1
|
Calabrese V, Osakabe N, Siracusa R, Modafferi S, Di Paola R, Cuzzocrea S, Jacob UM, Fritsch T, Abdelhameed AS, Rashan L, Wenzel U, Franceschi C, Calabrese EJ. Transgenerational hormesis in healthy aging and antiaging medicine from bench to clinics: Role of food components. Mech Ageing Dev 2024; 220:111960. [PMID: 38971236 DOI: 10.1016/j.mad.2024.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Tokyo, Japan.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98166, Italy
| | | | | | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Luay Rashan
- Biodiversity Unit, Dhofar University, Salalah, Oman
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | | | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Araújo-Rodrigues H, Sousa AS, Relvas JB, Tavaria FK, Pintado M. An Overview on Mushroom Polysaccharides: Health-promoting Properties, Prebiotic and Gut Microbiota Modulation Effects and Structure-function Correlation. Carbohydr Polym 2024; 333:121978. [PMID: 38494231 DOI: 10.1016/j.carbpol.2024.121978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
Mushroom polysaccharides are recognized as "biological response modifiers". Besides several bioactivities, a growing interest in their prebiotic potential has been raised due to the gut microbiota modulation potential. This review comprehensively summarizes mushroom polysaccharides' biological properties, structure-function relationship, and underlying mechanisms. It provides a recent overview of the key findings in the field (2018-2024). Key findings and limitations on structure-function correlation are discussed. Although most studies focus on β-glucans or extracts, α-glucans and chitin have gained interest. Prebiotic capacity has been associated with α-glucans and chitin, while antimicrobial and wound healing potential is attributed to chitin. However, further research is of utmost importance. Human fecal fermentation is the most reported approach to assess prebiotic potential, indicating impacts on intestinal biological, mechanical, chemical and immunological barriers. Gut microbiota dysbiosis has been directly connected with intestinal, cardiovascular, metabolic, and neurological diseases. Concerning gut microbiota modulation, animal experiments have suggested proinflammatory cytokines reduction and redox balance re-establishment. Most literature focused on the anticancer and immunomodulatory potential. However, anti-inflammatory, antimicrobial, antiviral, antidiabetic, hypocholesterolemic, antilipidemic, antioxidant, and neuroprotective properties are discussed. A significant overview of the gaps and research directions in synergistic effects, underlying mechanisms, structure-function correlation, clinical trials and scientific data is also given.
Collapse
Affiliation(s)
- Helena Araújo-Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Program of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| | - Ana Sofia Sousa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - João Bettencourt Relvas
- Program of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.
| | - Freni K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
3
|
Di Paola R, Siracusa R, Fusco R, Ontario M, Cammilleri G, Pantano L, Scuto M, Tomasello M, Spanò S, Salinaro AT, Abdelhameed AS, Ferrantelli V, Arcidiacono A, Fritsch T, Lupo G, Signorile A, Maiolino L, Cuzzocrea S, Calabrese V. Redox Modulation of Meniere Disease by Coriolus versicolor Treatment, a Nutritional Mushroom Approach with Neuroprotective Potential. Curr Neuropharmacol 2024; 22:2079-2098. [PMID: 38073105 PMCID: PMC11333795 DOI: 10.2174/1570159x22666231206153936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Meniere's disease (MD) is a cochlear neurodegenerative disease. Hearing loss appears to be triggered by oxidative stress in the ganglion neurons of the inner ear. OBJECTIVE Here, we confirm the variation of markers of oxidative stress and inflammation in patients with Meniere and hypothesize that chronic treatment with Coriolus mushroom helps in the response to oxidative stress and acts on α-synuclein and on NF-kB-mediated inflammatory processes Methods: Markers of oxidative stress and inflammation were evaluated in MD patients with or without Coriolus treatment for 3 or 6 months. RESULTS MD patients had a small increase in Nrf2, HO-1, γ-GC, Hsp70, Trx and sirtuin-1, which were further increased by Coriolus treatment, especially after 6 months. Increased markers of oxidative damage, such as protein carbonyls, HNE, and ultraweak chemiluminescence, associated with a decrease in plasma GSH/GSSG ratio, were also observed in lymphocytes from MD patients. These parameters were restored to values similar to the baseline in patients treated with Coriolus for both 3 and 6 months. Furthermore, treated MD subjects showed decreased expression of α-synuclein, GFAP and Iba-1 proteins and modulation of the NF-kB pathway, which were impaired in MD patients. These changes were greatest in subjects taking supplements for 6 months. CONCLUSION Our study suggests MD as a model of cochlear neurodegenerative disease for the identification of potent inducers of the Nrf2-vitagene pathway, able to reduce the deleterious consequences associated with neurodegenerative damage, probably by indirectly acting on a-synuclein expression and on inflammatory processes NF-kB-mediated.
Collapse
Affiliation(s)
- Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marialaura Ontario
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Gaetano Cammilleri
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 390129 Palermo, Italy
| | - Licia Pantano
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 390129 Palermo, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Mario Tomasello
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Sestina Spanò
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Vincenzo Ferrantelli
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi 390129 Palermo, Italy
| | - Antonio Arcidiacono
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | | | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari, Aldo Moro, 70124, Bari, Italy
| | - Luigi Maiolino
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences; Department of Medical, Surgical Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| |
Collapse
|
4
|
Modafferi S, Lupo G, Tomasello M, Rampulla F, Ontario M, Scuto M, Salinaro AT, Arcidiacono A, Anfuso CD, Legmouz M, Azzaoui FZ, Palmeri A, Spano' S, Biamonte F, Cammilleri G, Fritsch T, Sidenkova A, Calabrese E, Wenzel U, Calabrese V. Antioxidants, Hormetic Nutrition, and Autism. Curr Neuropharmacol 2024; 22:1156-1168. [PMID: 37592816 PMCID: PMC10964097 DOI: 10.2174/1570159x21666230817085811] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 08/19/2023] Open
Abstract
Autism spectrum disorder (ASD) includes a heterogeneous group of complex neurodevelopmental disorders characterized by atypical behaviors with two core pathological manifestations: deficits in social interaction/communication and repetitive behaviors, which are associated with disturbed redox homeostasis. Modulation of cellular resilience mechanisms induced by low levels of stressors represents a novel approach for the development of therapeutic strategies, and in this context, neuroprotective effects of a wide range of polyphenol compounds have been demonstrated in several in vitro and in vivo studies and thoroughly reviewed. Mushrooms have been used in traditional medicine for many years and have been associated with a long list of therapeutic properties, including antitumor, immunomodulatory, antioxidant, antiviral, antibacterial, and hepatoprotective effects. Our recent studies have strikingly indicated the presence of polyphenols in nutritional mushrooms and demonstrated their protective effects in different models of neurodegenerative disorders in humans and rats. Although their therapeutic effects are exerted through multiple mechanisms, increasing attention is focusing on their capacity to induce endogenous defense systems by modulating cellular signaling processes such as nuclear factor erythroid 2 related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) pathways. Here we discuss the protective role of hormesis and its modulation by hormetic nutrients in ASD.
Collapse
Affiliation(s)
- Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Mario Tomasello
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Marialaura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Antonio Arcidiacono
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Maria Legmouz
- Department of Biologie, Laboratory of Biologie and Health, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Fatima-Zahra Azzaoui
- Department of Biologie, Laboratory of Biologie and Health, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Agostino Palmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Sestina Spano'
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Francesca Biamonte
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| | - Gaetano Cammilleri
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, via Gino Marinuzzi, 3 90129, Palermo, Italy
| | | | - Alena Sidenkova
- Department of Psychiatry, Ural State Medical University, Ekaterinburg, Russia
| | - Edward Calabrese
- Department of Environmental Health Sciences; Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, Germany
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, 950125, Italy
| |
Collapse
|
5
|
Silva AM, Preto M, Grosso C, Vieira M, Delerue-Matos C, Vasconcelos V, Reis M, Barros L, Martins R. Tracing the Path between Mushrooms and Alzheimer's Disease-A Literature Review. Molecules 2023; 28:5614. [PMID: 37513486 PMCID: PMC10384108 DOI: 10.3390/molecules28145614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is well-known among neurodegenerative diseases for the decline of cognitive functions, making overall daily tasks difficult or impossible. The disease prevails as the most common form of dementia and remains without a well-defined etiology. Being considered a disease of multifactorial origin, current targeted treatments have only managed to reduce or control symptoms, and to date, only two drugs are close to being able to halt its progression. For decades, natural compounds produced by living organisms have been at the forefront of research for new therapies. Mushrooms, which are well-known for their nutritional and medicinal properties, have also been studied for their potential use in the treatment of AD. Natural products derived from mushrooms have shown to be beneficial in several AD-related mechanisms, including the inhibition of acetylcholinesterase (AChE) and β-secretase (BACE 1); the prevention of amyloid beta (Aβ) aggregation and neurotoxicity; and the prevention of Tau expression and aggregation, as well as antioxidant and anti-inflammatory potential. Several studies in the literature relate mushrooms to neurodegenerative diseases. However, to the best of our knowledge, there is no publication that summarizes only AD data. In this context, this review aims to link the therapeutic potential of mushrooms to AD by compiling the anti-AD potential of different mushroom extracts or isolated compounds, targeting known AD-related mechanisms.
Collapse
Affiliation(s)
- Ana Margarida Silva
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (A.M.S.); (M.V.)
| | - Marco Preto
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Mónica Vieira
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (A.M.S.); (M.V.)
- TBIO—Centro de Investigação em Saúde Translacional e Biotecnologia Médica, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Vitor Vasconcelos
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Mariana Reis
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
| | - Lillian Barros
- CIMO, Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Rosário Martins
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
- CISA, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| |
Collapse
|
6
|
Pérez-Boyero D, Hernández-Pérez C, Valero J, Cabedo VL, Alonso JR, Díaz D, Weruaga E. The eNOS isoform exhibits increased expression and activation in the main olfactory bulb of nNOS knock-out mice. Front Cell Neurosci 2023; 17:1120836. [PMID: 37006472 PMCID: PMC10061100 DOI: 10.3389/fncel.2023.1120836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The main olfactory bulb (MOB) is a neural structure that processes olfactory information. Among the neurotransmitters present in the MOB, nitric oxide (NO) is particularly relevant as it performs a wide variety of functions. In this structure, NO is produced mainly by neuronal nitric oxide synthase (nNOS) but also by inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS). The MOB is considered a region with great plasticity and the different NOS also show great plasticity. Therefore, it could be considered that this plasticity could compensate for various dysfunctional and pathological alterations. We examined the possible plasticity of iNOS and eNOS in the MOB in the absence of nNOS. For this, wild-type and nNOS knock-out (nNOS-KO) mice were used. We assessed whether the absence of nNOS expression could affect the olfactory capacity of mice, followed by the analysis of the expression and distribution of the NOS isoforms using qPCR and immunofluorescence. NO production in MOB was examined using both the Griess and histochemical NADPH-diaphorase reactions. The results indicate nNOS-KO mice have reduced olfactory capacity. We observed that in the nNOS-KO animal, there is an increase both in the expression of eNOS and NADPH-diaphorase, but no apparent change in the level of NO generated in the MOB. It can be concluded that the level of eNOS in the MOB of nNOS-KO is related to the maintenance of normal levels of NO. Therefore, our findings suggest that nNOS could be essential for the proper functioning of the olfactory system.
Collapse
Affiliation(s)
- David Pérez-Boyero
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Carlos Hernández-Pérez
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jorge Valero
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Valeria Lorena Cabedo
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - José Ramón Alonso
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - David Díaz
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- *Correspondence: David Díaz,
| | - Eduardo Weruaga
- Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Eduardo Weruaga,
| |
Collapse
|
7
|
Martins-Macedo J, Salgado AJ, Gomes ED, Pinto L. Adult brain cytogenesis in the context of mood disorders: From neurogenesis to the emergent role of gliogenesis. Neurosci Biobehav Rev 2021; 131:411-428. [PMID: 34555383 DOI: 10.1016/j.neubiorev.2021.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022]
Abstract
Psychiatric disorders severely impact patients' lives. Motivational, cognitive and emotional deficits are the most common symptoms observed in these patients and no effective treatment is still available, either due to the adverse side effects or the low rate of efficacy of currently available drugs. Neurogenesis recovery has been one important focus in the treatment of psychiatric disorders, which undeniably contributes to the therapeutic action of antidepressants. However, glial plasticity is emerging as a new strategy to explore the deficits observed in mood disorders and the efficacy of therapeutic interventions. Thus, it is crucial to understand the mechanisms behind glio- and neurogenesis to better define treatments and preventive therapies, once adult cytogenesis is of pivotal importance to cognitive and emotional components of behavior, both in healthy and pathological contexts, including in psychiatric disorders. Here, we review the concepts and history of neuro- and gliogenesis, providing as well a reflection on the functional importance of cytogenesis in the context of disease.
Collapse
Affiliation(s)
- Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Eduardo D Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
8
|
Mushroom Nutrition as Preventative Healthcare in Sub-Saharan Africa. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The defining characteristics of the traditional Sub-Saharan Africa (SSA) cuisine have been the richness in indigenous foods and ingredients, herbs and spices, fermented foods and beverages, and healthy and whole ingredients used. It is crucial to safeguard the recognized benefits of mainstream traditional foods and ingredients, which gradually eroded in the last decades. Notwithstanding poverty, chronic hunger, malnutrition, and undernourishment in the region, traditional eating habits have been related to positive health outcomes and sustainability. The research prevailed dealing with food availability and access rather than the health, nutrition, and diet quality dimensions of food security based on what people consume per country and on the missing data related to nutrient composition of indigenous foods. As countries become more economically developed, they shift to “modern” occidental foods rich in saturated fats, salt, sugar, fizzy beverages, and sweeteners. As a result, there are increased incidences of previously unreported ailments due to an unbalanced diet. Protein-rich foods in dietary guidelines enhance only those of animal or plant sources, while rich protein sources such as mushrooms have been absent in these charts, even in developed countries. This article considers the valorization of traditional African foodstuffs and ingredients, enhancing the importance of establishing food-based dietary guidelines per country. The crux of this review highlights the potential of mushrooms, namely some underutilized in the SSA, which is the continent’s little exploited gold mine as one of the greatest untapped resources for feeding and providing income for Africa’s growing population, which could play a role in shielding Sub-Saharan Africans against the side effects of an unhealthy stylish diet.
Collapse
|
9
|
Scassellati C, Galoforo AC, Bonvicini C, Esposito C, Ricevuti G. Ozone: a natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Res Rev 2020; 63:101138. [PMID: 32810649 PMCID: PMC7428719 DOI: 10.1016/j.arr.2020.101138] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Systems medicine is founded on a mechanism-based approach and identifies in this way specific therapeutic targets. This approach has been applied for the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Nrf2 plays a central role in different pathologies including neurodegenerative disorders (NDs), which are characterized by common pathogenetic features. We here present wide scientific background indicating how a natural bioactive molecule with antioxidant/anti-apoptotic and pro-autophagy properties such as the ozone (O3) can represent a potential new strategy to delay neurodegeneration. Our hypothesis is based on different evidence demonstrating the interaction between O3 and Nrf2 system. Through a meta-analytic approach, we found a significant modulation of O3 on endogenous antioxidant-Nrf2 (p < 0.00001, Odd Ratio (OR) = 1.71 95%CI:1.17-2.25) and vitagene-Nrf2 systems (p < 0.00001, OR = 1.80 95%CI:1.05-2.55). O3 activates also immune, anti-inflammatory signalling, proteasome, releases growth factors, improves blood circulation, and has antimicrobial activity, with potential effects on gut microbiota. Thus, we provide a consistent rationale to implement future clinical studies to apply the oxygen-ozone (O2-O3) therapy in an early phase of aging decline, when it is still possible to intervene before to potentially develop a more severe neurodegenerative pathology. We suggest that O3 along with other antioxidants (polyphenols, mushrooms) implicated in the same Nrf2-mechanisms, can show neurogenic potential, providing evidence as new preventive strategies in aging and in NDs.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Antonio Carlo Galoforo
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy; University of Pavia, Pavia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, Italy; P.D. High School in Geriatrics, University of Pavia, Italy; St.Camillus Medical University, Rome, Italy
| |
Collapse
|
10
|
Amara I, Scuto M, Zappalà A, Ontario ML, Petralia A, Abid-Essefi S, Maiolino L, Signorile A, Trovato Salinaro A, Calabrese V. Hericium Erinaceus Prevents DEHP-Induced Mitochondrial Dysfunction and Apoptosis in PC12 Cells. Int J Mol Sci 2020; 21:ijms21062138. [PMID: 32244920 PMCID: PMC7139838 DOI: 10.3390/ijms21062138] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/26/2022] Open
Abstract
Hericium Erinaceus (HE) is a medicinal plant known to possess anticarcinogenic, antibiotic, and antioxidant activities. It has been shown to have a protective effect against ischemia-injury-induced neuronal cell death in rats. As an extending study, here we examined in pheochromocytoma 12 (PC12) cells, whether HE could exert a protective effect against oxidative stress and apoptosis induced by di(2-ethylhexyl)phthalate (DEHP), a plasticizer known to cause neurotoxicity. We demonstrated that pretreatment with HE significantly attenuated DEHP induced cell death. This protective effect may be attributed to its ability to reduce intracellular reactive oxygen species levels, preserving the activity of respiratory complexes and stabilizing the mitochondrial membrane potential. Additionally, HE pretreatment significantly modulated Nrf2 and Nrf2-dependent vitagenes expression, preventing the increase of pro-apoptotic and the decrease of anti-apoptotic markers. Collectively, our data provide evidence of new preventive nutritional strategy using HE against DEHP-induced apoptosis in PC12 cells.
Collapse
Affiliation(s)
- Ines Amara
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, Monastir 5019, Tunisia; (I.A.); (S.A.-E.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia n. 97, 95125 Catania, Italy; (M.S.); (A.Z.); (M.L.O.); (V.C.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia n. 97, 95125 Catania, Italy; (M.S.); (A.Z.); (M.L.O.); (V.C.)
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia n. 97, 95125 Catania, Italy; (M.S.); (A.Z.); (M.L.O.); (V.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia n. 97, 95125 Catania, Italy; (M.S.); (A.Z.); (M.L.O.); (V.C.)
| | - Antonio Petralia
- Department of Medical and Surgery Sciences, University of Catania, 95125, Via Santa Sofia, 78, 95123 Catania, Italy; (A.P.); (L.M.)
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Rue Avicenne, Monastir 5019, Tunisia; (I.A.); (S.A.-E.)
| | - Luigi Maiolino
- Department of Medical and Surgery Sciences, University of Catania, 95125, Via Santa Sofia, 78, 95123 Catania, Italy; (A.P.); (L.M.)
| | - Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Piazza G. Cesare, 11, 70124 Bari, Italy
- Correspondence: (A.S.); (A.T.S.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia n. 97, 95125 Catania, Italy; (M.S.); (A.Z.); (M.L.O.); (V.C.)
- Correspondence: (A.S.); (A.T.S.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia n. 97, 95125 Catania, Italy; (M.S.); (A.Z.); (M.L.O.); (V.C.)
| |
Collapse
|
11
|
Blagodatski A, Klimenko A, Jia L, Katanaev VL. Small Molecule Wnt Pathway Modulators from Natural Sources: History, State of the Art and Perspectives. Cells 2020; 9:cells9030589. [PMID: 32131438 PMCID: PMC7140537 DOI: 10.3390/cells9030589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt signaling is one of the major pathways known to regulate embryonic development, tissue renewal and regeneration in multicellular organisms. Dysregulations of the pathway are a common cause of several types of cancer and other diseases, such as osteoporosis and rheumatoid arthritis. This makes Wnt signaling an important therapeutic target. Small molecule activators and inhibitors of signaling pathways are important biomedical tools which allow one to harness signaling processes in the organism for therapeutic purposes in affordable and specific ways. Natural products are a well known source of biologically active small molecules with therapeutic potential. In this article, we provide an up-to-date overview of existing small molecule modulators of the Wnt pathway derived from natural products. In the first part of the review, we focus on Wnt pathway activators, which can be used for regenerative therapy in various tissues such as skin, bone, cartilage and the nervous system. The second part describes inhibitors of the pathway, which are desired agents for targeted therapies against different cancers. In each part, we pay specific attention to the mechanisms of action of the natural products, to the models on which they were investigated, and to the potential of different taxa to yield bioactive molecules capable of regulating the Wnt signaling.
Collapse
Affiliation(s)
- Artem Blagodatski
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Correspondence: (A.B.); (V.L.K.)
| | - Antonina Klimenko
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Vladimir L. Katanaev
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: (A.B.); (V.L.K.)
| |
Collapse
|
12
|
Scuto M, Di Mauro P, Ontario ML, Amato C, Modafferi S, Ciavardelli D, Trovato Salinaro A, Maiolino L, Calabrese V. Nutritional Mushroom Treatment in Meniere's Disease with Coriolus versicolor: A Rationale for Therapeutic Intervention in Neuroinflammation and Antineurodegeneration. Int J Mol Sci 2019; 21:E284. [PMID: 31906226 PMCID: PMC6981469 DOI: 10.3390/ijms21010284] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022] Open
Abstract
Meniere's disease (MD) represents a clinical syndrome characterized by episodes of spontaneous vertigo, associated with fluctuating, low to medium frequencies sensorineural hearing loss (SNHL), tinnitus, and aural fullness affecting one or both ears. To date, the cause of MD remains substantially unknown, despite increasing evidence suggesting that oxidative stress and neuroinflammation may be central to the development of endolymphatic hydrops and consequent otholitic degeneration and displacement in the reuniting duct, thus originating the otolithic crisis from vestibular otolithic organs utricle or saccule. As a starting point to withstand pathological consequences, cellular pathways conferring protection against oxidative stress, such as vitagenes, are also induced, but at a level not sufficient to prevent full neuroprotection, which can be reinforced by exogenous nutritional approaches. One emerging strategy is supplementation with mushrooms. Mushroom preparations, used in traditional medicine for thousands of years, are endowed with various biological actions, including antioxidant, immunostimulatory, hepatoprotective, anticancer, as well as antiviral effects. For example, therapeutic polysaccharopeptides obtained from Coriolus versicolor are commercially well established. In this study, we examined the hypothesis that neurotoxic insult represents a critical primary mediator operating in MD pathogenesis, reflected by quantitative increases of markers of oxidative stress and cellular stress response in the peripheral blood of MD patients. We evaluated systemic oxidative stress and cellular stress response in MD patients in the absence and in the presence of treatment with a biomass preparation from Coriolus. Systemic oxidative stress was estimated by measuring, in plasma, protein carbonyls, hydroxynonenals (HNE), and ultraweak luminescence, as well as by lipidomics analysis of active biolipids, such as lipoxin A4 and F2-isoprostanes, whereas in lymphocytes we determined heat shock proteins 70 (Hsp72), heme oxygenase-1 (HO-1), thioredoxin (Trx), and γ-GC liase to evaluate the systemic cellular stress response. Increased levels of carbonyls, HNE, luminescence, and F2-isoprostanes were found in MD patients with respect to the MD plus Coriolus-treated group. This was paralleled by a significant (p < 0.01) induction, after Coriolus treatment, of vitagenes such as HO-1, Hsp70, Trx, sirtuin-1, and γ-GC liase in lymphocyte and by a significant (p < 0.05) increase in the plasma ratio-reduced glutathione (GSH) vs. oxidized glutathione (GSSG). In conclusion, patients affected by MD are under conditions of systemic oxidative stress, and the induction of vitagenes after mushroom supplementation indicates a maintained response to counteract intracellular pro-oxidant status. The present study also highlights the importance of investigating MD as a convenient model of cochlear neurodegenerative disease. Thus, searching innovative and more potent inducers of the vitagene system can allow the development of pharmacological strategies capable of enhancing the intrinsic reserve of vulnerable neurons, such as ganglion cells to maximize antidegenerative stress responses and thus providing neuroprotection.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica. Via Santa Sofia, 97, 95123 Catania, Italy; (M.S.); (M.L.O.); (S.M.); (A.T.S.)
| | - Paola Di Mauro
- Department of Medical and Surgery Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (P.D.M.); (C.A.); (V.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica. Via Santa Sofia, 97, 95123 Catania, Italy; (M.S.); (M.L.O.); (S.M.); (A.T.S.)
| | - Chiara Amato
- Department of Medical and Surgery Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (P.D.M.); (C.A.); (V.C.)
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica. Via Santa Sofia, 97, 95123 Catania, Italy; (M.S.); (M.L.O.); (S.M.); (A.T.S.)
| | - Domenico Ciavardelli
- School of Human and Scocial Science, “Kore” University of Enna, Via Salvatore Mazza 1, 94100 Enna, Italy;
- Centro Scienze dell’Invecchiamento e Medicina Traslazionale-CeSI-Met, via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica. Via Santa Sofia, 97, 95123 Catania, Italy; (M.S.); (M.L.O.); (S.M.); (A.T.S.)
| | - Luigi Maiolino
- Department of Medical and Surgery Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (P.D.M.); (C.A.); (V.C.)
| | - Vittorio Calabrese
- Department of Medical and Surgery Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (P.D.M.); (C.A.); (V.C.)
| |
Collapse
|