1
|
Won TH, Arifuzzaman M, Parkhurst CN, Miranda IC, Zhang B, Hu E, Kashyap S, Letourneau J, Jin WB, Fu Y, Guzior DV, Quinn RA, Guo CJ, David LA, Artis D, Schroeder FC. Host metabolism balances microbial regulation of bile acid signalling. Nature 2025:10.1038/s41586-024-08379-9. [PMID: 39779854 DOI: 10.1038/s41586-024-08379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Metabolites derived from the intestinal microbiota, including bile acids (BA), extensively modulate vertebrate physiology, including development1, metabolism2-4, immune responses5-7 and cognitive function8. However, to what extent host responses balance the physiological effects of microbiota-derived metabolites remains unclear9,10. Here, using untargeted metabolomics of mouse tissues, we identified a family of BA-methylcysteamine (BA-MCY) conjugates that are abundant in the intestine and dependent on vanin 1 (VNN1), a pantetheinase highly expressed in intestinal tissues. This host-dependent MCY conjugation inverts BA function in the hepatobiliary system. Whereas microbiota-derived free BAs function as agonists of the farnesoid X receptor (FXR) and negatively regulate BA production, BA-MCYs act as potent antagonists of FXR and promote expression of BA biosynthesis genes in vivo. Supplementation with stable-isotope-labelled BA-MCY increased BA production in an FXR-dependent manner, and BA-MCY supplementation in a mouse model of hypercholesteraemia decreased lipid accumulation in the liver, consistent with BA-MCYs acting as intestinal FXR antagonists. The levels of BA-MCY were reduced in microbiota-deficient mice and restored by transplantation of human faecal microbiota. Dietary intervention with inulin fibre further increased levels of both free BAs and BA-MCY levels, indicating that BA-MCY production by the host is regulated by levels of microbiota-derived free BAs. We further show that diverse BA-MCYs are also present in human serum. Together, our results indicate that BA-MCY conjugation by the host balances host-dependent and microbiota-dependent metabolic pathways that regulate FXR-dependent physiology.
Collapse
Affiliation(s)
- Tae Hyung Won
- Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si, Republic of Korea
| | - Mohammad Arifuzzaman
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christopher N Parkhurst
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Isabella C Miranda
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Bingsen Zhang
- Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Elin Hu
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sanchita Kashyap
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeffrey Letourneau
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Wen-Bing Jin
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Yousi Fu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Douglas V Guzior
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Chun-Jun Guo
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lawrence A David
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - David Artis
- Joan and Sanford I. Weill Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Allen Discovery Center for Neuroimmune Interactions, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Frank C Schroeder
- Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Jiang Y, Fang Z, Guthrie G, Stoll B, Chacko S, Lin S, Hartmann B, Holst JJ, Dawson H, Pastor JJ, Ipharraguerre IR, Burrin DG. Selective Agonism of Liver and Gut FXR Prevents Cholestasis and Intestinal Atrophy in Parenterally Fed Neonatal Pigs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611073. [PMID: 39282416 PMCID: PMC11398320 DOI: 10.1101/2024.09.03.611073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
BACKGROUND & AIMS We aimed to investigate the relative efficacy of feeding different bile acids in preventing PNALD in neonatal pigs. METHODS Newborn pigs given total parenteral nutrition (TPN) combined with minimal enteral feeding of chenodeoxycholic acid (CDCA), or increasing doses of obeticholic acid (OCA) for 19 days. RESULTS Enteral OCA (5 and 15 mg/kg), but not CDCA (30 mg/kg) reduced blood cholestasis markers compared to TPN controls and increased bile acids in the gallbladder and intestine. Major bile acids in the liver and distal intestine were CDCA, HCA, HDCA and OCA, and their relative proportions were increased by the type of bile acid (CDCA or OCA) given enterally. High doses of OCA increased the total NR1H4-agonistic bile acid profile in the liver and intestine above 50% total bile acids. Both CDCA and OCA treatments suppressed hepatic cyp7a1 expression, but only OCA increased hepatobiliary transporters, ABCB11, ABCC$ and ABCB1. Plasma phytosterol levels were reduced and biliary levels were increased by CDCA and OCA and hepatic sterol transporters, abcg5/8, expression were increased by OCA. Both CDCA and OCA increased plasma FGF19 and OCA increased intestinal FGF19, FABP6, and SLC51A. Both CDCA and OCA increased intestinal mucosal growth, whereas CDCA increased the plasma GLP-2, GLP-1 and GIP. CONCLUSIONS Enteral OCA prevented cholestasis and phytosterolemia by increased hepatic bile acid and sterol transport via induction of hepatobiliary transporter FXR target genes and not by suppression of bile acid synthesis genes. We also showed an intestinal trophic action of OCA that demonstrates a dual clinical benefit of FXR agonism in the prevention of PNALD in piglets.
Collapse
Affiliation(s)
- Yanjun Jiang
- USDA/ARS Children’s Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas USA
| | - Zhengfeng Fang
- Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Gregory Guthrie
- USDA/ARS Children’s Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas USA
| | - Barbara Stoll
- USDA/ARS Children’s Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas USA
| | - Shaji Chacko
- USDA/ARS Children’s Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas USA
| | - Sen Lin
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bolette Hartmann
- NovoNordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J. Holst
- NovoNordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Harry Dawson
- USDA-ARS, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, MD
| | - Jose J. Pastor
- Innovation Division, Lucta S.A., Parc de Recerca UAB, Edifici Eureka, 08193, Bellaterra, Catalonia, Spain
| | - Ignacio R. Ipharraguerre
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Strasse 6-8, D-24128, Kiel, Germany
| | - Douglas G. Burrin
- USDA/ARS Children’s Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, Texas USA
| |
Collapse
|
3
|
Truong VNY, Liu C, Myers J, Miller M, Yang A, Lee J, Welborn N, Johnston AN. Comparison of fibroblast growth factor 19 concentrations between dogs with and without gallbladder mucoceles. J Vet Intern Med 2024; 38:2518-2522. [PMID: 39134090 PMCID: PMC11423440 DOI: 10.1111/jvim.17165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/25/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Fibroblast growth factor 19 (FGF19) is an enterohepatic hormone the synthesis of which is stimulated by bile acid activation of the nuclear farnesoid X receptor (FXR) in ileal enterocytes. Increased production of FGF19 downregulates hepatocyte bile acid synthesis and gluconeogenesis, while concurrently upregulating hepatocyte glycogenesis and gallbladder (GB) filling. The physiologic impact of this regulatory cycle is illustrated in cholecystectomized humans, in whom the disturbed meal-related flux of GB bile decreases serum FGF19 concentrations. OBJECTIVE Determine if serum FGF19 concentrations are lower in dogs with clinical GB mucoceles (GBMs) than in control dogs. ANIMALS Seven dogs with GBM diagnosed using abdominal ultrasonography, biochemical markers, and GB histopathology. Forty-two control dogs without gastrointestinal or hepatobiliary disorders also were evaluated. Health status of controls was assessed by physical examination and diagnostic hematologic and biochemical test results. METHODS Prospective cross-sectional study to compare fasting plasma or serum FGF19 concentrations between groups. Concentrations of FGF19 were quantified by a commercially available FGF19 ELISA. RESULTS Concentrations of FGF19 were significantly lower in dogs with clinical GBM (median, 14.0 pg/mL; range, 12.8-67.2) than in control dogs (median, 145.3 pg/mL; range, 36.5-285.1). CONCLUSIONS AND CLINICAL IMPORTANCE In dogs, GBM is associated with significantly decreased serum FGF19 concentrations. We speculate that this finding reflects compromised GB contraction and decreased enterohepatic circulation of bile flow. Subnormal FGF19 concentrations may influence bile acid synthesis and hepatic metabolism.
Collapse
Affiliation(s)
- Vy Ngoc Yen Truong
- Veterinary Clinical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
- Veterinary Biomedical SciencesSeoul National University School of Veterinary MedicineSeoulSouth Korea
| | - Chin‐Chi Liu
- Veterinary Clinical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| | - Jillian Myers
- Veterinary Clinical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
- Large Animal Clinical SciencesTexas A&M University College of Veterinary Medicine and Biomedical SciencesCollege StationTexasUSA
| | - Mayzie Miller
- Veterinary Clinical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
- Department of Biomedical and Diagnostic Sciences, College of Veterinary MedicineUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Amanda Yang
- Veterinary Clinical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
- Assessments, Accountability, and Analytics, Louisiana Department of EducationBaton RougeLouisianaUSA
| | - Jeongha Lee
- Pathobiological Sciences and Louisiana Animal Disease Diagnostic LaboratoryLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| | - Nancy Welborn
- Veterinary Clinical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| | - Andrea N. Johnston
- Veterinary Clinical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| |
Collapse
|
4
|
Kister B, Viehof A, Rolle-Kampczyk U, Schwentker A, Treichel NS, Jennings SA, Wirtz TH, Blank LM, Hornef MW, von Bergen M, Clavel T, Kuepfer L. A physiologically based model of bile acid metabolism in mice. iScience 2023; 26:107922. [PMID: 37817939 PMCID: PMC10561051 DOI: 10.1016/j.isci.2023.107922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Bile acid (BA) metabolism is a complex system that includes a wide variety of primary and secondary, as well as conjugated and unconjugated BAs that undergo continuous enterohepatic circulation (EHC). Alterations in both composition and dynamics of BAs have been associated with various diseases. However, a mechanistic understanding of the relationship between altered BA metabolism and related diseases is lacking. Computational modeling may support functional analyses of the physiological processes involved in the EHC of BAs along the gut-liver axis. In this study, we developed a physiologically based model of murine BA metabolism describing synthesis, hepatic and microbial transformations, systemic distribution, excretion, and EHC of BAs at the whole-body level. For model development, BA metabolism of specific pathogen-free (SPF) mice was characterized in vivo by measuring BA levels and composition in various organs, expression of transporters along the gut, and cecal microbiota composition. We found significantly different BA levels between male and female mice that could only be explained by adjusted expression of the hepatic enzymes and transporters in the model. Of note, this finding was in agreement with experimental observations. The model for SPF mice could also describe equivalent experimental data in germ-free mice by specifically switching off microbial activity in the intestine. The here presented model can therefore facilitate and guide functional analyses of BA metabolism in mice, e.g., the effect of pathophysiological alterations on BA metabolism and translation of results from mouse studies to a clinically relevant context through cross-species extrapolation.
Collapse
Affiliation(s)
- Bastian Kister
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, Aachen, Germany
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Alina Viehof
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Annika Schwentker
- Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Nicole Simone Treichel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Susan A.V. Jennings
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Theresa H. Wirtz
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Lars M. Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Mathias W. Hornef
- Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Faculty of Life Sciences, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Lars Kuepfer
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
5
|
Metry M, Dirda ND, Raufman JP, Polli JE, Kao JPY. Novel nitroxide-bile acid conjugates inform substrate requirements for human bile acid transporters. Eur J Pharm Sci 2023; 180:106335. [PMID: 36402308 PMCID: PMC9908032 DOI: 10.1016/j.ejps.2022.106335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Transport of bile acids within the enterohepatic circulation from the liver to the intestines via the gallbladder and back to the liver via the portal vein plays a critical role in bile acid regulation and homeostasis. Deficiency of fibroblast growth factor 19 (FGF19), a hormone whose role is to suppress de novo hepatic bile acid synthesis to maintain homeostatic levels, results in bile acid diarrhea (BAD). FGF19 also modulates gallbladder motility so that bile acids are concentrated in the gallbladder until postprandial contraction. To assess bile acid transport and diagnose ailments like BAD that are associated with altered bile acid synthesis and transport, we created bile acid conjugates with nitroxide radicals. Because nitroxides are paramagnetic and can promote proton relaxation, we reasoned that these paramagnetic conjugates should act as contrast agents in in vivo magnetic resonance imaging (MRI). We tested substrate capability by assessing the inhibitory potential of these novel agents against taurocholate uptake by the apical sodium dependent bile acid transporter (ASBT) and the Na+/taurocholate cotransporting polypeptide (NTCP). Surprisingly, neither the paramagnetic compounds CA-Px-1 and CA-Px-2, nor their reduced forms, CA-Px-1H and CA-Px-2H, inhibited hASBT- or hNTCP-mediated taurocholate uptake. Therefore, the new conjugates cannot serve as contrast agents for MRI in vivo. However, our findings identify important structural constraints of transportable bile acid conjugates and suggest potential modifications to overcome these limitations.
Collapse
Affiliation(s)
- Melissa Metry
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, N623, Baltimore, MD 21201, United States
| | - Nathaniel D.A. Dirda
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Jean-Pierre Raufman
- VA Maryland Healthcare System, Department of Medicine, Division of Gastroenterology & Hepatology, Department of Biochemistry and Molecular Biology, and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - James E. Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, N623, Baltimore, MD 21201, United States,Corresponding author: (J.E. Polli)
| | - Joseph P. Y. Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| |
Collapse
|
6
|
Shansky Y, Bespyatykh J. Bile Acids: Physiological Activity and Perspectives of Using in Clinical and Laboratory Diagnostics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227830. [PMID: 36431930 PMCID: PMC9692537 DOI: 10.3390/molecules27227830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Bile acids play a significant role in the digestion of nutrients. In addition, bile acids perform a signaling function through their blood-circulating fraction. They regulate the activity of nuclear and membrane receptors, located in many tissues. The gut microbiota is an important factor influencing the effects of bile acids via enzymatic modification. Depending on the rate of healthy and pathogenic microbiota, a number of bile acids may support lipid and glucose homeostasis as well as shift to more toxic compounds participating in many pathological conditions. Thus, bile acids can be possible biomarkers of human pathology. However, the chemical structure of bile acids is similar and their analysis requires sensitive and specific methods of analysis. In this review, we provide information on the chemical structure and the biosynthesis of bile acids, their regulation, and their physiological role. In addition, the review describes the involvement of bile acids in various diseases of the digestive system, the approaches and challenges in the analysis of bile acids, and the prospects of their use in omics technologies.
Collapse
Affiliation(s)
- Yaroslav Shansky
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Correspondence:
| | - Julia Bespyatykh
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Department of Expertise in Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
- Department of Public Health and Health Care, Federal Scientific State Budgetary Institution «N.A. Semashko National Research Institute of Public Health», Vorontsovo Pole Str., 12-1, 105064 Moscow, Russia
| |
Collapse
|
7
|
Abstract
Bile acids wear many hats, including those of an emulsifier to facilitate nutrient absorption, a cholesterol metabolite, and a signaling molecule in various tissues modulating itching to metabolism and cellular functions. Bile acids are synthesized in the liver but exhibit wide-ranging effects indicating their ability to mediate organ-organ crosstalk. So, how does a steroid metabolite orchestrate such diverse functions? Despite the inherent chemical similarity, the side chain decorations alter the chemistry and biology of the different bile acid species and their preferences to bind downstream receptors distinctly. Identification of new modifications in bile acids is burgeoning, and some of it is associated with the microbiota within the intestine. Here, we provide a brief overview of the history and the various receptors that mediate bile acid signaling in addition to its crosstalk with the gut microbiota.
Collapse
Affiliation(s)
| | | | - Sayeepriyadarshini Anakk
- Correspondence: Sayeepriyadarshini Anakk, PhD, Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, 506 S Mathews Ave, 453 Medical Sciences Bldg, Urbana, IL 61801, USA.
| |
Collapse
|
8
|
Alizadeh M, Raufman JP. Gastrointestinal neoplasia: carcinogenic interaction between bile acids and Helicobacter pylori in the stomach. J Clin Invest 2022; 132:160194. [PMID: 35575088 PMCID: PMC9106340 DOI: 10.1172/jci160194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bile acids modulate cell functions in health and disease, however, the mechanisms underlying their actions on neoplastic cells in the gastrointestinal (GI) tract remain largely unknown. In this issue of the JCI, Noto et al. comprehensively analyzed how interactions between Helicobacter pylori infection, iron deficiency, and bile acids modulate gastric inflammation and carcinogenesis. The investigators used sophisticated models, including INS-GAS mice with elevated serum gastrin and gastric acid secretion, in which H. pylori infection mimics human disease progression, to show that selected bile acids potentiated the carcinogenic effects of H. pylori infection and iron depletion. This elegant work has broad translational implications for microbe-associated GI neoplasia. Importantly, bile acid sequestration robustly attenuated the combined effects of H. pylori infection and iron depletion on gastric inflammation and cancer.
Collapse
Affiliation(s)
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, USA.,VA Maryland Healthcare System, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center and,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Schledwitz A, Sundel MH, Alizadeh M, Hu S, Xie G, Raufman JP. Differential Actions of Muscarinic Receptor Subtypes in Gastric, Pancreatic, and Colon Cancer. Int J Mol Sci 2021; 22:ijms222313153. [PMID: 34884958 PMCID: PMC8658119 DOI: 10.3390/ijms222313153] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Cancers arising from gastrointestinal epithelial cells are common, aggressive, and difficult to treat. Progress in this area resulted from recognizing that the biological behavior of these cancers is highly dependent on bioactive molecules released by neurocrine, paracrine, and autocrine mechanisms within the tumor microenvironment. For many decades after its discovery as a neurotransmitter, acetylcholine was thought to be synthesized and released uniquely from neurons and considered the sole physiological ligand for muscarinic receptor subtypes, which were believed to have similar or redundant actions. In the intervening years, we learned this former dogma is not tenable. (1) Acetylcholine is not produced and released only by neurons. The cellular machinery required to synthesize and release acetylcholine is present in immune, cancer, and other cells, as well as in lower organisms (e.g., bacteria) that inhabit the gut. (2) Acetylcholine is not the sole physiological activator of muscarinic receptors. For example, selected bile acids can modulate muscarinic receptor function. (3) Muscarinic receptor subtypes anticipated to have overlapping functions based on similar G protein coupling and downstream signaling may have unexpectedly diverse actions. Here, we review the relevant research findings supporting these conclusions and discuss how the complexity of muscarinic receptor biology impacts health and disease, focusing on their role in the initiation and progression of gastric, pancreatic, and colon cancers.
Collapse
Affiliation(s)
- Alyssa Schledwitz
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
| | - Margaret H. Sundel
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Madeline Alizadeh
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shien Hu
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
| | - Guofeng Xie
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.S.); (M.A.); (S.H.); (G.X.)
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-328-8728
| |
Collapse
|
10
|
Ocvirk S, O'Keefe SJD. Dietary fat, bile acid metabolism and colorectal cancer. Semin Cancer Biol 2021; 73:347-355. [PMID: 33069873 DOI: 10.1016/j.semcancer.2020.10.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) risk is predominantly driven by environmental factors, in particular diet. A high intake of dietary fat has been implicated as a risk factor inducing the formation of pre-neoplastic lesions (e.g., adenomatous polyps) and/or exacerbating colonic tumorigenesis. Recent data attributed the tumor-promoting activity of high-fat diets to their effects on gut microbiota composition and metabolism, in particular with regard to bile acids. Bile acids are synthesized in the liver in response to dietary fat and facilitate lipid absorption in the small intestine. The majority of bile acids is re-absorbed during small intestinal transit and subjected to enterohepatic circulation. Bile acids entering the colon undergo complex biotransformation performed by gut bacteria, resulting in secondary bile acids that show tumor-promoting activity. Excessive dietary fat leads to high levels of secondary bile acids in feces and primes the gut microbiota to bile acid metabolism. This promotes an altered overall bile acid pool, which activates or restricts intestinal and hepatic cross-signaling of the bile acid receptor, farnesoid X receptor (FXR). Recent studies provided evidence that FXR is a main regulator of bile acid-mediated effects on intestinal tumorigenesis integrating dietary, microbial and genetic risk factors for CRC. Selective FXR agonist or antagonist activity by specific bile acids depends on additional factors (e.g., bile acid concentration, composition of bile acid pool, genetic instability of cells) and, thus, may differ in healthy and tumorigenic conditions in the intestine. In conclusion, fat-mediated alterations of the gut microbiota link bile acid metabolism to CRC risk and colonic tumorigenesis, exemplifying how gut microbial co-metabolism affects colon health.
Collapse
Affiliation(s)
- Soeren Ocvirk
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Intestinal Microbiology Research Group, Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | - Stephen J D O'Keefe
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Myers J, Granger LA, Keeton ST, Liu CC, Johnston AN. Quantification of serum fibroblast growth factor-19 concentration in healthy dogs before and after feeding. Am J Vet Res 2021; 82:676-682. [PMID: 34296943 DOI: 10.2460/ajvr.82.8.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To measure serum fibroblast growth factor-19 (FGF-19) concentration and gallbladder volume in healthy dogs before and after feeding to determine whether serum FGF-19 concentration increases following gallbladder contraction and to assess FGF-19 stability in blood samples kept under different storage conditions after collection in tubes containing no anticoagulant or in serum separator tubes. ANIMALS 10 healthy dogs of various ages and breeds (30 blood samples and 30 gallbladder volume measurements). PROCEDURES Serum FGF-19 concentration was measured with a commercially available ELISA. Gallbladder volume was determined ultrasonographically. Blood samples and gallbladder measurements were obtained from the dogs after food had been withheld for 12 hours (baseline) and at 1 and 3 hours after feeding. The stability of serum FGF-19 was assessed in samples collected in tubes containing no anticoagulant or in serum separator tubes and stored at -80°C for variable intervals or 4°C for 1 or 5 days. RESULTS Serum FGF-19 concentration was significantly increased from baseline at 1 and 3 hours after feeding. There was a significant decrease in gallbladder volume 1 hour after feeding, compared with baseline findings. Regardless of collection tube used, concentrations of FGF-19 in serum obtained from blood samples that were collected and immediately stored at -80°C differed significantly from concentrations in serum obtained from blood samples that had been collected and stored at 4°C for 5 days. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that postprandial gallbladder contraction results in increases of serum FGF-19 concentration in healthy dogs. Assessment of circulating FGF-19 concentration could be used to detect disruptions in the enterohepatic-biliary axis in dogs.
Collapse
Affiliation(s)
- Jillian Myers
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - L Abbigail Granger
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Sarah T Keeton
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Andrea N Johnston
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
12
|
Ali O, Tolaymat M, Hu S, Xie G, Raufman JP. Overcoming Obstacles to Targeting Muscarinic Receptor Signaling in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22020716. [PMID: 33450835 PMCID: PMC7828259 DOI: 10.3390/ijms22020716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/05/2023] Open
Abstract
Despite great advances in our understanding of the pathobiology of colorectal cancer and the genetic and environmental factors that mitigate its onset and progression, a paucity of effective treatments persists. The five-year survival for advanced, stage IV disease remains substantially less than 20%. This review examines a relatively untapped reservoir of potential therapies to target muscarinic receptor expression, activation, and signaling in colorectal cancer. Most colorectal cancers overexpress M3 muscarinic receptors (M3R), and both in vitro and in vivo studies have shown that activating these receptors stimulates cellular programs that result in colon cancer growth, survival, and spread. In vivo studies using mouse models of intestinal neoplasia have shown that using either genetic or pharmacological approaches to block M3R expression and activation, respectively, attenuates the development and progression of colon cancer. Moreover, both in vitro and in vivo studies have shown that blocking the activity of matrix metalloproteinases (MMPs) that are induced selectively by M3R activation, i.e., MMP1 and MMP7, also impedes colon cancer growth and progression. Nonetheless, the widespread expression of muscarinic receptors and MMPs and their importance for many cellular functions raises important concerns about off-target effects and the safety of employing similar strategies in humans. As we highlight in this review, highly selective approaches can overcome these obstacles and permit clinicians to exploit the reliance of colon cancer cells on muscarinic receptors and their downstream signal transduction pathways for therapeutic purposes.
Collapse
Affiliation(s)
- Osman Ali
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MA 21201, USA; (O.A.); (M.T.); (S.H.); (G.X.)
| | - Mazen Tolaymat
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MA 21201, USA; (O.A.); (M.T.); (S.H.); (G.X.)
| | - Shien Hu
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MA 21201, USA; (O.A.); (M.T.); (S.H.); (G.X.)
- Veterans Affairs Maryland Healthcare System, Baltimore, MA 21201, USA
| | - Guofeng Xie
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MA 21201, USA; (O.A.); (M.T.); (S.H.); (G.X.)
- Veterans Affairs Maryland Healthcare System, Baltimore, MA 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MA 21201, USA
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MA 21201, USA; (O.A.); (M.T.); (S.H.); (G.X.)
- Veterans Affairs Maryland Healthcare System, Baltimore, MA 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MA 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MA 21201, USA
- Correspondence: ; Tel.: +1-410-328-8728
| |
Collapse
|
13
|
Henriksson E, Andersen B. FGF19 and FGF21 for the Treatment of NASH-Two Sides of the Same Coin? Differential and Overlapping Effects of FGF19 and FGF21 From Mice to Human. Front Endocrinol (Lausanne) 2020; 11:601349. [PMID: 33414764 PMCID: PMC7783467 DOI: 10.3389/fendo.2020.601349] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
FGF19 and FGF21 analogues are currently in clinical development for the potential treatment of NASH. In Phase 2 clinical trials analogues of FGF19 and FGF21 decrease hepatic steatosis with up to 70% (MRI-PDFF) after 12 weeks and as early as 12-16 weeks of treatment an improvement in NASH resolution and fibrosis has been observed. Therefore, this class of compounds is currently of great interest in the field of NASH. FGF19 and FGF21 belong to the endocrine FGF19 subfamily and both require the co-receptor beta-klotho for binding and signalling through the FGF receptors. FGF19 is expressed in the ileal enterocytes and is released into the enterohepatic circulation in response to bile acids stimuli and in the liver FGF19 inhibits hepatic bile acids synthesis by transcriptional regulation of Cyp7A1, which is the rate limiting enzyme. FGF21 is, on the other hand, highly expressed in the liver and is released in response to high glucose, high free-fatty acids and low amino-acid supply and regulates energy, glucose and lipid homeostasis by actions in the CNS and in the adipose tissue. FGF19 and FGF21 are differentially expressed, have distinct target tissues and separate physiological functions. It is therefore of peculiar interest to understand why treatment with both FGF19 and FGF21 analogues have strong beneficial effects on NASH parameters in mice and human and whether the mode of action is overlapping This review will highlight the physiological and pharmacological effects of FGF19 and FGF21. The potential mode of action behind the anti-steatotic, anti-inflammatory and anti-fibrotic effects of FGF19 and FGF21 will be discussed. Finally, development of drugs is always a risk benefit analysis and the human relevance of adverse effects observed in pre-clinical species as well as findings in humans will be discussed. The aim is to provide a comprehensive overview of the current understanding of this drug class for the potential treatment of NASH.
Collapse
|
14
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK, Alrefai WA. Intestinal Absorption of Bile Acids in Health and Disease. Compr Physiol 2019; 10:21-56. [PMID: 31853951 PMCID: PMC7171925 DOI: 10.1002/cphy.c190007] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The intestinal reclamation of bile acids is crucial for the maintenance of their enterohepatic circulation. The majority of bile acids are actively absorbed via specific transport proteins that are highly expressed in the distal ileum. The uptake of bile acids by intestinal epithelial cells modulates the activation of cytosolic and membrane receptors such as the farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1), which has a profound effect on hepatic synthesis of bile acids as well as glucose and lipid metabolism. Extensive research has focused on delineating the processes of bile acid absorption and determining the contribution of dysregulated ileal signaling in the development of intestinal and hepatic disorders. For example, a decrease in the levels of the bile acid-induced ileal hormone FGF15/19 is implicated in bile acid-induced diarrhea (BAD). Conversely, the increase in bile acid absorption with subsequent overload of bile acids could be involved in the pathophysiology of liver and metabolic disorders such as fatty liver diseases and type 2 diabetes mellitus. This review article will attempt to provide a comprehensive overview of the mechanisms involved in the intestinal handling of bile acids, the pathological implications of disrupted intestinal bile acid homeostasis, and the potential therapeutic targets for the treatment of bile acid-related disorders. Published 2020. Compr Physiol 10:21-56, 2020.
Collapse
Affiliation(s)
- Alexander L. Ticho
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pooja Malhotra
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Pradeep K. Dudeja
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Ravinder K. Gill
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology & Hepatology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
15
|
Osadchuk MA, Svistunov AA, Mironova ED, Vasil'eva IN, Kireeva NV. [Diseases of biliary tract in the context of association with oncological diseases of the digestive system]. TERAPEVT ARKH 2019; 91:98-104. [PMID: 32598596 DOI: 10.26442/00403660.2019.12.000455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 12/16/2022]
Abstract
Cancers of the gastrointestinal tract are widespread among the population and cause significant damage to the health care system. In order to improve the strategy of preventive measures and the detection of oncological diseases at the early stages, it is necessary to provide timely impact on possible risk factors contributing to the onset and progression of malignant neoplasms. This review demonstrates the association between the pathology of the biliary tract and oncological diseases of the digestive system, discusses the possible mechanisms of the influence of cholelithiasis and cholecystectomy on the development of malignant neoplasms of various parts of the gastrointestinal tract.
Collapse
Affiliation(s)
- M A Osadchuk
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A A Svistunov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - E D Mironova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - I N Vasil'eva
- Sechenov First Moscow State Medical University (Sechenov University)
| | - N V Kireeva
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
16
|
The Role of M3 Muscarinic Receptor Ligand-Induced Kinase Signaling in Colon Cancer Progression. Cancers (Basel) 2019; 11:cancers11030308. [PMID: 30841571 PMCID: PMC6468573 DOI: 10.3390/cancers11030308] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 02/08/2023] Open
Abstract
Despite a reduction in incidence over the past decade, colon cancer remains the second most common cause of cancer death in the United States; recent demographics suggest this disease is now afflicting younger persons. M3 muscarinic receptor (M3R) mRNA and protein are over-expressed in colon cancer, and M3R can be activated by both traditional (e.g., acetylcholine) and non-traditional (e.g., bile acids) muscarinic ligands. In this review, we weigh the data supporting a prominent role for key protein kinases downstream of M3R activation in promoting colon cancer progression and dissemination. Specifically, we explore the roles that downstream activation of the mitogen activated protein kinase/extracellular signal-related kinase (MAPK/ERK), protein kinase C, p38 MAPK, and phosphatidylinositol 3-kinase/Akt (PI3K/Akt) pathways play in mediating colon cancer cell proliferation, survival, migration and invasion. We assess the impact of M3R-stimulated induction of selected matrix metalloproteinases germane to these hallmarks of colon cancer progression. In this context, we also critically review the reproducibility of findings derived from a variety of in vivo and in vitro colon cancer models, and their fidelity to human disease. Finally, we summarize the therapeutic potential of targeting various steps from ligand-M3R interaction to the activation of key downstream molecules.
Collapse
|
17
|
van Zutphen T, Bertolini A, de Vries HD, Bloks VW, de Boer JF, Jonker JW, Kuipers F. Potential of Intestine-Selective FXR Modulation for Treatment of Metabolic Disease. Handb Exp Pharmacol 2019; 256:207-234. [PMID: 31236687 DOI: 10.1007/164_2019_233] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Farnesoid X receptor controls bile acid metabolism, both in the liver and intestine. This potent nuclear receptor not only maintains homeostasis of its own ligands, i.e., bile acids, but also regulates glucose and lipid metabolism as well as the immune system. These findings have led to substantial interest for FXR as a therapeutic target and to the recent approval of an FXR agonist for treating primary biliary cholangitis as well as ongoing clinical trials for other liver diseases. Given that FXR biology is complex, including moderate expression in tissues outside of the enterohepatic circulation, temporal expression of isoforms, posttranscriptional modifications, and the existence of several other bile acid-responsive receptors such as TGR5, clinical application of FXR modulators warrants thorough understanding of its actions. Recent findings have demonstrated remarkable physiological effects of targeting FXR specifically in the intestine (iFXR), thereby avoiding systemic release of modulators. These include local effects such as improvement of intestinal barrier function and intestinal cholesterol turnover, as well as systemic effects such as improvements in glucose homeostasis, insulin sensitivity, and nonalcoholic fatty liver disease (NAFLD). Intriguingly, metabolic improvements have been observed with both an iFXR agonist that leads to production of enteric Fgf15 and increased energy expenditure in adipose tissues and antagonists by reducing systemic ceramide levels and hepatic glucose production. Here we review the recent findings on the role of intestinal FXR and its targeting in metabolic disease.
Collapse
Affiliation(s)
- Tim van Zutphen
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
- University of Groningen, Leeuwarden, The Netherlands
| | - Anna Bertolini
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
| | - Hilde D de Vries
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
- University of Groningen, Leeuwarden, The Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johan W Jonker
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, Faculty Campus Fryslân, University of Groningen, Groningen, The Netherlands.
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
18
|
Donkers JM, Roscam Abbing RLP, van de Graaf SFJ. Developments in bile salt based therapies: A critical overview. Biochem Pharmacol 2018; 161:1-13. [PMID: 30582898 DOI: 10.1016/j.bcp.2018.12.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023]
Abstract
Bile acids, amphipathic molecules known for their facilitating role in fat absorption, are also recognized as signalling molecules acting via nuclear and membrane receptors. Of the bile acid-activated receptors, the Farnesoid X Receptor (FXR) and the G protein-coupled bile acid receptor-1 (Gpbar1 or TGR5) have been studied most extensively. Bile acid signaling is critical in the regulation of bile acid metabolism itself, but it also plays a significant role in glucose, lipid and energy metabolism. Activation of FXR and TGR5 leads to reduced hepatic bile salt load, improved insulin sensitivity and glucose regulation, increased energy expenditure, and anti-inflammatory effects. These beneficial effects render bile acid signaling an interesting therapeutic target for the treatment of diseases such as cholestasis, non-alcoholic fatty liver disease, and diabetes. Here, we summarize recent findings on bile acid signaling and discuss potential and current limitations of bile acid receptor agonist and modulators of bile acid transport as future therapeutics for a wide-spectrum of diseases.
Collapse
Affiliation(s)
- Joanne M Donkers
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands
| | - Reinout L P Roscam Abbing
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands
| | - Stan F J van de Graaf
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Raufman JP, Metry M, Felton J, Cheng K, Xu S, Polli J. A 19F magnetic resonance imaging-based diagnostic test for bile acid diarrhea. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 32:163-171. [PMID: 30387017 PMCID: PMC6408933 DOI: 10.1007/s10334-018-0713-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/28/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022]
Abstract
In up to 50% of people diagnosed with a common ailment, diarrhea-predominant irritable bowel syndrome, diarrhea results from excess spillage of bile acids into the colon-data emerging over the past decade identified deficient release of a gut hormone, fibroblast growth factor 19 (FGF19), and a consequent lack of feedback suppression of bile acid synthesis as the most common cause. 75Selenium homotaurocholic acid (SeHCAT) testing, considered the most sensitive and specific means of identifying individuals with bile acid diarrhea, is unavailable in many countries, including the United States. Other than SeHCAT, tests to diagnose bile acid diarrhea are cumbersome, non-specific, or insufficiently validated; clinicians commonly rely on a therapeutic trial of bile acid binders. Here, we review bile acid synthesis and transport, the pathogenesis of bile acid diarrhea, the reasons clinicians frequently overlook this disorder, including the limitations of currently available tests, and our efforts to develop a novel 19F magnetic resonance imaging (MRI)-based diagnostic approach. We created 19F-labeled bile acid analogues whose in vitro and in vivo transport mimics that of naturally occurring bile acids. Using dual 1H/19F MRI of the gallbladders of live mice fed 19F-labeled bile acid analogues, we were able to differentiate wild-type mice from strains deficient in intestinal expression of a key bile acid transporter, the apical sodium-dependent bile acid transporter (ASBT), or FGF15, the mouse homologue of FGF19. In addition to reviewing our development of 19F-labeled bile acid analogue-MRI to diagnose bile acid diarrhea, we discuss challenges to its clinical implementation. A major limitation is the paucity of clinical MRI facilities equipped with the appropriate coil and software needed to detect 19F signals.
Collapse
Affiliation(s)
- Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Department of Medicine, and Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, and the VA Maryland Healthcare System, Baltimore, MD, 21201, USA.
| | - Melissa Metry
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| | - Jessica Felton
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kunrong Cheng
- Division of Gastroenterology and Hepatology, Department of Medicine, and Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, and the VA Maryland Healthcare System, Baltimore, MD, 21201, USA
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - James Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, 21201, USA
| |
Collapse
|
20
|
Metry M, Felton J, Cheng K, Xu S, Ai Y, Xue F, Raufman JP, Polli JE. Attenuated Accumulation of Novel Fluorine ( 19F)-Labeled Bile Acid Analogues in Gallbladders of Fibroblast Growth Factor-15 (FGF15)-Deficient Mice. Mol Pharm 2018; 15:4827-4834. [PMID: 30247920 DOI: 10.1021/acs.molpharmaceut.8b00454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our work has focused on defining the utility of fluorine (19F)-labeled bile acid analogues and magnetic resonance imaging (MRI) to identify altered bile acid transport in vivo. In the current study, we explored the ability of this approach to differentiate fibroblast growth factor-15 (FGF15)-deficient from wild-type (WT) mice, a potential diagnostic test for bile acid diarrhea, a commonly misdiagnosed disorder. FGF15 is the murine homologue of human FGF19, an intestinal hormone whose deficiency is an underappreciated cause of bile acid diarrhea. In a pilot and three subsequent pharmacokinetic studies, we treated mice with two 19F-labeled bile acid analogues, CA-lys-TFA and CA-sar-TFMA. After oral dosing, we quantified 19F-labeled bile acid analogue levels in the gallbladder, liver, small and large intestine, and plasma using liquid chromatography mass spectrometry (LC-MS/MS). Both 19F bile acid analogues concentrated in the gallbladders of FGF15-deficient and WT mice, attaining peak concentrations at approximately 8.5 h after oral dosing. However, analogue levels in gallbladders of FGF15-deficient mice were several-fold less compared to those in WT mice. Live-animal 19F MRI provided agreement with our LC-MS/MS-based measures; we detected robust CA-lys-TFA 19F signals in gallbladders of WT mice but no signals in FGF15-deficient mice. Our finding that 19F MRI differentiates FGF15-deficient from WT mice provides additional proof-of-concept for the development of 19F bile acid analogues and 19F MRI as a clinical test to diagnose bile acid diarrhea due to FGF19 deficiency and other disorders.
Collapse
Affiliation(s)
- Melissa Metry
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Jessica Felton
- Department of Surgery , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Kunrong Cheng
- VA Maryland Healthcare System, and the Department of Medicine, Division of Gastroenterology & Hepatology, and the Marlene and Stewart Greenebaum Comprehensive Cancer Center , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - Yong Ai
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Jean-Pierre Raufman
- VA Maryland Healthcare System, and the Department of Medicine, Division of Gastroenterology & Hepatology, and the Marlene and Stewart Greenebaum Comprehensive Cancer Center , University of Maryland School of Medicine , Baltimore , Maryland 21201 , United States
| | - James E Polli
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| |
Collapse
|
21
|
Felton J, Cheng K, Shang AC, Hu S, Larabee SM, Drachenberg CB, Raufman JP. Two sides to colon cancer: mice mimic human anatomical region disparity in colon cancer development and progression. ACTA ACUST UNITED AC 2018; 4. [PMID: 31742233 PMCID: PMC6860924 DOI: 10.20517/2394-4722.2018.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aim: Strong evidence reveals important differences between cancers in the proximal vs. distal colon. Animal models of metastatic colon cancer are available but with varying degrees of reproducibility and several important limitations. We explored whether there were regional differences in the location of murine colon cancers and assessed the utility of murine models to explore the biological basis for such differences. Methods: We re-analyzed data from our previous studies to assess the regional distribution of murine colon cancer. In survival surgery experiments, we injected HT-29 human colon cancer cells into the wall of the cecum or distal colon of Nu(NCr)-Foxn1nu or NOD.Cg-PrkdcscidIl2rgTim1Wji/SzJ mice and compared the development of primary tumors and metastases. Results: Within 7–17 weeks after intramural cecal injection of HT-29 cells, eight mice failed to develop solid primary tumors or metastases. In contrast, within four weeks after cell injection into the distal colon, 13 mice developed metastases - 12 mice developed subcutaneous metastases; of these, four developed liver metastases and one developed both liver and lung metastases. One mouse developed liver metastases only. Histological examination confirmed these lesions were adenocarcinomas. Conclusion: Our findings reveal the preferential growth of murine colon neoplasia and invasive human orthotopic xenografts in the distal mouse colon. The new approach of injecting cells into the distal colon wall results in a pattern of colon cancer development that closely mimics the progression of metastatic colon cancer in humans. This novel model of colon neoplasia has great potential for exploring anatomical differences in colon cancer and testing novel therapeutics.
Collapse
Affiliation(s)
- Jessica Felton
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kunrong Cheng
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aaron C Shang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shien Hu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shannon M Larabee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Cinthia B Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jean-Pierre Raufman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|