1
|
Ebrahimnezhad M, Asl SH, Rezaie M, Molavand M, Yousefi B, Majidinia M. lncRNAs: New players of cancer drug resistance via targeting ABC transporters. IUBMB Life 2024; 76:883-921. [PMID: 39091106 DOI: 10.1002/iub.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024]
Abstract
Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hassanzadeh Asl
- Student Research Committee, Faculty of Medicine, Tabriz Azad University of Medical Sciences, Tabriz, Iran
| | - Maede Rezaie
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Molavand
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Bantsimba-Malanda C, Ahidouch A, Rodat-Despoix L, Ouadid-Ahidouch H. Calcium signal modulation in breast cancer aggressiveness. Cell Calcium 2023; 113:102760. [PMID: 37247443 DOI: 10.1016/j.ceca.2023.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Breast cancer (BC) is the second most common cancer and cause of death in women. The aggressive subtypes including triple negative types (TNBCs) show a resistance to chemotherapy, impaired immune system, and a worse prognosis. From a histological point of view, TNBCs are deficient in oestrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2+) expression. Many studies reported an alteration in the expression of calcium channels, calcium binding proteins and pumps in BC that promote proliferation, survival, resistance to chemotherapy, and metastasis. Moreover, Ca2+ signal remodeling and calcium transporters expression have been associated to TNBCs and HER2+ BC subtypes. This review provides insight into the underlying alteration of the expression of calcium-permeable channels, pumps, and calcium dependent proteins and how this alteration plays an important role in promoting metastasis, metabolic switching, inflammation, and escape to chemotherapy treatment and immune surveillance in aggressive BC including TNBCs models and highly metastatic BC tumors.
Collapse
Affiliation(s)
- Claudie Bantsimba-Malanda
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne Amiens, France
| | - Ahmed Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne Amiens, France; Department of Biology, Faculty of Sciences, University Ibn Zohr, Agadir 80000, Morocco
| | - Lise Rodat-Despoix
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne Amiens, France.
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR UPJV 4667, University of Picardie Jules Verne Amiens, France.
| |
Collapse
|
3
|
James AD, Unthank KP, Jones I, Sajjaboontawee N, Sizer RE, Chawla S, Evans GJO, Brackenbury WJ. Sodium regulates PLC and IP 3 R-mediated calcium signaling in invasive breast cancer cells. Physiol Rep 2023; 11:e15663. [PMID: 37017052 PMCID: PMC10074044 DOI: 10.14814/phy2.15663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Intracellular Ca2+ signaling and Na+ homeostasis are inextricably linked via ion channels and co-transporters, with alterations in the concentration of one ion having profound effects on the other. Evidence indicates that intracellular Na+ concentration ([Na+ ]i ) is elevated in breast tumors, and that aberrant Ca2+ signaling regulates numerous key cancer hallmark processes. The present study therefore aimed to determine the effects of Na+ depletion on intracellular Ca2+ handling in metastatic breast cancer cell lines. The relationship between Na+ and Ca2+ was probed using fura-2 and SBFI fluorescence imaging and replacement of extracellular Na+ with equimolar N-methyl-D-glucamine (0Na+ /NMDG) or choline chloride (0Na+ /ChoCl). In triple-negative MDA-MB-231 and MDA-MB-468 cells and Her2+ SKBR3 cells, but not ER+ MCF-7 cells, 0Na+ /NMDG and 0Na+ /ChoCl resulted in a slow, sustained depletion in [Na+ ]i that was accompanied by a rapid and sustained increase in intracellular Ca2+ concentration ([Ca2+ ]i ). Application of La3+ in nominal Ca2+ -free conditions had no effect on this response, ruling out reverse-mode NCX activity and Ca2+ entry channels. Moreover, the Na+ -linked [Ca2+ ]i increase was independent of membrane potential hyperpolarization (NS-1619), but was inhibited by pharmacological blockade of IP3 receptors (2-APB), phospholipase C (PLC, U73122) or following depletion of endoplasmic reticulum Ca2+ stores (cyclopiazonic acid). Thus, Na+ is linked to PLC/IP3 -mediated activation of endoplasmic reticulum Ca2+ release in metastatic breast cancer cells and this may have an important role in breast tumors where [Na+ ]i is perturbed.
Collapse
Affiliation(s)
- Andrew D. James
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | | | | | - Nattanan Sajjaboontawee
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | | | - Sangeeta Chawla
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - Gareth J. O. Evans
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| | - William J. Brackenbury
- Department of BiologyUniversity of YorkYorkUK
- York Biomedical Research InstituteUniversity of YorkYorkUK
| |
Collapse
|
4
|
Ugalde-Arbizu M, Aguilera-Correa JJ, García-Almodóvar V, Ovejero-Paredes K, Díaz-García D, Esteban J, Páez PL, Prashar S, San Sebastian E, Filice M, Gómez-Ruiz S. Dual Anticancer and Antibacterial Properties of Silica-Based Theranostic Nanomaterials Functionalized with Coumarin343, Folic Acid and a Cytotoxic Organotin(IV) Metallodrug. Pharmaceutics 2023; 15:pharmaceutics15020560. [PMID: 36839883 PMCID: PMC9962538 DOI: 10.3390/pharmaceutics15020560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Five different silica nanoparticles functionalized with vitamin B12, a derivative of coumarin found in green plants and a minimum content of an organotin(IV) fragment (1-MSN-Sn, 2-MSN-Sn, 2-SBA-Sn, 2-FSPm-Sn and 2-FSPs-Sn), were identified as excellent anticancer agents against triple negative breast cancer, one of the most diagnosed and aggressive cancerous tumors, with very poor prognosis. Notably, compound 2-MSN-Sn shows selectivity for cancer cells and excellent luminescent properties detectable by imaging techniques once internalized. The same compound is also able to interact with and nearly eradicate biofilms of Staphylococcus aureus, the most common bacteria isolated from chronic wounds and burns, whose treatment is a clinical challenge. 2-MSN-Sn is efficiently internalized by bacteria in a biofilm state and destroys the latter through reactive oxygen species (ROS) generation. Its internalization by bacteria was also efficiently monitored by fluorescence imaging. Since silica nanoparticles are particularly suitable for oral or topical administration, and considering both its anticancer and antibacterial activity, 2-MSN-Sn represents a new dual-condition theranostic agent, based primarily on natural products or their derivatives and with only a minimum amount of a novel metallodrug.
Collapse
Affiliation(s)
- Maider Ugalde-Arbizu
- Departamento de Química Aplicada, Facultad de Química, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 Donostia San Sebastián, Spain
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, 28029 Madrid, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| | - Victoria García-Almodóvar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Karina Ovejero-Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Paulina L. Páez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Eider San Sebastian
- Departamento de Química Aplicada, Facultad de Química, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 Donostia San Sebastián, Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, 28029 Madrid, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| |
Collapse
|
5
|
Feyzizadeh M, Barfar A, Nouri Z, Sarfraz M, Zakeri-Milani P, Valizadeh H. Overcoming multidrug resistance through targeting ABC transporters: lessons for drug discovery. Expert Opin Drug Discov 2022; 17:1013-1027. [PMID: 35996765 DOI: 10.1080/17460441.2022.2112666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The argument around cancer therapy is an old one. Using chemotherapeutic drugs, as one of the most effective strategies in treatment of malignancies, is restricted by various issues that progress during therapy and avoid achieving clinical endpoints. Multidrug resistance (MDR), frequently mediated by ATP-binding cassette (ABC) transporters, is one of the most recognized obstacles in the success of pharmacological anticancer approaches. These transporters efflux diverse drugs to extracellular environment, causing MDR and responsiveness of tumor cells to chemotherapy diminishes. AREAS COVERED Several strategies have been used to overcome MDR phenomenon. Succession in this field requires complete knowledge about features and mechanism of ABC transporters. In this review, conventional synthetic and natural inhibitors are discussed first and then novel approaches including RNA, monoclonal antibodies, nanobiotechnology, and structural modification techniques are represented. EXPERT OPINION With increasing frequency of MDR in cancer cells, it is essential to develop new drugs to inhibit MDR. Using knowledge acquired about ABC transporter's structure, rational design of inhibitors is possible. Also, some herbal products have shown to be potential lead compounds in drug discovery for reversal of MDR.
Collapse
Affiliation(s)
- Mohammad Feyzizadeh
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Barfar
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
6
|
James AD, Leslie TK, Kaggie JD, Wiggins L, Patten L, Murphy O'Duinn J, Langer S, Labarthe MC, Riemer F, Baxter G, McLean MA, Gilbert FJ, Kennerley AJ, Brackenbury WJ. Sodium accumulation in breast cancer predicts malignancy and treatment response. Br J Cancer 2022; 127:337-349. [PMID: 35462561 PMCID: PMC9296657 DOI: 10.1038/s41416-022-01802-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer remains a leading cause of death in women and novel imaging biomarkers are urgently required. Here, we demonstrate the diagnostic and treatment-monitoring potential of non-invasive sodium (23Na) MRI in preclinical models of breast cancer. METHODS Female Rag2-/- Il2rg-/- and Balb/c mice bearing orthotopic breast tumours (MDA-MB-231, EMT6 and 4T1) underwent MRI as part of a randomised, controlled, interventional study. Tumour biology was probed using ex vivo fluorescence microscopy and electrophysiology. RESULTS 23Na MRI revealed elevated sodium concentration ([Na+]) in tumours vs non-tumour regions. Complementary proton-based diffusion-weighted imaging (DWI) linked elevated tumour [Na+] to increased cellularity. Combining 23Na MRI and DWI measurements enabled superior classification accuracy of tumour vs non-tumour regions compared with either parameter alone. Ex vivo assessment of isolated tumour slices confirmed elevated intracellular [Na+] ([Na+]i); extracellular [Na+] ([Na+]e) remained unchanged. Treatment with specific inward Na+ conductance inhibitors (cariporide, eslicarbazepine acetate) did not affect tumour [Na+]. Nonetheless, effective treatment with docetaxel reduced tumour [Na+], whereas DWI measures were unchanged. CONCLUSIONS Orthotopic breast cancer models exhibit elevated tumour [Na+] that is driven by aberrantly elevated [Na+]i. Moreover, 23Na MRI enhances the diagnostic capability of DWI and represents a novel, non-invasive biomarker of treatment response with superior sensitivity compared to DWI alone.
Collapse
Affiliation(s)
- Andrew D James
- Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | | | - Joshua D Kaggie
- Department of Radiology & NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | | | - Lewis Patten
- Department of Mathematics, University of York, York, UK
| | | | - Swen Langer
- Bioscience Technology Facility, Department of Biology, University of York, York, UK
| | | | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre, Haukeland University Hospital Bergen, Bergen, Norway
| | - Gabrielle Baxter
- Department of Radiology & NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Mary A McLean
- Department of Radiology & NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Fiona J Gilbert
- Department of Radiology & NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Aneurin J Kennerley
- York Biomedical Research Institute, University of York, York, UK
- Department of Chemistry, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
7
|
Li X, Alu A, Wei Y, Wei X, Luo M. The modulatory effect of high salt on immune cells and related diseases. Cell Prolif 2022; 55:e13250. [PMID: 35747936 PMCID: PMC9436908 DOI: 10.1111/cpr.13250] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The adverse effect of excessive salt intake has been recognized in decades. Researchers have mainly focused on the association between salt intake and hypertension. However, studies in recent years have proposed the existence of extra-renal sodium storage and provided insight into the immunomodulatory function of sodium. OBJECTIVES In this review, we discuss the modulatory effects of high salt on various innate and adaptive immune cells and immune-regulated diseases. METHODS We identified papers through electronic searches of PubMed database from inception to March 2022. RESULTS An increasing body of evidence has demonstrated that high salt can modulate the differentiation, activation and function of multiple immune cells. Furthermore, a high-salt diet can increase tissue sodium concentrations and influence the immune responses in microenvironments, thereby affecting the development of immune-regulated diseases, including hypertension, multiple sclerosis, cancer and infections. These findings provide a novel mechanism for the pathology of certain diseases and indicate that salt might serve as a target or potential therapeutic agent in different disease contexts. CONCLUSION High salt has a profound impact on the differentiation, activation and function of multiple immune cells. Additionally, an HSD can modulate the development of various immune-regulated diseases.
Collapse
Affiliation(s)
- Xian Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Ovejero-Paredes K, Díaz-García D, Mena-Palomo I, Marciello M, Lozano-Chamizo L, Morato YL, Prashar S, Gómez-Ruiz S, Filice M. Synthesis of a theranostic platform based on fibrous silica nanoparticles for the enhanced treatment of triple-negative breast cancer promoted by a combination of chemotherapeutic agents. BIOMATERIALS ADVANCES 2022; 137:212823. [PMID: 35929238 DOI: 10.1016/j.bioadv.2022.212823] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
A new series of theranostic silica materials based on fibrous silica particles acting as nanocarriers of two different cytotoxic agents, namely, chlorambucil and an organotin metallodrug have been prepared and structurally characterized. Besides the combined therapeutic activity, these platforms have been decorated with a targeting molecule (folic acid, to selectively target triple negative breast cancer) and a molecular imaging agent (Alexa Fluor 647, to enable their tracking both in vitro and in vivo). The in vitro behaviour of the multifunctional silica systems showed a synergistic activity of the two chemotherapeutic agents in the form of an enhanced cytotoxicity against MDA-MB-231 cells (triple negative breast cancer) as well as by a higher cell migration inhibition. Subsequently, the in vivo applicability of the siliceous nanotheranostics was successfully assessed by observing with in vivo optical imaging techniques a selective tumour accumulation (targeting ability), a marked inhibition of tumour growth paired to a marked antiangiogenic ability after 13 days of systemic administration, thus, confirming the enhanced theranostic activity. The systemic nanotoxicity was also evaluated by analyzing specific biochemical markers. The results showed a positive effect in form of reduced cytotoxicity when both chemotherapeutics are administered in combination thanks to the fibrous silica nanoparticles. Overall, our results confirm the promising applicability of these novel silica-based nanoplatforms as advanced drug-delivery systems for the synergistic theranosis of triple negative breast cancer.
Collapse
Affiliation(s)
- Karina Ovejero-Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Diana Díaz-García
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Irene Mena-Palomo
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Laura Lozano-Chamizo
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Yurena Luengo Morato
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Sanjiv Prashar
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain.
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
| |
Collapse
|
9
|
Xin L, Liu C, Liu Y, Mansel RE, Ruge F, Davies E, Jiang WG, Martin TA. SIKs suppress tumor function and regulate drug resistance in breast cancer. Am J Cancer Res 2021; 11:3537-3557. [PMID: 34354859 PMCID: PMC8332863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/15/2021] [Indexed: 06/13/2023] Open
Abstract
Salt-inducible kinases (SIKs), belonging to an AMP-activated kinase (AMPK) family, have an evolving role in tumourigenesis and metastasis in many solid tumours. However, the function of SIKs in breast cancer is not fully established. Here, we systematically elucidated the function of SIK family members in breast cancer. In clinical cohort of breast cancer, the expression of SIK1, SIK2 and SIK3 increased expression of SIKs was associated with good clinical outcome in breast cancer cohort. In vitro, reduced expression of SIK2 and SIK3, by way of knockdown increased the proliferation of breast cancer cells. However, SIK2 and SIK3 had contrasting effects on adhesion in breast cancer cells. Knockdown of SIK2 only enhanced the adhesion of triple negative breast cancer cell, while knockdown of SIK3 can decrease the adhesion of both MDA-MB-231 and MCF-7 cells. Interestingly, knockdown of SIK1 and SIK3 was seen to increase the invasion of MDA-MB-231 cells. Furthermore, reduced SIKs, even triple knockdown of SIK1, SIK2 and SIK3 rendered the breast cancer cells to confer chemoresistance to paclitaxel and cisplatin. Collectively, the study reports that SIKs are actively involved in regulating the aggressive functions of breast cancer cells and influence the clinical course of the patients with breast cancer that they molecules are potential prognostic factors and chemotherapy biomarkers.
Collapse
Affiliation(s)
- Ling Xin
- Breast Disease Centre of Peking University First HospitalBeijing, PR China
- School of Medicine, Cardiff UniversityHeath Park, Cardiff, United Kingdom
| | - Chang Liu
- School of Medicine, Cardiff UniversityHeath Park, Cardiff, United Kingdom
| | - Yinhua Liu
- Breast Disease Centre of Peking University First HospitalBeijing, PR China
| | - Robert E Mansel
- School of Medicine, Cardiff UniversityHeath Park, Cardiff, United Kingdom
| | - Fiona Ruge
- School of Medicine, Cardiff UniversityHeath Park, Cardiff, United Kingdom
| | - Eleri Davies
- Wales Breast Centre, University Llandough HospitalCardiff, Wales, United Kingdom
| | - Wen G Jiang
- School of Medicine, Cardiff UniversityHeath Park, Cardiff, United Kingdom
| | - Tracey A Martin
- School of Medicine, Cardiff UniversityHeath Park, Cardiff, United Kingdom
| |
Collapse
|
10
|
Allu AS, Tiriveedhi V. Cancer Salt Nostalgia. Cells 2021; 10:cells10061285. [PMID: 34064273 PMCID: PMC8224381 DOI: 10.3390/cells10061285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
High-salt (sodium chloride) diets have been strongly associated with disease states and poor health outcomes. Traditionally, the impact of salt intake is primarily studied in cardiovascular diseases, hypertension and renal diseases; however, recently there has been increasing evidence demonstrating the role of salt in autoimmune diseases. Salt has been shown to modulate the inflammatory activation of immune cells leading to chronic inflammation-related ailments. To date, there is minimal evidence showing a direct correlation of salt with cancer incidence and/or cancer-related adverse clinical outcomes. In this review article, we will discuss the recent understanding of the molecular role of salt, and elucidate the apparent double-edged sword nature of the relationship between salt and cancer progression.
Collapse
Affiliation(s)
- Aashish S. Allu
- Department of Sciences, Lafayette High School, Wildwood, MO 63011, USA;
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA
- Division of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-963-5779; Fax: +1-615-963-5747
| |
Collapse
|
11
|
Tiriveedhi V, Ivy MT, Myles EL, Zent R, Rathmell JC, Titze J. Ex Vivo High Salt Activated Tumor-Primed CD4+T Lymphocytes Exert a Potent Anti-Cancer Response. Cancers (Basel) 2021; 13:cancers13071690. [PMID: 33918403 PMCID: PMC8038238 DOI: 10.3390/cancers13071690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Cell based immunotherapy is rapidly emerging as a promising cancer treatment. Salt (sodium chloride) treatment to immune cell cultures is known to induce inflammatory activation. In our current study, we analyzed the anti-cancer ability of salt treatment on immune cells outside the host followed by reinfusion into the host. Using a pre-clinical breast cancer model, we demonstrated that external salt treatment on T-cell subset of immune cells produced a viable anti-cancer response, which may have future human clinical application. Abstract Cell based immunotherapy is rapidly emerging as a promising cancer treatment. A modest increase in salt (sodium chloride) concentration in immune cell cultures is known to induce inflammatory phenotypic differentiation. In our current study, we analyzed the ability of salt treatment to induce ex vivo expansion of tumor-primed CD4 (cluster of differentiation 4)+T cells to an effector phenotype. CD4+T cells were isolated using immunomagnetic beads from draining lymph nodes and spleens from tumor bearing C57Bl/6 mice, 28 days post-injection of Py230 syngeneic breast cancer cells. CD4+T cells from non-tumor bearing mice were isolated from splenocytes of 12-week-old C57Bl/6 mice. These CD4+T cells were expanded ex vivo with five stimulation cycles, and each cycle comprised of treatment with high salt (Δ0.035 M NaCl) or equimolar mannitol controls along with anti-CD3/CD28 monoclonal antibodies for the first 3 days, followed by the addition of interleukin (IL)-2/IL-7 cytokines and heat killed Py230 for 4 days. Ex vivo high salt treatment induced a two-fold higher Th1 (T helper type 1) expansion and four-fold higher Th17 expansion compared to equimolar mannitol treatment. Importantly, the high salt expanded CD4+T cells retained tumor-specificity, as demonstrated by higher in vitro cytotoxicity against Py230 breast cancer cells and reduced in vivo syngeneic tumor growth. Metabolic studies revealed that high salt treatment enhanced the glycolytic reserve and basal mitochondrial oxidation of CD4+T cells, suggesting a role of high salt in enhanced pro-growth anabolic metabolism needed for inflammatory differentiation. Mechanistic studies demonstrated that the high salt induced switch to the effector phenotype was mediated by tonicity-dependent transcription factor, TonEBP/NFAT5. Using a transgenic murine model, we demonstrated that CD4 specific TonEBP/NFAT5 knock out (CD4cre/creNFAT5flox/flox) abrogated the induction of the effector phenotype and anti-tumor efficiency of CD4+T cells following high salt treatment. Taken together, our data suggest that high salt-mediated ex vivo expansion of tumor-primed CD4+T cells could induce effective tumor specific anti-cancer responses, which may have a novel cell-based cancer immunotherapeutic application.
Collapse
Affiliation(s)
- Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA; (M.T.I.); (E.L.M.)
- Division of Pharmacology, Vanderbilt University, Nashville, TN 37212, USA
- Correspondence: ; Tel.: +1-615-963-5779; Fax: +1-615-963-5747
| | - Michael T. Ivy
- Department of Biological Sciences, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA; (M.T.I.); (E.L.M.)
| | - Elbert L. Myles
- Department of Biological Sciences, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA; (M.T.I.); (E.L.M.)
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Jeffrey C. Rathmell
- Department Pathology, Microbiology and Immunology, Vanderbilt University Medical Center North, Nashville, TN 37232, USA;
| | - Jens Titze
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore;
- Division of Nephrology, Duke University School of Medicine, 2 Genome Court, Durham, NC 27710, USA
| |
Collapse
|
12
|
Capatina AL, Lagos D, Brackenbury WJ. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Rev Physiol Biochem Pharmacol 2020; 183:1-43. [PMID: 32865696 DOI: 10.1007/112_2020_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.
Collapse
Affiliation(s)
| | - Dimitris Lagos
- Hull York Medical School, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
13
|
Morsy MA, El-Sheikh AAK, Ibrahim ARN, Venugopala KN, Kandeel M. In silico and in vitro identification of secoisolariciresinol as a re-sensitizer of P-glycoprotein-dependent doxorubicin-resistance NCI/ADR-RES cancer cells. PeerJ 2020; 8:e9163. [PMID: 32566390 PMCID: PMC7293189 DOI: 10.7717/peerj.9163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/18/2020] [Indexed: 12/27/2022] Open
Abstract
P-glycoprotein (P-gp) is one of the highly expressed cancer cell efflux transporters that cause the failure of chemotherapy. To reverse P-gp induced multidrug resistance, we employed a flaxseed-derived lignan; secoisolariciresinol (SECO) that acts as an inhibitor of breast cancer resistance protein; another efflux transporter that shares some substrate/inhibitor specificity with P-gp. Molecular dynamics (MD) simulation identified SECO as a possible P-gp inhibitor. Comparing root mean square deviation (RMSD) of P-gp bound with SECO with that bound to its standard inhibitor verapamil showed that fluctuations in RMSD were lower in P-gp bound to SECO demonstrating higher stability of the complex of P-gp with SECO. In addition, the superimposition of P-gp structures after MD simulation showed that the nucleotide-binding domains of P-gp bound to SECO undertook a more central closer position compared with that bound to verapamil. Using rhodamine efflux assay on NCI/ADR-RES cancer cells, SECO was confirmed as a P-gp inhibitor, where cells treated with 25 or 50 µM of SECO showed significantly higher fluorescence intensity compared to control. Using MTT assay, SECO alone showed dose-dependent cytotoxicity, where 25 or 50 µM of SECO caused significantly less NCI/ADR-RES cellular viability compared to control. Furthermore, when 50 µM of SECO was added to doxorubicin (DOX), an anticancer drug, SECO significantly enhanced DOX-induced cytotoxicity compared to DOX alone. The combination index calculated by CompuSyn software indicated synergism between DOX and SECO. Our results suggest SECO as a novel P-gp inhibitor that can re-sensitize cancer cells during DOX chemotherapy.
Collapse
Affiliation(s)
- Mohamed A Morsy
- Department of Pharmaceutical Sciences/College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Eastern Region, Saudi Arabia.,Department of Pharmacology/Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Azza A K El-Sheikh
- Department of Pharmacology/Faculty of Medicine, Minia University, El-Minia, Egypt.,Basic Health Sciences Department/Faculty of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed R N Ibrahim
- Department of Clinical Pharmacy/College of Pharmacy, King Khalid University, Abha, Saudi Arabia.,Department of Biochemistry/Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences/College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Eastern Region, Saudi Arabia.,Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Mahmoud Kandeel
- Department of Biomedical Sciences/College of Veterinary Medicine, King Faisal University, Al-Ahsa, Eastern Region, Saudi Arabia.,Department of Pharmacology/Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
14
|
Robinson K, Tiriveedhi V. Perplexing Role of P-Glycoprotein in Tumor Microenvironment. Front Oncol 2020; 10:265. [PMID: 32195185 PMCID: PMC7066112 DOI: 10.3389/fonc.2020.00265] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
Development of multidrug resistance (MDR) still remains a major obstacle to the long-term success of cancer therapy. P-glycoprotein (P-gp) is a well-identified membrane transporter with capability to efflux drug molecules out of the cancer cell leading to reduced efficiency of chemotherapy. Cancer cells upregulate P-gp expression as an adaptive response to evade chemotherapy mediated cell death. While several P-gp inhibitors have been discovered by in silico and pre-clinical studies, very few have successfully passed all phases of the clinical trials. Studies show that application of P-gp inhibitors in cancer therapy regimen following development of MDR achieved limited beneficial outcomes. While, the non-specific substrate binding to P-gp has made the drug-design a challenge, a bigger perplexing challenge comes from its role in tumor immunology. Expression of P-gp was noted immune cell phenotypes with apparently antagonistic functionality. Both pro-tumor MΦ2-macrophages and, anti-tumor NK-cell and Th17/CD4+T cell subsets have shown enhanced expression of P-gp. While drug based inhibition of P-gp in pro-tumor immune cell phenotypes could promote tumor elimination, however, it would not be a rational choice to exert inhibition of P-gp on anti-tumor immune cell phenotypes. This mutually exclusive paradigm of P-gp functionality requires a more comprehensive and detailed understanding of its role in tumor microenvironment with active interplay of cancer and immune cells in the tumor mileu. In this review, we focus on the current understanding of the role of P-gp in cancer cells and immune cells and finally attempt to highlight some caveats in the current understanding of its role in comprehensive tumor microenvironment along with challenges in the development of P-gp inhibitors toward anti-cancer therapy.
Collapse
Affiliation(s)
- Kianna Robinson
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
15
|
Huang HK, Lin YH, Chang HA, Lai YS, Chen YC, Huang SC, Chou CY, Chiu WT. Chemoresistant ovarian cancer enhances its migration abilities by increasing store-operated Ca 2+ entry-mediated turnover of focal adhesions. J Biomed Sci 2020; 27:36. [PMID: 32079527 PMCID: PMC7033940 DOI: 10.1186/s12929-020-00630-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/17/2020] [Indexed: 01/05/2023] Open
Abstract
Background Among gynecological cancers, ovarian carcinoma has the highest mortality rate, and chemoresistance is highly prevalent in this cancer. Therefore, novel strategies are required to improve its poor prognosis. Formation and disassembly of focal adhesions are regulated dynamically during cell migration, which plays an essential role in cancer metastasis. Metastasis is intricately linked with resistance to chemotherapy, but the molecular basis for this link is unknown. Methods Transwell migration and wound healing migration assays were used to analyze the migration ability of ovarian cancer cells. Real-time recordings by total internal reflection fluorescence microscope (TIRFM) were performed to assess the turnover of focal adhesions with fluorescence protein-tagged focal adhesion molecules. SOCE inhibitors were used to verify the effects of SOCE on focal adhesion dynamics, cell migration, and chemoresistance in chemoresistant cells. Results We found that mesenchymal-like chemoresistant IGROV1 ovarian cancer cells have higher migration properties because of their rapid regulation of focal adhesion dynamics through FAK, paxillin, vinculin, and talin. Focal adhesions in chemoresistant cells, they were smaller and exhibited strong adhesive force, which caused the cells to migrate rapidly. Store-operated Ca2+ entry (SOCE) regulates focal adhesion turnover, and cell polarization and migration. Herein, we compared SOCE upregulation in chemoresistant ovarian cancer cells to its parental cells. SOCE inhibitors attenuated the assembly and disassembly of focal adhesions significantly. Results of wound healing and transwell assays revealed that SOCE inhibitors decreased chemoresistant cell migration. Additionally, SOCE inhibitors combined with chemotherapeutic drugs could reverse ovarian cancer drug resistance. Conclusion Our findings describe the role of SOCE in chemoresistance-mediated focal adhesion turnover, cell migration, and viability. Consequently, SOCE might be a promising therapeutic target in epithelial ovarian cancer. Graphical abstract ![]()
Collapse
Affiliation(s)
- Ho-Kai Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Hsin Lin
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Heng-Ai Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chi Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Soon-Cen Huang
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Liouying Campus, Tainan, 736, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynecology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
16
|
Ovejero Paredes K, Díaz-García D, García-Almodóvar V, Lozano Chamizo L, Marciello M, Díaz-Sánchez M, Prashar S, Gómez-Ruiz S, Filice M. Multifunctional Silica-Based Nanoparticles with Controlled Release of Organotin Metallodrug for Targeted Theranosis of Breast Cancer. Cancers (Basel) 2020; 12:E187. [PMID: 31940937 PMCID: PMC7017138 DOI: 10.3390/cancers12010187] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Three different multifunctional nanosystems based on the tethering onto mesoporous silica nanoparticles (MSN) of different fragments such as an organotin-based cytotoxic compound Ph3Sn{SCH2CH2CH2Si(OMe)3} (MSN-AP-Sn), a folate fragment (MSN-AP-FA-Sn), and an enzyme-responsive peptide able to release the metallodrug only inside cancer cells (MSN-AP-FA-PEP-S-Sn), have been synthesized and fully characterized by applying physico-chemical techniques. After that, an in vitro deep determination of the therapeutic potential of the achieved multifunctional nanovectors was carried out. The results showed a high cytotoxic potential of the MSN-AP-FA-PEP-S-Sn material against triple negative breast cancer cell line (MDA-MB-231). Moreover, a dose-dependent metallodrug-related inhibitory effect on the migration mechanism of MDA-MB-231 tumor cells was shown. Subsequently, the organotin-functionalized nanosystems have been further modified with the NIR imaging agent Alexa Fluor 647 to give three different theranostic silica-based nanoplatforms, namely, MSN-AP-Sn-AX (AX-1), MSN-AP-FA-Sn-AX (AX-2), and MSN-AP-FA-PEP-S-Sn-AX (AX-3). Their in vivo potential as theranostic markers was further evaluated in a xenograft mouse model of human breast adenocarcinoma. Owing to the combination of the receptor-mediated site targeting and the specific fine-tuned release mechanism of the organotin metallodrug, the nanotheranostic drug MSN-AP-FA-PEP-S-Sn-AX (AX-3) has shown targeted diagnostic ability in combination with enhanced therapeutic activity by promoting the inhibition of tumor growth with reduced hepatic and renal toxicity upon the repeated administration of the multifunctional nanodrug.
Collapse
Affiliation(s)
- Karina Ovejero Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (K.O.P.); (V.G.-A.); (L.L.C.); (M.M.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Diana Díaz-García
- COMET-NANO Group. Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain; (D.D.-G.); (M.D.-S.); (S.P.)
| | - Victoria García-Almodóvar
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (K.O.P.); (V.G.-A.); (L.L.C.); (M.M.)
- COMET-NANO Group. Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain; (D.D.-G.); (M.D.-S.); (S.P.)
| | - Laura Lozano Chamizo
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (K.O.P.); (V.G.-A.); (L.L.C.); (M.M.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (K.O.P.); (V.G.-A.); (L.L.C.); (M.M.)
| | - Miguel Díaz-Sánchez
- COMET-NANO Group. Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain; (D.D.-G.); (M.D.-S.); (S.P.)
| | - Sanjiv Prashar
- COMET-NANO Group. Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain; (D.D.-G.); (M.D.-S.); (S.P.)
| | - Santiago Gómez-Ruiz
- COMET-NANO Group. Department of Biology and Geology, Physics and Inorganic Chemistry, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles (Madrid), Spain; (D.D.-G.); (M.D.-S.); (S.P.)
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; (K.O.P.); (V.G.-A.); (L.L.C.); (M.M.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| |
Collapse
|
17
|
O'Grady S, Morgan MP. Calcium transport and signalling in breast cancer: Functional and prognostic significance. Semin Cancer Biol 2019; 72:19-26. [PMID: 31866475 DOI: 10.1016/j.semcancer.2019.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/03/2023]
Abstract
Comprised of a complex network of numerous intertwining pathways, the Ca2+ signalling nexus is an essential mediator of many normal cellular activities. Like many other such functions, the normal physiological activity of Ca2+ signalling is frequently co-opted and reshaped in cases of breast cancer, creating a potent oncogenic drive within the affected cell population. Such modifications can occur within pathways mediating either Ca2+ import (e.g. TRP channels, ORAI-STIM1) or Ca2+ export (e.g. PMCA), indicating that both increases and decreases within cellular Ca2+ levels have the potential to increase the malignant potential of a cell. Increased understanding of these pathways may offer clinical benefit in terms of both prognosis and treatment; patient survival has been linked to expression levels of certain Ca2+ transport proteins, whilst selective targeting of these factors with novel anti-cancer agents has demonstrated a variety of anti-tumour effects in in vitro studies. In addition, the activity of several Ca2+ signalling pathways has been shown to influence chemotherapy response, suggesting that a synergistic approach coupling traditional chemotherapy with Ca2+ targeting agents may also improve patient outcome. As such, targeted modulation of these pathways represents a novel approach in precision medicine and breast cancer therapy.
Collapse
Affiliation(s)
- Shane O'Grady
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Maria P Morgan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
18
|
Leslie TK, James AD, Zaccagna F, Grist JT, Deen S, Kennerley A, Riemer F, Kaggie JD, Gallagher FA, Gilbert FJ, Brackenbury WJ. Sodium homeostasis in the tumour microenvironment. Biochim Biophys Acta Rev Cancer 2019; 1872:188304. [PMID: 31348974 PMCID: PMC7115894 DOI: 10.1016/j.bbcan.2019.07.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
The concentration of sodium ions (Na+) is raised in solid tumours and can be measured at the cellular, tissue and patient levels. At the cellular level, the Na+ gradient across the membrane powers the transport of H+ ions and essential nutrients for normal activity. The maintenance of the Na+ gradient requires a large proportion of the cell's ATP. Na+ is a major contributor to the osmolarity of the tumour microenvironment, which affects cell volume and metabolism as well as immune function. Here, we review evidence indicating that Na+ handling is altered in tumours, explore our current understanding of the mechanisms that may underlie these alterations and consider the potential consequences for cancer progression. Dysregulated Na+ balance in tumours may open opportunities for new imaging biomarkers and re-purposing of drugs for treatment.
Collapse
Affiliation(s)
- Theresa K Leslie
- Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Andrew D James
- Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Surrin Deen
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Aneurin Kennerley
- York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK; Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Joshua D Kaggie
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
19
|
Adenylyl Cyclase Type 8 Overexpression Impairs Phosphorylation-Dependent Orai1 Inactivation and Promotes Migration in MDA-MB-231 Breast Cancer Cells. Cancers (Basel) 2019; 11:cancers11111624. [PMID: 31652779 PMCID: PMC6893434 DOI: 10.3390/cancers11111624] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
Orai1 plays a major role in store-operated Ca2+ entry (SOCE) in triple-negative breast cancer (TNBC) cells. This channel is inactivated via different mechanisms, including protein kinase C (PKC) and protein kinase A (PKA)-dependent phosphorylation at Ser-27 and Ser-30 or Ser-34, respectively, which shapes the Ca2+ responses to agonists. The Ca2+ calmodulin-activated adenylyl cyclase type 8 (AC8) was reported to interact directly with Orai1, thus mediating a dynamic interplay between the Ca2+- and cyclic adenosine monophosphate (cAMP)-dependent signaling pathways. Here, we show that the breast cancer cell lines MCF7 and MDA-MB-231 exhibit enhanced expression of Orai1 and AC8 as compared to the non-tumoral breast epithelial MCF10A cell line. In these cells, AC8 interacts with the Orai1α variant in a manner that is not regulated by Orai1 phosphorylation. AC8 knockdown in MDA-MB-231 cells, using two different small interfering RNAs (siRNAs), attenuates thapsigargin (TG)-induced Ca2+ entry and also Ca2+ influx mediated by co-expression of Orai1 and the Orai1-activating small fragment (OASF) of STIM1 (stromal interaction molecule-1). Conversely, AC8 overexpression enhances SOCE, as well as Ca2+ entry, in cells co-expressing Orai1 and OASF. In MDA-MB-231 cells, we found that AC8 overexpression reduces the Orai1 phosphoserine content, thus suggesting that AC8 interferes with Orai1 serine phosphorylation, which takes place at residues located in the AC8-binding site. Consistent with this, the subset of Orai1 associated with AC8 in naïve MDA-MB-231 cells is not phosphorylated in serine residues in contrast to the AC8-independent Orai1 subset. AC8 expression knockdown attenuates migration of MCF7 and MDA-MB-231 cells, while this maneuver has no effect in the MCF10A cell line, which is likely attributed to the low expression of AC8 in these cells. We found that AC8 is required for FAK (focal adhesion kinase) phosphorylation in MDA-MB-231 cells, which might explain its role in cell migration. Finally, we found that AC8 is required for TNBC cell proliferation. These findings indicate that overexpression of AC8 in breast cancer MDA-MB-231 cells impairs the phosphorylation-dependent Orai1 inactivation, a mechanism that might support the enhanced ability of these cells to migrate.
Collapse
|
20
|
Liang YL, Wu CH, Kang CY, Lin CN, Shih NY, Lin SH, Chen YC, Hsu KF. Downregulated Salt-inducible Kinase 3 Expression Promotes Chemoresistance in Serous Ovarian Cancer via the ATP-binding Cassette Protein ABCG2. J Cancer 2019; 10:6025-6036. [PMID: 31762812 PMCID: PMC6856590 DOI: 10.7150/jca.34886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/01/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Epithelial ovarian cancer (EOC) has a high tumor-associated mortality rate among gynecological cancers. Although CA125 is a well-studied biomarker for ovarian cancer, it is also elevated under numerous conditions, resulting in decreased specificity. Recently, we identified a novel tumor-associated antigen, salt-inducible kinase 3 (SIK3), during tumorigenesis in ovarian cancer. However, the association between SIK3 expression and patient outcomes in ovarian cancer remains unclear. Materials and Methods: We collected EOC samples from 204 patients and examined tumor SIK3 expression by immunohistochemistry (IHC) and CA125 expression in tumors and serum. The expression levels of SIK3 and CA125 were correlated with patient survival. SIK3 expression was silenced with SIK3-specific shRNAs to investigate the possible mechanisms related to chemoresistance in serous-type ovarian cancer cell lines OVCAR4 and SKOV3. Results: In advanced-stage serous ovarian cancer, patients with low SIK3 expression have poorer overall survival (OS) and progression-free survival (PFS) than patients with high SIK3 expression. Ovarian cancer cells with SIK3 knockdown display increased chemoresistance to Taxol plus cisplatin treatment, which is associated with the upregulation of the ABCG2 transporter. In addition, in serous ovarian cancer, SIK3 expression is inversely correlated to ABCG2 expression, and patients with low SIK3 and high ABCG2 expression have worse prognosis than patients with high SIK3 and low ABCG2 expression. Conclusion: Our results demonstrated that serous EOC patients with low SIK3 expression have poor prognosis, which is associated with chemoresistance mediated by ABCG2 upregulation. SIK3 and ABCG2 expression levels may be potential prognostic markers to predict the outcome in serous EOC patients.
Collapse
Affiliation(s)
- Yu-Ling Liang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Han Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Dental Technology, Shu Zen Junior College of Medicine and Management
| | - Chieh-Yi Kang
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Yongkang, Tainan, Taiwan
| | - Chang-Ni Lin
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Neng-Yao Shih
- National Institute of Cancer Research, National Health Research Institutes
| | - Sheng-Hsiang Lin
- Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yeong-Chang Chen
- National Institute of Cancer Research, National Health Research Institutes
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
21
|
Ion Channels: New Actors Playing in Chemotherapeutic Resistance. Cancers (Basel) 2019; 11:cancers11030376. [PMID: 30884858 PMCID: PMC6468599 DOI: 10.3390/cancers11030376] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/23/2023] Open
Abstract
In the battle against cancer cells, therapeutic modalities are drastically limited by intrinsic or acquired drug resistance. Resistance to therapy is not only common, but expected: if systemic agents used for cancer treatment are usually active at the beginning of therapy (i.e., 90% of primary breast cancers and 50% of metastases), about 30% of patients with early-stage breast cancer will have recurrent disease. Altered expression of ion channels is now considered as one of the hallmarks of cancer, and several ion channels have been linked to cancer cell resistance. While ion channels have been associated with cell death, apoptosis and even chemoresistance since the late 80s, the molecular mechanisms linking ion channel expression and/or function with chemotherapy have mostly emerged in the last ten years. In this review, we will highlight the relationships between ion channels and resistance to chemotherapy, with a special emphasis on the underlying molecular mechanisms.
Collapse
|
22
|
Jardin I, Lopez JJ, Salido GM, Rosado JA. Store-Operated Ca 2+ Entry in Breast Cancer Cells: Remodeling and Functional Role. Int J Mol Sci 2018; 19:ijms19124053. [PMID: 30558192 PMCID: PMC6321005 DOI: 10.3390/ijms19124053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the most common type of cancer in women. It is a heterogeneous disease that ranges from the less undifferentiated luminal A to the more aggressive basal or triple negative breast cancer molecular subtype. Ca2+ influx from the extracellular medium, but more specifically store-operated Ca2+ entry (SOCE), has been reported to play an important role in tumorigenesis and the maintenance of a variety of cancer hallmarks, including cell migration, proliferation, invasion or epithelial to mesenchymal transition. Breast cancer cells remodel the expression and functional role of the molecular components of SOCE. This review focuses on the functional role and remodeling of SOCE in breast cancer cells. The current studies suggest the need to deepen our understanding of SOCE in the biology of the different breast cancer subtypes in order to develop new and specific therapeutic strategies.
Collapse
Affiliation(s)
- Isaac Jardin
- Department of Physiology, (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Jose J Lopez
- Department of Physiology, (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Gines M Salido
- Department of Physiology, (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| | - Juan A Rosado
- Department of Physiology, (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|