - Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| |
Collapse
|
4
|
Daneshvar N, Tatsumi R, Peeler J, Anderson JE. Premature satellite cell activation before injury accelerates myogenesis and disrupts neuromuscular junction maturation in regenerating muscle. Am J Physiol Cell Physiol 2020; 319:C116-C128. [PMID: 32374678 DOI: 10.1152/ajpcell.00121.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Satellite cell (SC) activation, mediated by nitric oxide (NO), is essential to myogenic repair, whereas myotube function requires innervation. Semaphorin (Sema) 3A, a neuro-chemorepellent, is thought to regulate axon guidance to neuromuscular junctions (NMJs) during myotube differentiation. We tested whether "premature" SC activation (SC activation before injury) by a NO donor (isosorbide dinitrate) would disrupt early myogenesis and/or NMJs. Adult muscle was examined during regeneration in two models of injury: myotoxic cardiotoxin (CTX) and traumatic crush (CR) (n = 4-5/group). Premature SC activation was confirmed by increased DNA synthesis by SCs immediately in pretreated mice after CTX injury. Myotubes grew faster after CTX than after CR; growth was accelerated by pretreatment. NMJ maturation, classified by silver histochemistry (neurites) and acetylcholinesterase (AchE), and α-bungarotoxin staining (Ach receptors, AchRs) were delayed by pretreatment, consistent with a day 6 rise in the denervation marker γ-AchR. With pretreatment, S100B from terminal Schwann cells (TSCs) increased 10- to 20-fold at days 0 and 10 after CTX and doubled 6 days after CR. Premature SC activation disrupted motoneuritogenesis 8-10 days post-CTX, as pretreatment reduced colocalization of pre- and postsynaptic NMJ features and increased Sema3A-65. Premature SC activation before injury both accelerated myogenic repair and disrupted NMJ remodeling and maturation, possibly by reducing Sema3A neuro-repulsion and altering S100B. This interpretation extends the model of Sema3A-mediated motoneuritogenesis during muscle regeneration. Manipulating the timing and type of Sema3A by brief NO effects on SCs suggests an important role for TSCs and Sema3A-65 processing in axon guidance and NMJ restoration during muscle repair.
Collapse
Affiliation(s)
- Nasibeh Daneshvar
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryuichi Tatsumi
- Graduate School of Animal Sciences, Kyushu University, Fukoka, Japan
| | - Jason Peeler
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Karpuz T, Araz M, Korkmaz L, Kılınc I, Findik S, Karaagaç M, Eryilmaz MK, Artac M. The Prognostic Value of Serum Semaphorin3A and VEGF Levels in Patients with Metastatic Colorectal Cancer. J Gastrointest Cancer 2019; 51:491-497. [PMID: 31218581 DOI: 10.1007/s12029-019-00263-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Despite new treatment options in metastatic colorectal cancer (mCRC), new prognostic markers are still needed to determine optimal chemoregimen especially for anti-angiogenesis drugs. In this study, we evaluated the serum semaphorin and VEGF-A levels as prognostic factors in patients with mCRC. METHODS Patients with diagnosed mCRC who were treated with first-line bevacizumab plus chemotherapy were included in the study. Venous blood samples of 37 patients with metastatic colon cancer were taken, and serum semaphorin 3A and VEGF-A levels were studied in pre-treatment and the 1st and third months after the treatment was initiated. RESULTS Totally, 37 patients were enrolled in the study. The patients' mean age was 62 years. Twenty-eight (49%) of the patients were male, and 19 (51%) were female. Serum semaphorin3A (sema3A) levels of the patients were 5.4 ± 7.4 ng/ml before the treatment, 3.5 ± 3.3 ng/ml at the first month, and 3.5 ± 3.7 ng/ml at the third month. Serum VEGF-A levels were 27.7 ± 32.9 ng/l before the treatment, 23.1 ± 28.1 ng/l at the first month, and 28.9 ± 30.2 ng/l at the third month. There was no significant correlation between the survival and pre-treatment VEGF-A level (p = 0.064). Overall survival (OS) was statistically significantly higher in patients with pre-treatment semaphorin 3A levels below 5.4 ng/ml than higher than 5.4 ng/ml (10.5 months vs 4.5 months, respectively, HR 0.23, 95% CI 19.635-11,391, p = 0.012). CONCLUSION Pre-treatment semaphorin 3A level can be a prognostic marker for the mCRC patients who were treated with bevacizumab in patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Tuba Karpuz
- Department of Internal Medicine, Necmettin Erbakan University Meram Faculty of Medicine, Saraykoy Akyokus Street, 42080, Konya, Turkey
| | - Murat Araz
- Department of Internal Medicine and Medical Oncology, Necmettin Erbakan University Meram Faculty of Medicine, Saraykoy Akyokus Street, 42080, Konya, Turkey.
| | - Levent Korkmaz
- Department of Internal Medicine and Medical Oncology, Necmettin Erbakan University Meram Faculty of Medicine, Saraykoy Akyokus Street, 42080, Konya, Turkey
| | - Ibrahim Kılınc
- Department of Biochemistry, Necmettin Erbakan University Meram Faculty of Medicine, Saraykoy Akyokus Street, 42080, Konya, Turkey
| | - Sidika Findik
- Department of Pathology, Saraykoy Akyokus Street, Necmettin Erbakan University Meram Faculty of Medicine, postal code, 42080, Konya, Turkey
| | - Mustafa Karaagaç
- Department of Internal Medicine and Medical Oncology, Necmettin Erbakan University Meram Faculty of Medicine, Saraykoy Akyokus Street, 42080, Konya, Turkey
| | - Melek Karakurt Eryilmaz
- Department of Internal Medicine and Medical Oncology, Necmettin Erbakan University Meram Faculty of Medicine, Saraykoy Akyokus Street, 42080, Konya, Turkey
| | - Mehmet Artac
- Department of Internal Medicine and Medical Oncology, Necmettin Erbakan University Meram Faculty of Medicine, Saraykoy Akyokus Street, 42080, Konya, Turkey
| |
Collapse
|
6
|
Chodkowska KA, Ciecierska A, Majchrzak K, Ostaszewski P, Sadkowski T. Simultaneous miRNA and mRNA Transcriptome Profiling of Differentiating Equine Satellite Cells Treated with Gamma-Oryzanol and Exposed to Hydrogen Peroxide. Nutrients 2018; 10:nu10121871. [PMID: 30513813 PMCID: PMC6316332 DOI: 10.3390/nu10121871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022] Open
Abstract
Gamma-oryzanol (GO) is a popular supplement for performance horses, dogs, and humans. Previous studies indicated that GO supplementation decreases creatine kinase activity and lactate level after exercise and may affect oxidative stress in Thoroughbred horses. GO may change genes expression in equine satellite cells (ESC). The purpose of this study was to evaluate the effect of GO on miRNA, gene expression, oxidative stress, and cell damage and viability in differentiating ESC pretreated with hydrogen peroxide (H2O2). ESCs were obtained from a young horse’s skeletal muscle. ESCs were pre-incubated with GO (24 h) and then exposed to H2O2 for one hour. For the microRNA and gene expression assessment, the microarray technique was used. Identified miRNAs and genes were validated using real time-quantitative polymerase chain reaction. Several tests related to cell viability, cell damage, and oxidative stress were performed. The microarray analysis revealed differences in 17 miRNAs and 202 genes between GO-treated and control ESC. The tests related to apoptosis, cell viability, and oxidative stress showed that GO affects these processes to varying degrees. Our results suggest that GO can change miRNA and gene expression and may impact the processes involved in tissue repairing after an injury.
Collapse
Affiliation(s)
- Karolina A Chodkowska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Anna Ciecierska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Kinga Majchrzak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Piotr Ostaszewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|