1
|
Kubatka P, Koklesova L, Mazurakova A, Brockmueller A, Büsselberg D, Kello M, Shakibaei M. Cell plasticity modulation by flavonoids in resistant breast carcinoma targeting the nuclear factor kappa B signaling. Cancer Metastasis Rev 2024; 43:87-113. [PMID: 37789138 PMCID: PMC11016017 DOI: 10.1007/s10555-023-10134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
Cancer cell plasticity plays a crucial role in tumor initiation, progression, and metastasis and is implicated in the multiple cancer defense mechanisms associated with therapy resistance and therapy evasion. Cancer resistance represents one of the significant obstacles in the clinical management of cancer. Some reversal chemosensitizing agents have been developed to resolve this serious clinical problem, but they have not yet been proven applicable in oncological practice. Activated nuclear factor kappa B (NF-κB) is a frequently observed biomarker in chemoresistant breast cancer (BC). Therefore, it denotes an attractive cellular target to mitigate cancer resistance. We summarize that flavonoids represent an essential class of phytochemicals that act as significant regulators of NF-κB signaling and negatively affect the fundamental cellular processes contributing to acquired cell plasticity and drug resistance. In this regard, flavokawain A, icariin, alpinetin, genistein, wogonin, apigenin, oroxylin A, xanthohumol, EGCG, hesperidin, naringenin, orientin, luteolin, delphinidin, fisetin, norwogonin, curcumin, cardamonin, methyl gallate and catechin-3-O-gallate, ampelopsin, puerarin, hyperoside, baicalein, paratocarpin E, and kaempferol and also synthetic flavonoids such as LFG-500 and 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone have been reported to specifically interfere with the NF-κB pathway with complex signaling consequences in BC cells and could be potentially crucial in re-sensitizing unresponsive BC cases. The targeting NF-κB by above-mentioned flavonoids includes the modification of tumor microenvironment and epithelial-mesenchymal transition, growth factor receptor regulations, and modulations of specific pathways such as PI3K/AKT, MAP kinase/ERK, and Janus kinase/signal transduction in BC cells. Besides that, NF-κB signaling in BC cells modulated by flavonoids has also involved the regulation of ATP-binding cassette transporters, apoptosis, autophagy, cell cycle, and changes in the activity of cancer stem cells, oncogenes, or controlling of gene repair. The evaluation of conventional therapies in combination with plasticity-regulating/sensitizing agents offers new opportunities to make significant progress towards a complete cure for cancer.
Collapse
Affiliation(s)
- Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia.
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany.
| |
Collapse
|
2
|
Gonçalves TL, de Araújo LP, Pereira Ferrer V. Tamoxifen as a modulator of CXCL12-CXCR4-CXCR7 chemokine axis: A breast cancer and glioblastoma view. Cytokine 2023; 170:156344. [PMID: 37639844 DOI: 10.1016/j.cyto.2023.156344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
The chemokine stromal cell-derived-factor 1 (SDF)-1/CXCL12 acts by binding to its receptors, the CXC-4 chemokine receptor (CXCR4) and the CXC-7 chemokine receptor (CXCR7). The binding of CXCL12 to its receptors results in downstream signaling that leads to cell survival, proliferation and migration of tumor cells. CXCL12 and CXCR4 are highly expressed in breast cancer (BC) and glioblastoma (GBM) compared to normal cells. High expression of this chemokine axis correlates with increased therapy resistance and grade, tumor spread and poorer prognosis in these tumors. Tamoxifen (TMX) is a selective estrogen receptor modulator (SERM) that inhibits the expression of estrogen-regulated genes, including growth and angiogenic factors secreted by tumor cells. Additionally, TMX targets several proteins, such as protein kinase C (PKC), phospholipase C (PLC), P-glycoprotein (PgP), phosphatidylinositol-3-kinase (PI3K) and ion channels. This drug showed promising antitumor activity against both BC and GBM cells. In this review, we discuss the role of the CXCL12-CXCR4-CXCR7 chemokine axis in BC and GBM tumor biology and propose TMX as a potential modulator of this axis in these tumors. TMX modulates the CXCL12-CXCR4-CXCR7 axis in BC, however, there are no studies on this in GBM. We propose that studying this axis in GBM cells/patients treated with TMX might be beneficial for these patients. TMX inhibits important signaling pathways in these tumors and the activation of this chemokine axis is associated with increased therapy resistance.
Collapse
Affiliation(s)
- Thaynan Lopes Gonçalves
- Laboratory of Cell and Molecular Biology of Tumors, Department of Cell and Molecular Biology, Biology Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil; Postgraduate Program in Pathological Anatomy, Faculty of Medicine, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | - Luanna Prudencio de Araújo
- Laboratory of Cell and Molecular Biology of Tumors, Department of Cell and Molecular Biology, Biology Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Valéria Pereira Ferrer
- Laboratory of Cell and Molecular Biology of Tumors, Department of Cell and Molecular Biology, Biology Institute, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil; Postgraduate Program in Pathological Anatomy, Faculty of Medicine, Rio de Janeiro Federal University, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Collodet C, Blust K, Gkouma S, Ståhl E, Chen X, Hartman J, Hedhammar M. Development and characterization of a recombinant silk network for 3D culture of immortalized and fresh tumor-derived breast cancer cells. Bioeng Transl Med 2023; 8:e10537. [PMID: 37693069 PMCID: PMC10487315 DOI: 10.1002/btm2.10537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 09/12/2023] Open
Abstract
Traditional cancer models rely on 2D cell cultures or 3D spheroids, which fail to recapitulate cell-extracellular matrix (ECM) interactions, a key element of tumor development. Existing hydrogel-based 3D alternatives lack mechanical support for cell growth and often suffer from low reproducibility. Here we report a novel strategy to make 3D models of breast cancer using a tissue-like, well-defined network environment based on recombinant spider silk, functionalized with a cell adhesion motif from fibronectin (FN-silk). With this approach, the canonical cancer cells SK-BR-3, MCF-7, and MDA-MB-231, maintain their characteristic expression of markers (i.e., ERα, HER2, and PGR) while developing distinct morphology. Transcriptomic analyses demonstrate how culture in the FN-silk networks modulates the biological processes of cell adhesion and migration while affecting physiological events involved in malignancy, such as inflammation, remodeling of the ECM, and resistance to anticancer drugs. Finally, we show that integration in FN-silk networks promotes the viability of cells obtained from the superficial scraping of patients' breast tumors.
Collapse
Affiliation(s)
- Caterina Collodet
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| | - Kelly Blust
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| | - Savvini Gkouma
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| | - Emmy Ståhl
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| | - Xinsong Chen
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| | - Johan Hartman
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of Clinical Pathology and Cancer DiagnosticsKarolinska University HospitalStockholmSweden
| | - My Hedhammar
- Division of Protein TechnologySchool of Biotechnology, KTH Royal Institute of TechnologyStockholmSweden
| |
Collapse
|
4
|
Thakur B, Saha L, Bhatia A. Relative refractoriness of breast cancer cells to tumour necrosis factor-α induced necroptosis. Clin Exp Pharmacol Physiol 2022; 49:1294-1306. [PMID: 36054417 DOI: 10.1111/1440-1681.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 01/31/2023]
Abstract
Necroptosis, a recently identified programmed cell death pathway, has attracted attention as an alternative route to target apoptosis-resistant cancer cells. The status of the necroptosis pathway in different subtypes of breast cancer has not been well explored. Stimulating the cells by TNF-α can trigger cell survival or death depending on the combination of downstream players involved. In this work, we attempted to induce necroptosis in them using a combination of TNF-α and Z-VAD-FMK with and without chemotherapy. Cell viability, apoptosis, and necroptosis were assessed using MTT and Annexin-V/PI assays, respectively. Gene and protein expression was analysed by qPCR and immunophenotyping. Both the cell lines were resistant to induction of cell death by necroptosis. There was no enhancement in cell death when chemotherapeutic drugs were combined with necroptosis induction. Expression studies showed reduced translational expression of key necroptosis molecules like RIP kinases and MLKL in breast cancer cells compared to positive control cell line L929. Also, cell survival molecules were expressed more in MDA-MB-231 in contrast to death pathway molecules which were expressed more in T47D cells. In this work, the two breast cancer cell lines were observed to be resistant to TNF-α induced necroptosis with or without chemotherapy. Expression of key necroptosis players revealed relative insufficiency of the molecular machinery involved in the above pathway. In our opinion this may be the cause for resistance to necroptosis and novel strategies to upregulate these molecules need to be developed to sensitize the breast cancer cells towards cell death by necroptosis.
Collapse
Affiliation(s)
- Banita Thakur
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Lekha Saha
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
5
|
Morales-Valencia J, Lau L, Martí-Nin T, Ozerdem U, David G. Therapy-induced senescence promotes breast cancer cells plasticity by inducing Lipocalin-2 expression. Oncogene 2022; 41:4361-4370. [PMID: 35953598 PMCID: PMC9482949 DOI: 10.1038/s41388-022-02433-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 01/29/2023]
Abstract
The acquisition of novel detrimental cellular properties following exposure to cytotoxic drugs leads to aggressive and metastatic tumors that often translates into an incurable disease. While the bulk of the primary tumor is eliminated upon exposure to chemotherapeutic treatment, residual cancer cells and non-transformed cells within the host can engage a stable cell cycle exit program named senescence. Senescent cells secrete a distinct set of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP). Upon exposure to the SASP, cancer cells undergo cellular plasticity resulting in increased proliferation, migration and epithelial-to-mesenchymal transition. The molecular mechanisms by which the SASP regulates these pro-tumorigenic features are poorly understood. Here, we report that breast cancer cells exposed to the SASP strongly upregulate Lipocalin-2 (LCN2). Furthermore, we demonstrate that LCN2 is critical for SASP-induced increased migration in breast cancer cells, and its inactivation potentiates the response to chemotherapeutic treatment in mouse models of breast cancer. Finally, we show that neoadjuvant chemotherapy treatment leads to LCN2 upregulation in residual human breast tumors, and correlates with worse overall survival. These findings provide the foundation for targeting LCN2 as an adjuvant therapeutic approach to prevent the emergence of aggressive tumors following chemotherapy.
Collapse
Affiliation(s)
- Jorge Morales-Valencia
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA
- NYU Langone Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA
| | - Lena Lau
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Teresa Martí-Nin
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA
| | - Ugur Ozerdem
- Department of Pathology, New York University School of Medicine, NYU Langone Health, New York, NY, 10016, USA
| | - Gregory David
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, 10016, USA.
- NYU Langone Perlmutter Cancer Center, NYU Langone Health, New York, NY, 10016, USA.
- Department of Urology, New York University School of Medicine, NYU Langone Health, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Procopiou G, Jackson PJM, di Mascio D, Auer JL, Pepper C, Rahman KM, Fox KR, Thurston DE. DNA sequence-selective G-A cross-linking ADC payloads for use in solid tumour therapies. Commun Biol 2022; 5:741. [PMID: 35906376 PMCID: PMC9338023 DOI: 10.1038/s42003-022-03633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 06/24/2022] [Indexed: 11/11/2022] Open
Abstract
Antibody-Drug Conjugates (ADCs) are growing in importance for the treatment of both solid and haematological malignancies. There is a demand for new payloads with novel mechanisms of action that may offer enhanced therapeutic efficacy, especially in patients who develop resistance. We report here a class of Cyclopropabenzindole-Pyridinobenzodiazepine (CBI-PDD) DNA cross-linking payloads that simultaneously alkylate guanine (G) and adenine (A) bases in the DNA minor groove with a defined sequence selectivity. The lead payload, FGX8-46 (6), produces sequence-selective G-A cross-links and affords cytotoxicity in the low picomolar region across a panel of 11 human tumour cell lines. When conjugated to the antibody cetuximab at an average Drug-Antibody Ratio (DAR) of 2, an ADC is produced with significant antitumour activity at 1 mg/kg in a target-relevant human tumour xenograft mouse model with an unexpectedly high tolerability (i.e., no weight loss observed at doses as high as 45 mg/kg i.v., single dose). A class of Cyclopropabenzindole-Pyridinobenzodiazepine (CBI-PDD) DNA cross-linking payloads, used in Antibody-Drug Conjugates, alkylate guanine and adenine bases in the DNA minor groove with a defined sequence selectivity.
Collapse
Affiliation(s)
- George Procopiou
- Femtogenix, Lawes Open Innovation Hub, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Paul J M Jackson
- Femtogenix, Lawes Open Innovation Hub, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Daniella di Mascio
- School of Biological Sciences, Life Sciences Building B85, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
| | - Jennifer L Auer
- Femtogenix, Lawes Open Innovation Hub, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Chris Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Khondaker Miraz Rahman
- Femtogenix, Lawes Open Innovation Hub, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK.,School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Keith R Fox
- School of Biological Sciences, Life Sciences Building B85, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
| | - David E Thurston
- Femtogenix, Lawes Open Innovation Hub, Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK. .,School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
7
|
Naz F, Shi M, Sajid S, Yang Z, Yu C. Cancer stem cells: a major culprit of intra-tumor heterogeneity. Am J Cancer Res 2021; 11:5782-5811. [PMID: 35018226 PMCID: PMC8727794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023] Open
Abstract
Cancer is recognized as a preeminent factor of the world's mortality. Although various modalities have been designed to cure this life-threatening ailment, a significant impediment in the effective output of cancer treatment is heterogeneity. Cancer is characterized as a heterogeneous health disorder that comprises a distinct group of transformed cells to assist anomalous proliferation of affected cells. Cancer stem cells (CSCs) are a leading cause of cancer heterogeneity that is continually transformed by cellular extrinsic and intrinsic factors. They intensify neoplastic cells aggressiveness by strengthening their dissemination, relapse and therapy resistance. Considering this viewpoint, in this review article we have discussed some intrinsic (transcription factors, cell signaling pathways, genetic alterations, epigenetic modifications, non-coding RNAs (ncRNAs) and epitranscriptomics) and extrinsic factors (tumor microenvironment (TME)) that contribute to CSC heterogeneity and plasticity, which may help scientists to meddle these processes and eventually improve cancer research and management. Besides, the potential role of CSCs heterogeneity in establishing metastasis and therapy resistance has been articulated which signifies the importance of developing novel anticancer therapies to target CSCs along with targeting bulk tumor mass to achieve an effective output.
Collapse
Affiliation(s)
- Faiza Naz
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Mengran Shi
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Salvia Sajid
- Department of Biotechnology, Jinnah University for WomenKarachi 74600, Pakistan
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim UniversityAlar 843300, Xinjiang, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| |
Collapse
|
8
|
Suárez-Arriaga MC, Méndez-Tenorio A, Pérez-Koldenkova V, Fuentes-Pananá EM. Claudin-Low Breast Cancer Inflammatory Signatures Support Polarization of M1-Like Macrophages with Protumoral Activity. Cancers (Basel) 2021; 13:2248. [PMID: 34067089 PMCID: PMC8125772 DOI: 10.3390/cancers13092248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
We previously reported that triple-negative breast cancer (BRCA) cells overexpress the cytokines GM-CSF, G-CSF, MCP-1, and RANTES, and when monocytes were 3-D co-cultured with them, M1-like macrophages were generated with the ability to induce aggressive features in luminal BRCA cell lines. These include upregulation of mesenchymal and stemness markers and invasion. In this study, we stimulated peripheral blood monocytes with the four cytokines and confirmed their capacity to generate protumoral M1-like macrophages. Using the METABRIC BRCA database, we observed that GM-CSF, MCP-1, and RANTES are associated with triple-negative BRCA and reduced overall survival, particularly in patients under 55 years of age. We propose an extended M1-like macrophage proinflammatory signature connected with these three cytokines. We found that the extended M1-like macrophage signature coexists with monocyte/macrophage, Th1 immune response, and immunosuppressive signatures, and all are enriched in claudin-low BRCA samples, and correlate with reduced patient overall survival. Furthermore, we observed that all these signatures are also present in mesenchymal carcinomas of the colon (COAD) and bladder (BLCA). The claudin-low tumor subtype has an adverse clinical outcome and remains poorly understood. This study places M1 macrophages as potential protumoral drivers in already established cancers, and as potential contributors to claudin-low aggressiveness and poor prognosis.
Collapse
Affiliation(s)
- Mayra Cecilia Suárez-Arriaga
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
- Laboratorio de Biotecnología y Bioinformática Genómica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Alfonso Méndez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| |
Collapse
|
9
|
Ibrahim HIM, Ismail MB, Ammar RB, Ahmed EA. Thidiazuron suppresses breast cancer via targeting miR-132 and dysregulation of the PI3K-Akt signaling pathway mediated by the miR-202-5p-PTEN axis. Biochem Cell Biol 2020; 99:374-384. [PMID: 33103467 DOI: 10.1139/bcb-2020-0377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Chemo-resistance and metastasis are the most common causes of breast cancer recurrence and death. Thidiazuron (TDZ) is a plant growth regulator (phytohormone) whose biological effects on humans and animals has not yet been determined. In this study, we investigated the anticancer activity of this phytohormone on the drug resistant-triple negative breast cancer cell line MDA-MB-231. Treatment of the breast cancer cells with TDZ (1-50 μmol/L) caused more stressful environment and induced a significant increase in active caspase-positive cells. In addition, TDZ treatment (5 and 10 μmol/L) significantly attenuated the migration and the invasiveness of these highly metastatic cancer cells. Mechanistically, TDZ reduces cancer progression and invasiveness by targeting miR-202-5p, which stimulates the expression of phosphatase and tensin homolog (PTEN), the tumor suppressor that downregulates the PI3K-Akt signaling pathway. Treatment with TDZ significantly upregulates miRNA-132, the suppressor of breast cancer proliferation, which is also implicated in dysregulation of the TEN-Akt-NFκB signaling pathway. Interestingly, our molecular docking analysis revealed a potential non-covalent interaction between TDZ and Akt, PTEN, and PI3K. These findings suggest that TDZ suppresses breast cancer metastasis by targeting miRNA-132, the miR-202-5p-PTEN axis, and the PI3K-Akt signaling pathway downstream.
Collapse
Affiliation(s)
- Hairul-Islam Mohamed Ibrahim
- Biological Sciences Department, College of Science, King Faisal University, Hofouf, Alhasa 31982, Saudi Arabia.,Pondicherry Centre for Biological Science and Educational Trust, Pondicherry 605005, India
| | - Mohammad Bani Ismail
- Biological Sciences Department, College of Science, King Faisal University, Hofouf, Alhasa 31982, Saudi Arabia
| | - Rebai Ben Ammar
- Biological Sciences Department, College of Science, King Faisal University, Hofouf, Alhasa 31982, Saudi Arabia.,Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, PBOX 901, Hammam-lif 2050, Tunisia
| | - Emad A Ahmed
- Biological Sciences Department, College of Science, King Faisal University, Hofouf, Alhasa 31982, Saudi Arabia.,Laboratory of Molecular Physiology, Zoology Department, Faculty of Science, Assiut University, Egypt
| |
Collapse
|
10
|
Enciso J, Mendoza L, Álvarez-Buylla ER, Pelayo R. Dynamical modeling predicts an inflammation-inducible CXCR7+ B cell precursor with potential implications in lymphoid blockage pathologies. PeerJ 2020; 8:e9902. [PMID: 33062419 PMCID: PMC7531334 DOI: 10.7717/peerj.9902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background The blockage at the early B lymphoid cell development pathway within the bone marrow is tightly associated with hematopoietic and immune diseases, where the disruption of basal regulatory networks prevents the continuous replenishment of functional B cells. Dynamic computational models may be instrumental for the comprehensive understanding of mechanisms underlying complex differentiation processes and provide novel prediction/intervention platforms to reinvigorate the system. Methods By reconstructing a three-module regulatory network including genetic transcription, intracellular transduction, and microenvironment communication, we have investigated the early B lineage cell fate decisions in normal and pathological settings. The early B cell differentiation network was simulated as a Boolean model and then transformed, using fuzzy logic, to a continuous model. We tested null and overexpression mutants to analyze the emergent behavior of the network. Due to its importance in inflammation, we investigated the effect of NFkB induction at different early B cell differentiation stages. Results While the exhaustive synchronous and asynchronous simulation of the early B cell regulatory network (eBCRN) reproduced the configurations of the hematopoietic progenitors and early B lymphoid precursors of the pathway, its simulation as a continuous model with fuzzy logics suggested a transient IL-7R+ ProB-to-Pre-B subset expressing pre-BCR and a series of dominant B-cell transcriptional factors. This conspicuous differentiating cell population up-regulated CXCR7 and reduced CXCR4 and FoxO1 expression levels. Strikingly, constant but intermediate NFkB signaling at specific B cell differentiation stages allowed stabilization of an aberrant CXCR7+ pre-B like phenotype with apparent affinity to proliferative signals, while under constitutive overactivation of NFkB, such cell phenotype was aberrantly exacerbated from the earliest stage of common lymphoid progenitors. Our mutant models revealed an abnormal delay in the BCR assembly upon NFkB activation, concomitant to sustained Flt3 signaling, down-regulation of Ebf1, Irf4 and Pax5 genes transcription, and reduced Ig recombination, pointing to a potential lineage commitment blockage. Discussion For the first time, an inducible CXCR7hi B cell precursor endowed with the potential capability of shifting central lymphoid niches, is inferred by computational modeling. Its phenotype is compatible with that of leukemia-initiating cells and might be the foundation that bridges inflammation with blockage-related malignancies and a wide range of immunological diseases. Besides the predicted differentiation impairment, inflammation-inducible phenotypes open the possibility of newly formed niches colonized by the reported precursor. Thus, emergent bone marrow ecosystems are predicted following a pro-inflammatory induction, that may lead to hematopoietic instability associated to blockage pathologies.
Collapse
Affiliation(s)
- Jennifer Enciso
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, México.,Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, México
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | | | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico
| |
Collapse
|
11
|
Espinoza-Sánchez NA, Győrffy B, Fuentes-Pananá EM, Götte M. Differential impact of classical and non-canonical NF-κB pathway-related gene expression on the survival of breast cancer patients. J Cancer 2019; 10:5191-5211. [PMID: 31602271 PMCID: PMC6775609 DOI: 10.7150/jca.34302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a well-known driver of carcinogenesis and cancer progression, often attributed to the tumor microenvironment. However, tumor cells themselves are capable of secreting a variety of inflammatory molecules, leading to the activation of specific signaling pathways that promote tumor progression. The NF-κB signaling pathway is one of the most important connections between inflammation and tumorigenesis. NF-κB is a superfamily of transcription factors that plays an important role in several types of hematological and solid tumors, including breast cancer. However, the role of the NF-κB pathway in the survival of breast cancer patients is poorly studied. In this study, we analyzed and related the expression of both canonical and alternative NF-κB pathways and selected target genes with the relapse-free and overall survival of breast cancer patients. We used the public database Kaplan-Meier plotter (KMplot) which includes gene expression data and survival information of 3951 breast cancer patients. We found that the expression of IKKα was associated with poor relapse-free survival in patients with ER-positive tumors. Moreover, the expression of IL-8 and MMP-1 was associated with poor relapse-free and overall survival. In contrast, expression of IKKβ, p50, and p65 from the canonical pathway, and NIK and RELB from the alternative pathway correlated with better relapse-free survival also when the patients were classified by their hormonal and nodal status. Our study suggests that the expression of genes of the canonical and alternative NF-κB pathways is ultimately critical for tumor persistence. Understanding the communication between both pathways would help to find better therapeutic and prophylactic targets to prevent breast cancer progression and relapse.
Collapse
Affiliation(s)
- Nancy Adriana Espinoza-Sánchez
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, C.P. 06720, Ciudad de México, México
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, and Semmelweis University 2nd Dept. of Pediatrics, Budapest, Hungary
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, C.P. 06720, Ciudad de México, México
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
12
|
Ullah TR. The role of CXCR4 in multiple myeloma: Cells' journey from bone marrow to beyond. J Bone Oncol 2019; 17:100253. [PMID: 31372333 PMCID: PMC6658931 DOI: 10.1016/j.jbo.2019.100253] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
CXCR4 is a pleiotropic chemokine receptor which acts through its ligand CXCL12 to regulate diverse physiological processes. CXCR4/CXCL12 axis plays a pivotal role in proliferation, invasion, dissemination and drug resistance in multiple myeloma (MM). Apart from its role in homing, CXCR4 also affects MM cell mobilization and egression out of the bone marrow (BM) which is correlated with distant organ metastasis. Aberrant CXCR4 expression pattern is associated with osteoclastogenesis and tumor growth in MM through its cross talk with various important cell signalling pathways. A deeper insight into understanding of CXCR4 mediated signalling pathways and its role in MM is essential to identify potential therapeutic interventions. The current therapeutic focus is on disrupting the interaction of MM cells with its protective tumor microenvironment where CXCR4 axis plays an essential role. There are still multiple challenges that need to be overcome to target CXCR4 axis more efficiently and to identify novel combination therapies with existing strategies. This review highlights the role of CXCR4 along with its significant interacting partners as a mediator of MM pathogenesis and summarizes the targeted therapies carried out so far.
Collapse
Key Words
- AMC, Angiogenic monomuclear cells
- BM, Bone marrow
- BMSC, Bone marrow stromal cells
- CAM-DR, Cell adhesion‐mediated drug resistance
- CCR–CC, Chemokine receptor
- CCX–CKR, Chemo Centryx–chemokine receptor
- CD4, Cluster of differentiation 4
- CL—CC, Chemokine ligand
- CNS, Central nervous system
- CSCs, Cancer stem cells
- CTAP-III, Connective tissue-activating peptide-III
- CXCL, CXC chemokine ligand
- CXCR, CXC chemokine receptor
- EGF, Epidermal growth factor
- EMD, Extramedullary disease
- EPC, Endothelial progenitor cells
- EPI, Endogenous peptide inhibitor
- ERK, Extracellular signal related kinase
- FGF, Fibroblast growth factor
- G-CSF, Granulocyte colony-stimulating factor
- GPCRs, G protein-coupled chemokine receptors
- HCC, Hepatocellular carcinoma
- HD, Hodgkin's disease
- HGF, Hepatocyte growth factor
- HIF1α, Hypoxia-inducible factor-1 alpha
- HIV, Human Immunodeficiency Virus
- HMGB1, High Mobility Group Box 1
- HPV, Human papillomavirus
- HSC, Hematopoietic stem cells
- IGF, Insulin-like growth factor
- JAK/STAT, Janus Kinase signal transducer and activator of transcription
- JAM-A, Junctional adhesion molecule-A
- JNK, Jun N-terminal kinase
- MAPK, Mitogen Activated Protein Kinase
- MIF, Macrophage migration inhibitory factor
- MM, Multiple myeloma
- MMP, Matrix metalloproteinases
- MRD, Minimal residual disease
- NHL, Non-Hodgkin's lymphoma
- OCL, Octeoclast
- OPG, Osteoprotegerin
- PI3K, phosphoinositide-3 kinase
- PKA, protein kinase A
- PKC, Protein kinase C
- PLC, Phospholipase C
- Pim, Proviral Integrations of Moloney virus
- RANKL, Receptor activator of nuclear factor kappa-Β ligand
- RRMM, Relapsed/refractory multiple myeloma
- SFM-DR, Soluble factor mediated drug resistance
- VEGF, Vascular endothelial growth factor
- VHL, Von Hippel-Lindau
- WHIM, Warts, Hypogammaglobulinemia, Infections, and Myelokathexis
- WM, Waldenström macroglobulinemia
Collapse
|