1
|
Umbayev B, Saliev T, Safarova (Yantsen) Y, Yermekova A, Olzhayev F, Bulanin D, Tsoy A, Askarova S. The Role of Cdc42 in the Insulin and Leptin Pathways Contributing to the Development of Age-Related Obesity. Nutrients 2023; 15:4964. [PMID: 38068822 PMCID: PMC10707920 DOI: 10.3390/nu15234964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Age-related obesity significantly increases the risk of chronic diseases such as type 2 diabetes, cardiovascular diseases, hypertension, and certain cancers. The insulin-leptin axis is crucial in understanding metabolic disturbances associated with age-related obesity. Rho GTPase Cdc42 is a member of the Rho family of GTPases that participates in many cellular processes including, but not limited to, regulation of actin cytoskeleton, vesicle trafficking, cell polarity, morphology, proliferation, motility, and migration. Cdc42 functions as an integral part of regulating insulin secretion and aging. Some novel roles for Cdc42 have also been recently identified in maintaining glucose metabolism, where Cdc42 is involved in controlling blood glucose levels in metabolically active tissues, including skeletal muscle, adipose tissue, pancreas, etc., which puts this protein in line with other critical regulators of glucose metabolism. Importantly, Cdc42 plays a vital role in cellular processes associated with the insulin and leptin signaling pathways, which are integral elements involved in obesity development if misregulated. Additionally, a change in Cdc42 activity may affect senescence, thus contributing to disorders associated with aging. This review explores the complex relationships among age-associated obesity, the insulin-leptin axis, and the Cdc42 signaling pathway. This article sheds light on the vast molecular web that supports metabolic dysregulation in aging people. In addition, it also discusses the potential therapeutic implications of the Cdc42 pathway to mitigate obesity since some new data suggest that inhibition of Cdc42 using antidiabetic drugs or antioxidants may promote weight loss in overweight or obese patients.
Collapse
Affiliation(s)
- Bauyrzhan Umbayev
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Timur Saliev
- S.D. Asfendiyarov Kazakh National Medical University, Almaty 050012, Kazakhstan;
| | - Yuliya Safarova (Yantsen)
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Aislu Yermekova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Farkhad Olzhayev
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Denis Bulanin
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Andrey Tsoy
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| | - Sholpan Askarova
- National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (Y.S.); (A.Y.); (F.O.); (A.T.); (S.A.)
| |
Collapse
|
2
|
Wang R, Huang R, Liu Y, Tamalunas A, Stief CG, Hennenberg M. Silencing of CDC42 inhibits contraction and growth-related functions in prostate stromal cells, which is mimicked by ML141. Life Sci 2023; 329:121928. [PMID: 37437651 DOI: 10.1016/j.lfs.2023.121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Prostate smooth muscle contraction and stromal growth may contribute to lower urinary tract symptoms suggestive of benign prostatic hyperplasia, but are incompletely understood. A role of the monomeric GTPase CDC42 for smooth muscle contraction and proliferation appears possible, but is unknown for the prostate. Here, we silenced CDC42 expression in prostate stromal cells (WPMY-1), and examined contractility, growth-related functions and responses to the presumed CDC42 inhibitor, ML141. METHODS WPMY-1 cells were transfected with scrambled or CDC42-specific siRNA, and characterized for GTPase activities, contraction, proliferation, colony formation, apoptosis, cell death and viability. Effects of ML141 were examined in cells with and without silencing. RESULTS CDC42 silencing was confirmed by reduced mRNA and protein expression, and reduced CDC42 activity. Silencing impaired contraction (23-47 %), actin organization (25 %), proliferation (17-63 %), colony formation and viability (64-89 %), and increased the percentage of dead cells (2.6-fold). ML141 mimicked the phenotype of silencing in scrambled siRNA-transfected controls, and in non-transfected WPMY-1 cells, including inhibition of contraction, proliferation, colony formation and viability, breakdown of actin organization and increased cell death. In CDC42-silenced cells, ML141 still affected phalloiding organization, proliferation and cell death, with effect sizes resembling controls without silencing. ML141 inhibited RhoA activity in CDC42-silenced cells, but not in cells without silencing. CONCLUSIONS CDC42 promotes contraction of prostate stromal cells, and drives stromal growth by CDC42-mediated proliferation and suppression of apoptosis-independent cell death. ML141 mimicks all effects of CDC42 silencing, but its specificity may be limited and depends on GTPase phenotypes of cells.
Collapse
Affiliation(s)
- Ruixiao Wang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Ru Huang
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Yuhan Liu
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Alexander Tamalunas
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Christan G Stief
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
3
|
Catalano L, Aminzadeh-Gohari S, Weber DD, Poupardin R, Stefan VE, Smiles WJ, Tevini J, Feichtinger RG, Derdak S, Bilban M, Bareswill S, Heimesaat MM, Kofler B. Triple Therapy with Metformin, Ketogenic Diet, and Metronomic Cyclophosphamide Reduced Tumor Growth in MYCN-Amplified Neuroblastoma Xenografts. Metabolites 2023; 13:910. [PMID: 37623854 PMCID: PMC10456943 DOI: 10.3390/metabo13080910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023] Open
Abstract
Neuroblastoma (NB) is a childhood cancer in which amplification of the MYCN gene is the most acknowledged marker of poor prognosis. MYCN-amplified NB cells rely on both glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) for energy production. Previously, we demonstrated that a ketogenic diet (KD) combined with metronomic cyclophosphamide (CP) delayed tumor growth in MYCN-amplified NB xenografts. The anti-diabetic drug metformin (MET) also targets complex I of the OXPHOS system. Therefore, MET-induced disruptions of mitochondrial respiration may enhance the anti-tumor effect of CP when combined with a KD. In this study, we found that MET decreased cell proliferation and mitochondrial respiration in MYCN-amplified NB cell lines, while the combination of KD, MET, and low-dose CP (triple therapy) also reduced tumor growth and improved survival in vivo in MYCN-amplified NB xenografts. Gene ontology enrichment analysis revealed that this triple therapy had the greatest effect on the transcription of genes involved in fatty acid ß-oxidation, which was supported by the increased protein expression of CPT1A, a key mitochondrial fatty acid transporter. We suspect that alterations to ß-oxidation alongside the inhibition of complex I may hamper mitochondrial energy production, thus explaining these augmented anti-tumor effects, suggesting that the combination of MET and KD is an effective adjuvant therapy to CP in MYCN-amplified NB xenografts.
Collapse
Affiliation(s)
- Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - Rodolphe Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Cell Therapy Institute, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Victoria E. Stefan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - William J. Smiles
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - Julia Tevini
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - René G. Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Bilban
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Bareswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, 12203 Berlin, Germany
| | - Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, 12203 Berlin, Germany
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (L.C.)
| |
Collapse
|
4
|
Zhang B, Ding J, Ma Z. ICP4-Associated Activation of Rap1b Facilitates Herpes Simplex Virus Type I (HSV-1) Infection in Human Corneal Epithelial Cells. Viruses 2023; 15:1457. [PMID: 37515145 PMCID: PMC10385634 DOI: 10.3390/v15071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The strong contribution of RAS-related protein 1b (Rap1b) to cytoskeleton remodeling determines intracellular and extracellular physiological activities, including the successful infection of viruses in permissive cells, but its role in the HSV-1 life cycle is still unclear. Here, we demonstrated that the HSV-1 immediate early (IE) gene ICP4 inhibits protein kinase A (PKA) phosphorylation to induce Rap1b-activation-mediated viral infection. Rap1b activation and membrane enrichment begin at the early stage of HSV-1 infection and remain active during the proliferation period of the virus. Treating the cells with Rap1b small interfering RNA (siRNA) showed a dose-dependent decrease in viral infection levels, but no dose-dependent increase was observed after Rap1b overexpression. Further investigation indicated that the suppression of Rap1b activation derives from phosphorylated PKA and Rap1b mutants with partial or complete prenylation instead of phosphorylation, which promoted viral infection in a dose-dependent manner. Furthermore, the PKA agonist Forskolin disturbed Rap1b activation in a dose-dependent manner, accompanied by a decreasing trend in viral infection. Moreover, the HSV-1 IE gene ICP4 induced PKA dephosphorylation, leading to continuous Rap1b activation, followed by cytoskeleton rearrangement induced by cell division control protein 42 (CDC42) and Ras-related C3 botulinum toxin substrate 1 (RAC1). These further stimulated membrane-triggered physiological processes favoring virus infection. Altogether, we show the significance of Rap1b during HSV-1 infection and uncover the viral infection mechanism determined by the posttranslational regulation of the viral ICP4 gene and Rap1b host protein.
Collapse
Affiliation(s)
- Beibei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Juntao Ding
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
5
|
Serter Kocoglu S, Sunay FB, Akkaya PN. Effects of Monensin and Rapamycin Combination Therapy on Tumor Growth and Apoptosis in a Xenograft Mouse Model of Neuroblastoma. Antibiotics (Basel) 2023; 12:995. [PMID: 37370314 DOI: 10.3390/antibiotics12060995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Neuroblastoma is the most common pediatric solid tumor originating from the neural crest. New treatment options are needed to improve treatment outcomes and the survival of patients with neuroblastoma. Monensin is an ionophore antibiotic with antiparasitic, antibacterial, and anticancer properties isolated from Streptomyces cinnamonensis. The aim of this study was to investigate the therapeutic effects of single and combined monensin and rapamycin treatments on mTOR (mammalian target of rapamycin) signaling pathway-mediated apoptosis and tumor growth in an SH-SY5Y neuroblastoma cell xenograft model. Control, monensin, rapamycin, and monensin + rapamycin groups were formed in the xenograft neuroblastoma model obtained from CD1 nude mice, and tumor volumes and animal weights were recorded throughout the treatment. In xenograft neuroblastoma tumor tissues, apoptosis was determined by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling) and cleaved-caspase 3 immunohistochemistry, and PI3K (phosphoinositide-3-kinase)/AKT/mTOR expression was determined by the immunohistochemistry and immunofluorescence methods. The combination of monensin and rapamycin was to reduce the growth of xenograft neuroblastoma tumor tissues, trigger apoptosis, and suppress the expression of PI3K/AKT/mTOR. A significant increase in apoptotic cell rate was demonstrated in the combination group, supported by cleaved-caspase 3 immunohistochemistry results. In addition, it was reported that the combination treatment regime triggered apoptosis by reducing the expression of phosphorylated PI3K/AKT/mTOR. Our preclinical results may be a precursor to develop new therapeutic approaches to treat neuroblastoma.
Collapse
Affiliation(s)
- Sema Serter Kocoglu
- Department of Histology and Embryology, Faculty of Medicine, Balikesir University, 10145 Balikesir, Türkiye
| | - Fatma Bahar Sunay
- Department of Histology and Embryology, Faculty of Medicine, Balikesir University, 10145 Balikesir, Türkiye
| | - Pakize Nur Akkaya
- Department of Histology and Embryology, Faculty of Medicine, Balikesir University, 10145 Balikesir, Türkiye
| |
Collapse
|
6
|
Lushchak O, Gospodaryov D, Strilbytska O, Bayliak M. Changing ROS, NAD and AMP: A path to longevity via mitochondrial therapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:157-196. [PMID: 37437977 DOI: 10.1016/bs.apcsb.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Lifespan of many organisms, from unicellular yeast to extremely complex human organism, strongly depends on the genetic background and environmental factors. Being among most influential target energy metabolism is affected by macronutrients, their caloric values, and peculiarities of catabolism. Mitochondria are central organelles that respond for energy metabolism in eukaryotic cells. Mitochondria generate reactive oxygen species (ROS), which are lifespan modifying metabolites and a kind of biological clock. Oxidized nicotinamide adenine dinucleotide (NAD+) and adenosine monophosphate (AMP) are important metabolic intermediates and molecules that trigger or inhibit several signaling pathways involved in gene silencing, nutrient allocation, and cell regeneration and programmed death. A part of NAD+ and AMP metabolism is tied to mitochondria. Using substances that able to target mitochondria, as well as allotopic expression of specific enzymes, are envisioned to be innovative approaches to prolong lifespan by modulation of ROS, NAD+, and AMP levels. Among substances, an anti-diabetic drug metformin is believed to increase NAD+ and AMP levels, indirectly influencing histone deacetylases, involved in gene silencing, and AMP-activated protein kinase, an energy sensor of cells. Mitochondrially targeted derivatives of ubiquinone were found to interact with ROS. A mitochondrially targeted non-proton-pumping NADH dehydrogenase may influence both ROS and NAD+ levels. Chapter describes putative how mitochondria-targeted drugs and NADH dehydrogenase extend lifespan, perspectives of creating drugs with similar properties and their usage as senotherapeutic pills are discussed in the chapter.
Collapse
Affiliation(s)
- Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.
| | - Dmytro Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Olha Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Maria Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
7
|
Dubey T, Chinnathambi S. Photodynamic treatment modulates various GTPase and cellular signalling pathways in Tauopathy. Small GTPases 2022; 13:183-195. [PMID: 34138681 PMCID: PMC9707546 DOI: 10.1080/21541248.2021.1940722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The application of photo-excited dyes for treatment is known as photodynamic therapy (PDT). PDT is known to target GTPase proteins in cells, which are the key proteins of diverse signalling cascades which ultimately modulate cell proliferation and death. Cytoskeletal proteins play critical roles in maintaining cell integrity and cell division. Whereas, it was also observed that in neuronal cells PDT modulated actin and tubulin resulting in increased neurite growth and filopodia. Recent studies supported the role of PDT in dissolving the extracellular amyloid beta aggregates and intracellular Tau aggregates, which indicated the potential role of PDT in neurodegeneration. The advancement in the field of PDT led to its clinical approval in treatment of cancers, brain tumour, and dermatological acne. Although several question need to be answered for application of PDT in neuronal cells, but the primary studies gave a hint that it can emerge as potential therapy in neural cells.
Collapse
Affiliation(s)
- Tushar Dubey
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| |
Collapse
|
8
|
Huang Q, Chai H, Wang S, Sun Y, Xu W. 0.5‑Gy X‑ray irradiation induces reorganization of cytoskeleton and differentiation of osteoblasts. Mol Med Rep 2021; 23:379. [PMID: 33760136 PMCID: PMC7986016 DOI: 10.3892/mmr.2021.12018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/29/2021] [Indexed: 12/02/2022] Open
Abstract
Osteoblasts are sensitive to ionizing radiation. The small GTPase RhoA and its effector Rho‑associated protein kinase (ROCK) are critical to several cellular functions, including cytoskeleton reorganization, cell survival, and cell differentiation. However, whether the RhoA/ROCK signaling pathway is involved in the regulation of osteoblast cytoskeleton reorganization and differentiation induced by low‑dose X‑ray irradiation remains to be determined. The aim of the present study was to investigate the role of the RhoA/ROCK signaling pathway in mediating differentiation of osteoblasts and reorganization of the cytoskeleton under low‑dose X‑ray irradiation. Osteoblasts were pretreated with the ROCK kinase‑specific inhibitor (Y‑27632) before exposure to low‑dose X‑ray irradiation. The changes of F‑actin in MC3T3 cells were observed at different time points following X‑ray irradiation. Cell Counting Kit‑8 assay, alkaline phosphatase activity, Alizarin red staining and western blotting were used to detect the proliferation and differentiation of osteoblasts after 0.5‑Gy X‑ray irradiation. In the present study, low‑dose X‑ray irradiation promoted the expression of genes associated with the cytoskeleton reorganization. Indeed, the results showed that, 0.5‑Gy X‑ray irradiation can induce reorganization of cytoskeleton and promote differentiation of osteoblasts through the RhoA/ROCK signaling pathway. Additionally, inhibiting ROCK activity blocked low‑dose X‑ray irradiation‑induced LIMK2 phosphorylation, stress fiber formation and cell differentiation. Thus, these results demonstrated the excitatory effects of low‑dose X‑ray irradiation on MC3T3‑E1 cells, including reorganization of the cytoskeleton and differentiation of osteoblasts.
Collapse
Affiliation(s)
- Qun Huang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| | - Hao Chai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Shendong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yongming Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
9
|
Kumar A, Belhaj M, DiPette DJ, Potts JD. A Novel Alginate-Based Delivery System for the Prevention and Treatment of Pressure-Overload Induced Heart Failure. Front Pharmacol 2021; 11:602952. [PMID: 33603665 PMCID: PMC7884831 DOI: 10.3389/fphar.2020.602952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Background: α-CGRP (alpha-calcitonin gene related peptide) is a cardioprotective neuropeptide. Our recent study demonstrated that the administration of native α-CGRP, using osmotic mini-pumps, protected against transverse aortic constriction (TAC) pressure-induced heart failure in mice. However, the short half-life of peptides and the non-applicability of osmotic pumps in humans limits the use of α-CGRP as a therapeutic agent for heart failure (HF). Here, we sought to comprehensively study a novel α-CGRP delivery system using alginate microcapsules to determine its bioavailability in vivo and to test for cardioprotective effects in HF mice. Methods: Native α-CGRP filled alginate microcapsules (200 µm diameter) were prepared using an electrospray method. The prepared alginate-α-CGRP microcapsules were incubated with rat cardiac H9c2 cells, mouse cardiac HL-1 cells, and human umbilical vein endothelial cells (HUVECs), and the cytotoxicity of the alginate-α-CGRP microcapsules was measured by a trypan-blue cell viability assay and a calcium dye fluorescent based assay. The efficacy of the alginate-α-CGRP microcapsules was tested in a TAC-pressure overload mouse model of heart failure. Male C57BL6 mice were divided into four groups: sham, sham-alginate-α-CGRP, TAC-only, and TAC-alginate-α-CGRP, and the TAC procedure was performed in the TAC-only and TAC-alginate-α-CGRP groups of mice to induce pressure-overload heart failure. After 2 or 15 days post-TAC, alginate-α-CGRP microcapsules (containing an α-CGRP dose of 6 mg/kg/mouse) were administered subcutaneously on alternate days, for 28 days, and echocardiography was performed weekly. After 28 days of peptide delivery, the mice were sacrificed and their hearts were collected for histological and biochemical analyses. Results: Our in vitro cell culture assays showed that alginate-α-CGRP microcapsules did not affect the viability of the cell lines tested. The alginate-α-CGRP microcapsules released their peptides for an extended period of time. Our echocardiography, biochemical, and histology data from HF mice demonstrated that the administration of alginate-α-CGRP microcapsules significantly improved all cardiac parameters examined in TAC-mice. When compared to sham mice, TAC significantly decreased cardiac functions (as determined by fraction shortening and ejection fraction) and markedly increased heart and lung weight, left ventricle (LV) cardiac cell size, cardiac apoptosis, and oxidative stress. In contrast, the administration of alginate-α-CGRP microcapsules significantly attenuated the increased heart and lung weight, LV cardiac cell size, apoptosis, and oxidative stress in TAC mice. Conclusion: Our results demonstrate that the encapsulation of α-CGRP in an alginate polymer is an effective strategy to improve peptide bioavailability in plasma and increase the duration of the therapeutic effect of the peptide throughout the treatment period. Furthermore, alginate mediates α-CGRP delivery, either prior to the onset or after the initiation of the symptom progression of pressure-overload, improves cardiac function, and protects hearts against pressure-induced HF.
Collapse
Affiliation(s)
- Ambrish Kumar
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Marwa Belhaj
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Donald J DiPette
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Jay D Potts
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
10
|
Bahmad HF, Elajami MK, El Zarif T, Bou-Gharios J, Abou-Antoun T, Abou-Kheir W. Drug repurposing towards targeting cancer stem cells in pediatric brain tumors. Cancer Metastasis Rev 2020; 39:127-148. [PMID: 31919619 DOI: 10.1007/s10555-019-09840-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the pediatric population, brain tumors represent the most commonly diagnosed solid neoplasms and the leading cause of cancer-related deaths globally. They include low-grade gliomas (LGGs), medulloblastomas (MBs), and other embryonal, ependymal, and neuroectodermal tumors. The mainstay of treatment for most brain tumors includes surgical intervention, radiation therapy, and chemotherapy. However, resistance to conventional therapy is widespread, which contributes to the high mortality rates reported and lack of improvement in patient survival despite advancement in therapeutic research. This has been attributed to the presence of a subpopulation of cells, known as cancer stem cells (CSCs), which reside within the tumor bulk and maintain self-renewal and recurrence potential of the tumor. An emerging promising approach that enables identifying novel therapeutic strategies to target CSCs and overcome therapy resistance is drug repurposing or repositioning. This is based on using previously approved drugs with known pharmacokinetic and pharmacodynamic characteristics for indications other than their traditional ones, like cancer. In this review, we provide a synopsis of the drug repurposing methodologies that have been used in pediatric brain tumors, and we argue how this selective compilation of approaches, with a focus on CSC targeting, could elevate drug repurposing to the next level.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Mohamad K Elajami
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Talal El Zarif
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Jolie Bou-Gharios
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Tamara Abou-Antoun
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos Campus, CHSC 6101, Byblos, Lebanon.
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon.
| |
Collapse
|
11
|
Kumar A, Supowit S, Potts JD, DiPette DJ. Alpha-calcitonin gene-related peptide prevents pressure-overload induced heart failure: role of apoptosis and oxidative stress. Physiol Rep 2020; 7:e14269. [PMID: 31724338 PMCID: PMC6854098 DOI: 10.14814/phy2.14269] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/10/2019] [Accepted: 09/29/2019] [Indexed: 11/24/2022] Open
Abstract
Alpha-calcitonin gene-related peptide (α-CGRP) is a 37-amino acid neuropeptide that plays an important protective role in modulating cardiovascular diseases. Deletion of the α-CGRP gene increases the vulnerability of the heart to pressure-induced heart failure and the administration of a modified α-CGRP agonist decreases this vulnerability. Systemic administration of α-CGRP decreases blood pressure in normotensive and hypertensive animals and humans. Here we examined the protective effect of long-term administration of native α-CGRP against pressure-overload heart failure and the likely mechanism(s) of its action. Transverse aortic constriction (TAC) was performed to induce pressure-overload heart failure in mice. We found that TAC significantly decreased left ventricular (LV) fractional shortening, ejection fraction, and α-CGRP content, and increased hypertrophy, dilation, and fibrosis compared to sham mice. Administration of α-CGRP-filled mini-osmotic pumps (4 mg/kg bwt/day) in TAC mice preserved cardiac function and LV α-CGRP levels, and reduced LV hypertrophy, dilation, and fibrosis to levels comparable to sham mice. Additionally, TAC pressure-overload significantly increased LV apoptosis and oxidative stress compared to the sham mice but these increases were prevented by α-CGRP administration. α-CGRP administration in TAC animals decreased LV AMPK phosphorylation levels and the expression of sirt1, both of which are regulatory markers of oxidative stress and energy metabolism. These results demonstrate that native α-CGRP is protective against pressure-overload induced heart failure. The mechanism of this cardio-protection is likely through the prevention of apoptosis and oxidative stress, possibly mediated by sirt1 and AMPK. Thus, α-CGRP is a potential therapeutic agent in preventing the progression to heart failure, and the cardio-protective action of α-CGRP is likely the result of a direct cellular effect; however, a partial vasodilatory blood pressure-dependent mechanism of α-CGRP cannot be excluded.
Collapse
Affiliation(s)
- Ambrish Kumar
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Scott Supowit
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Jay D Potts
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina
| | - Donald J DiPette
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
12
|
Aminzadeh-Gohari S, Feichtinger RG, Kofler B. Energy Metabolism and Metabolic Targeting of Neuroblastoma. NEUROBLASTOMA 2019:113-132. [DOI: 10.1016/b978-0-12-812005-7.00007-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Dammann K, Khare V, Coleman C, Berdel H, Gasche C. p-21 Activated Kinase as a Molecular Target for Chemoprevention in Diabetes. Geriatrics (Basel) 2018; 3:geriatrics3040073. [PMID: 31011108 PMCID: PMC6371191 DOI: 10.3390/geriatrics3040073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022] Open
Abstract
Hypothesis: Anti-diabetic drugs modulate p-21 activated kinase (PAK) signaling. Introduction: Type 2 diabetes mellitus (T2DM) is a chronic inflammatory disease associated with increased cancer risk. PAK signaling is implicated in cellular homeostasis when regulated, and cancer when unrestrained. Recent reports provided a role for PAK signaling in glucose homeostasis, but the role of PAKs in the pathogenesis of T2DM is unknown. Here, we performed a mini-meta-analysis to explore if anti-diabetic drugs modify PAK signaling pathways, and provide insight regarding modulation of these pathways, to potentially reduce diabetes-associated cancer risk. Methods: PAK interacting partners in T2DM were identified using the online STRING database. Correlation studies were performed via systematic literature review to understand the effect of anti-diabetic drugs on PAK signaling. A mini-meta-analysis correlated multiple clinical studies and revealed the overall clinical response rate and percentage of adverse events in piogliazone (n = 53) and metformin (n = 91) treated patients with PAK-associated diseases. Results: A total of 30 PAK interacting partners were identified (10: reduced beta-cell mass; 10: beta-cell dysfunction; 10: obesity-insulin resistance), which were highly associated with Wnt, and G-protein signaling. The anti-diabetic drug metformin activated signaling pathways upstream; whereas pioglitazone inhibited pathways downstream of PAK. Overall, clinical response upon pioglitazone treatment was 53%. Seventy-nine percent of pioglitazone and 75% of metformin treated patients had adverse events. Pioglitazone reduced molecular-PAK biomarkers of proliferation (Ki67 and CyclinD1), and metformin had the opposite effect. Conclusions: PAK signaling in T2DM likely involves Wnt and G-protein signaling, which may be altered by the anti-diabetic drugs metformin and pioglitazone. Apart from the therapeutic limitations of adverse events, pioglitazone may be promising in chemoprevention. However long-term multi-centered studies, which initiate pioglitazone treatment early will be required to fully assess the full potential of these drugs.
Collapse
Affiliation(s)
- Kyle Dammann
- Department of Clinical Medicine, Medical University of the Americas, Devens, MA 01434, USA.
| | - Vineeta Khare
- Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria.
| | - Clyde Coleman
- Department of Surgery, University of Kentucky HealthCare, Lexington, KY 40536, USA.
| | - Henrik Berdel
- Department of Acute Care and Trauma Surgery, University of Kentucky HealthCare, Lexington, KY 40536, USA.
| | - Christoph Gasche
- Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
14
|
Saif M, Ager EI, Field P, Lilischkis KJ. The role of cancer stem cells and the therapeutic potential of TRX-E-002-1 in ovarian cancer. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1508339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Muhammad Saif
- GI Oncology & Exp. Therapeutics, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - E. I. Ager
- Kazia Therapeutics, Three International Towers Level 24, Sydney, Australia
| | | | - K. J. Lilischkis
- Kazia Therapeutics, Three International Towers Level 24, Sydney, Australia
| |
Collapse
|
15
|
Chaker D, Mouawad C, Azar A, Quilliot D, Achkar I, Fajloun Z, Makdissy N. Inhibition of the RhoGTPase Cdc42 by ML141 enhances hepatocyte differentiation from human adipose-derived mesenchymal stem cells via the Wnt5a/PI3K/miR-122 pathway: impact of the age of the donor. Stem Cell Res Ther 2018; 9:167. [PMID: 29921325 PMCID: PMC6009972 DOI: 10.1186/s13287-018-0910-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/08/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022] Open
Abstract
Background Human adipose-derived mesenchymal stem cells (hADSCs) are promising cells that may promote hepatocyte differentiation (Hep-Dif) and improve liver function, but the involvement of Cdc42, a key small RhoGTPase which plays a crucial role in aging, is still not well established. We hypothesized that the inhibition of Cdc42 may rescue the hepatogenic potential of hADSCs derived from aged donors. Methods hADSCs isolated from 61 women of different ages were cultured for evaluation of the proliferation of cells, adherence, apoptosis, immunomodulation, immunophenotyping, multipotency, gene expression, and cell function during Hep-Dif. Inhibition of Cdc42 by ML141 was realized during two phases: initiation (days –2 to 14 (D–2/14)) from undifferentiated to hepatoblast-like cells, or maturation (days 14 to 28 (D14/28)) from undifferentiated to hepatocyte-like cells. Mechanistic insights of the Wnt(s)/MAPK/PI3K/miR-122 pathways were studied. Results Cdc42 activity in undifferentiated hADSCs showed an age-dependent significant increase in Cdc42-GTP correlated to a decrease in Cdc42GAP; the low potentials of cell proliferation, doubling, adherence, and immunomodulatory ability (proinflammatory over anti-inflammatory) contrary to the apoptotic index of the aged group were significantly reversed by ML141. Aged donor cells showed a decreased potential for Hep-Dif which was rescued by ML141 treatment, giving rise to mature and functional hepatocyte-like cells as assessed by hepatic gene expression, cytochrome activity, urea and albumin production, low-density lipoprotein (LDL) uptake, and glycogen storage. ML141-induced Hep-Dif showed an improvement in mesenchymal-epithelial transition, a switch from Wtn-3a/β-catenin to Wnt5a signaling, involvement of PI3K/PKB but not the MAPK (ERK/JNK/p38) pathway, induction of miR-122 expression, reinforcing the exosomes release and the production of albumin, and epigenetic changes. Inhibition of PI3K and miR-122 abolished completely the effects of ML141 indicating that inhibition of Cdc42 promotes the Hep-Dif through a Wnt5a/PI3K/miR-122/HNF4α/albumin/E-cadherin-positive action. The ML141(D–2/14) protocol had more pronounced effects when compared with ML141(D14/28); inhibition of DNA methylation in combination with ML141(D–2/14) showed more efficacy in rescuing the Hep-Dif of aged hADSCs. In addition to Hep-Dif, the multipotency of aged hADSC-treated ML141 was observed by rescuing the adipocyte and neural differentiation by inducing PPARγ/FABP4 and NeuN/O4 but inhibiting Pref-1 and GFAP, respectively. Conclusion ML141 has the potential to reverse the age-related aberrations in aged stem cells and promotes their hepatogenic differentiation. Selective inhibition of Cdc42 could be a potential target of drug therapy for aging and may give new insights on the improvement of Hep-Dif. Electronic supplementary material The online version of this article (10.1186/s13287-018-0910-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diana Chaker
- Lebanese University, Doctoral School for Sciences and Technology, Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and its Applications, Tripoli, Lebanon.,Reviva Regenerative Medicine Center, Human Genetic Center, Middle East Institute of Health Hospital, Bsalim, Lebanon.,Paris Saclay University, Doctoral School, Therapeutical Innovation, Inserm UMR935, Villejuif, France
| | | | - Albert Azar
- Reviva Regenerative Medicine Center, Human Genetic Center, Middle East Institute of Health Hospital, Bsalim, Lebanon
| | - Didier Quilliot
- Diabetologia-Endocrinology & Nutrition, CHRU Nancy, INSERM 954, University Henri Poincaré de Lorraine, Faculty of Medicine, Nancy, France
| | | | - Ziad Fajloun
- Lebanese University, Doctoral School for Sciences and Technology, Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and its Applications, Tripoli, Lebanon.,Lebanese University, Faculty of Sciences III, Department of Biology, Kobbe, Lebanon
| | - Nehman Makdissy
- Lebanese University, Doctoral School for Sciences and Technology, Laboratory of Applied Biotechnology, Azm Center for Research in Biotechnology and its Applications, Tripoli, Lebanon. .,Lebanese University, Faculty of Sciences III, Department of Biology, Kobbe, Lebanon.
| |
Collapse
|
16
|
Poli G, Cantini G, Armignacco R, Fucci R, Santi R, Canu L, Nesi G, Mannelli M, Luconi M. Metformin as a new anti-cancer drug in adrenocortical carcinoma. Oncotarget 2018; 7:49636-49648. [PMID: 27391065 PMCID: PMC5226535 DOI: 10.18632/oncotarget.10421] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/09/2016] [Indexed: 12/30/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare heterogeneous malignancy with poor prognosis. Since radical surgery is the only available treatment, more specific and effective drugs are urgently required. The anti-diabetic drug metformin has been associated with a decreased cancer prevalence and mortality in several solid tumors, prompting its possible use for ACC treatment. This paper evaluates the in vitro and in vivo anti-cancer effects of metformin using the ACC cell model H295R. Metformin treatment significantly reduces cell viability and proliferation in a dose- and time-dependent manner and associates with a significant inhibition of ERK1/2 and mTOR phosphorylation/activation, as well as with stimulation of AMPK activity. Metformin also triggers the apoptotic pathway, shown by the decreased expression of Bcl-2 and HSP27, HSP60 and HSP70, and enhanced membrane exposure of annexin V, resulting in activation of caspase-3 apoptotic effector. Metformin interferes with the proliferative autocrine loop of IGF2/IGF-1R, which supports adrenal cancer growth. Finally, in the ACC xenograft mouse model, obtained by subcutaneous injection of H295R cells, metformin intraperitoneal administration inhibits tumor growth, confirmed by the significant reduction of Ki67%. Our data suggest that metformin inhibits H295R cell growth both in vitro and in vivo. Further preclinical studies are necessary to validate the potential anti-cancer effect of metformin in patients affected by ACC.
Collapse
Affiliation(s)
- Giada Poli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Roberta Armignacco
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rossella Fucci
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Raffaella Santi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Letizia Canu
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gabriella Nesi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Massimo Mannelli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
17
|
Hu HF, Xu WW, Wang Y, Zheng CC, Zhang WX, Li B, He QY. Comparative Proteomics Analysis Identifies Cdc42-Cdc42BPA Signaling as Prognostic Biomarker and Therapeutic Target for Colon Cancer Invasion. J Proteome Res 2017; 17:265-275. [PMID: 29072916 DOI: 10.1021/acs.jproteome.7b00550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metastasis is one of the major causes of treatment failure in the patients with colon cancer. The aim of our study is to find key proteins and pathways that drive invasion and metastasis in colon cancer. Eight rounds of selection of cancer cells invading through matrigel-coated chamber were performed to obtain highly invasive colon cancer sublines HCT116-I8 and RKO-I8. Stable Isotope Labeling by Amino Acids in Cell Culture technology was used to identify the differently expressed proteins, and the proteomics data were analyzed by ingenuity pathway analysis. PAK1-PBD immunoprecipitation combined with Western blot were carried out to determine Cdc42 activity, and qRT-PCR and Western blot were used to determine gene expression. The functional role of Cdc42BPA and Cdc42 pathway in colon cancer invasion was studied by loss-of-function experiments including pharmacological blockade, siRNA knockdown, chamber invasion, and WST-1 assays. Human colon cancer tissue microarray was analyzed by immunohistochemistry for overexpression of Cdc42BPA and its correlation with clinicopathological parameters and patient survival outcomes. HCT116-I8 and RKO-I8 cells showed significantly stronger invasive potential as well as decreased E-cadherin and increased vimentin expressions compared with parental cells. The differently expressed proteins in I8 cells compared with parental cells were identified. Bioinformatics analysis of proteomics data suggested that Cdc42BPA protein and Cdc42 signaling pathway are important for colon cancer invasion, which was confirmed by experimental data showing upregulation of Cdc42BPA and higher expression of active GTP-bound form of Cdc42 in HCT116-I8 and RKO-I8 cells. Functionally, pharmacological and genetic blockade of Cdc42BPA and Cdc42 signaling markedly suppressed colon cancer cell invasion and reversed epithelial mesenchymal transition process. Furthermore, compared with adjacent normal tissues, Cdc42BPA expression was significantly higher in colon cancer tissues and further upregulated in metastatic tumors in lymph nodes. More importantly, Cdc42BPA expression was correlated with metastasis and poor survival of the patients with colon cancer. This study provides the first evidence that Cdc42BPA and Cdc42 signaling are important for colon cancer invasion, and Cdc42BPA has potential implications for colon cancer prognosis and treatment.
Collapse
Affiliation(s)
- Hui-Fang Hu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Wen Wen Xu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou 510632, China
| | - Yang Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Can-Can Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Wei-Xia Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| |
Collapse
|
18
|
Valencia WM, Palacio A, Tamariz L, Florez H. Metformin and ageing: improving ageing outcomes beyond glycaemic control. Diabetologia 2017; 60:1630-1638. [PMID: 28770328 PMCID: PMC5709209 DOI: 10.1007/s00125-017-4349-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
Abstract
In a world where the population is ageing, there is growing interest and demand for research evaluating strategies that address the ageing process. After 60 years of successful use of metformin in our pharmaceutical armamentarium, we are learning that, beyond improving glycaemic control, metformin may have additional mechanisms and pathways of action that need further study. Although, metformin's effect on clinical ageing outcomes may still be considered speculative, the findings from studies into cellular and animal models and from observational and pilot human studies support the existence of beneficial effects on ageing. At present, progress for human research, using randomised clinical trials to evaluate metformin's clinical impact, has just started. Here, we present a review on the ageing process and the mechanisms involved, and the role that metformin may have to counter these. We go on to discuss the upcoming large randomised clinical trials that may provide insight on the use of metformin for ageing outcomes beyond glycaemic control.
Collapse
Affiliation(s)
- Willy Marcos Valencia
- Geriatric Research Education and Clinical Center (GRECC), Miami VA Healthcare System, 1201 N.W. 16th Street, (11 GRC) CLC 207 A2, Miami, FL, 33125, USA.
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Ana Palacio
- Geriatric Research Education and Clinical Center (GRECC), Miami VA Healthcare System, 1201 N.W. 16th Street, (11 GRC) CLC 207 A2, Miami, FL, 33125, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Leonardo Tamariz
- Geriatric Research Education and Clinical Center (GRECC), Miami VA Healthcare System, 1201 N.W. 16th Street, (11 GRC) CLC 207 A2, Miami, FL, 33125, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hermes Florez
- Geriatric Research Education and Clinical Center (GRECC), Miami VA Healthcare System, 1201 N.W. 16th Street, (11 GRC) CLC 207 A2, Miami, FL, 33125, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
19
|
Lu J, Wang QH, Huang LH, Dong HY, Lin LJ, Tan JM. Correlation of CDC42 Activity with Cell Proliferation and Palmitate-Mediated Cell Death in Human Umbilical Cord Wharton's Jelly Derived Mesenchymal Stromal Cells. Stem Cells Dev 2017; 26:1283-1292. [PMID: 28548571 DOI: 10.1089/scd.2017.0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RHO GTPases regulate cell migration, cell-cycle progression, and cell survival in response to extracellular stimuli. However, the regulatory effects of RHO GTPases in mesenchymal stromal cells (MSCs) are unclear. Herein, we show that CDC42 acts as an essential factor in regulating cell proliferation and also takes part in lipotoxic effects of palmitate in human umbilical cord Wharton's jelly derived MSCs (hWJ-MSCs). Cultured human bone marrow, adipose tissue, and hWJ-MSC derived cells had varying pro-inflammatory cytokine secretion levels and cell death rates when treated by palmitate. Strikingly, the proliferation rate of these types of MSCs correlated with their sensitivity to palmitate. A glutathione-S-transferase pull-down assay demonstrated that hWJ-MSCs had the highest activation of CDC42, which was increased by palmitate treatment in a time-dependent manner. We demonstrated that palmitate-induced synthesis of pro-inflammatory cytokines and cell death was attenuated by shRNA against CDC42. In CDC42 depleted hWJ-MSCs, population-doubling levels were notably decreased, and phosphorylation of ERK1/2 and p38 MAPK was reduced. Our data therefore suggest a mechanistic role for CDC42 activity in hWJ-MSC proliferation and identified CDC42 activity as a promising pharmacological target for ameliorating lipotoxic cell dysfunction and death.
Collapse
Affiliation(s)
- Jun Lu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Qing-Hua Wang
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Liang-Hu Huang
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Hui-Yue Dong
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Ling-Jing Lin
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| | - Jian-Ming Tan
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/or Dongfang Hospital, Xiamen University , Fuzhou, China
| |
Collapse
|
20
|
RhoA inhibits the hypoxia-induced apoptosis and mitochondrial dysfunction in chondrocytes via positively regulating the CREB phosphorylation. Biosci Rep 2017; 37:BSR20160622. [PMID: 28254846 PMCID: PMC5398256 DOI: 10.1042/bsr20160622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 11/17/2022] Open
Abstract
Chondrocytes that are embedded within the growth plate or the intervertebral disc are sensitive to environmental stresses, such as inflammation and hypoxia. However, little is known about the molecular signalling pathways underlining the hypoxia-induced mitochondrial dysfunction and apoptosis in chondrocytes. In the present study, we firstly examined the hypoxia-induced apoptosis, mitochondrial dysfunction and the activation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) signalling in human chondrocyte cell line, C28/I2 and then investigated the regulatory role of RhoA, a well-recognized apoptosis suppressor, in such process, with gain-of-function strategy. Our results indicated that hypoxia induced apoptosis and inhibited CREB phosphprylation in chondrocytes, meanwhile, the dysfunctional mitochondria with up-regulated mitochondrial superoxide and reactive oxygen species (ROS) levels, whereas with a reduced mitochondrial membrane potential (MMP) and Complex IV activity were observed in the hypoxia-treated C28/I2 cells. However, the overexpressed RhoA blocked the hypoxia-mediated reduction in CREB phosphprylation and inhibited the apoptosis induction, along with an ameliorated mitochondrial function in the hypoxia-treated C28/I2 cells. In conclusion, the present study confirmed the reduced CREB phosphorylation, along with the apoptosis induction and mitochondrial dysfunction in the hypoxia-treated chondrocyte cells. And the overexpression of RhoA ameliorated the hypoxia-induced mitochondrial dysfunction and apoptosis via blocking the hypoxia-mediated reduction in CREB phosphorylation.
Collapse
|
21
|
Athreya AP, Kalari KR, Cairns J, Gaglio AJ, Wills QF, Niu N, Weinshilboum R, Iyer RK, Wang L. Model-based unsupervised learning informs metformin-induced cell-migration inhibition through an AMPK-independent mechanism in breast cancer. Oncotarget 2017; 8:27199-27215. [PMID: 28423712 PMCID: PMC5432329 DOI: 10.18632/oncotarget.16109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/18/2017] [Indexed: 11/25/2022] Open
Abstract
We demonstrate that model-based unsupervised learning can uniquely discriminate single-cell subpopulations by their gene expression distributions, which in turn allow us to identify specific genes for focused functional studies. This method was applied to MDA-MB-231 breast cancer cells treated with the antidiabetic drug metformin, which is being repurposed for treatment of triple-negative breast cancer. Unsupervised learning identified a cluster of metformin-treated cells characterized by a significant suppression of 230 genes (p-value < 2E-16). This analysis corroborates known studies of metformin action: a) pathway analysis indicated known mechanisms related to metformin action, including the citric acid (TCA) cycle, oxidative phosphorylation, and mitochondrial dysfunction (p-value < 1E-9); b) 70% of these 230 genes were functionally implicated in metformin response; c) among remaining lesser functionally-studied genes for metformin-response was CDC42, down-regulated in breast cancer treated with metformin. However, CDC42's mechanisms in metformin response remained unclear. Our functional studies showed that CDC42 was involved in metformin-induced inhibition of cell proliferation and cell migration mediated through an AMPK-independent mechanism. Our results points to 230 genes that might serve as metformin response signatures, which needs to be tested in patients treated with metformin and, further investigation of CDC42 and AMPK-independence's role in metformin's anticancer mechanisms.
Collapse
Affiliation(s)
- Arjun P. Athreya
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Krishna R. Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Junmei Cairns
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Alan J. Gaglio
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Quin F. Wills
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nifang Niu
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ravishankar K. Iyer
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
ROS Production and ERK Activity Are Involved in the Effects of d-β-Hydroxybutyrate and Metformin in a Glucose Deficient Condition. Int J Mol Sci 2017; 18:ijms18030674. [PMID: 28335557 PMCID: PMC5372684 DOI: 10.3390/ijms18030674] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/11/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Hypoglycemia, a complication of insulin or sulfonylurea therapy in diabetic patients, leads to brain damage. Furthermore, glucose replenishment following hypoglycemic coma induces neuronal cell death. In this study, we investigated the molecular mechanism underlying glucose deficiency-induced cytotoxicity and the protective effect of d-β-hydroxybutyrate (D-BHB) using SH-SY5Y cells. The cytotoxic mechanism of metformin under glucose deficiency was also examined. Cell viability under 1 mM glucose (glucose deficiency) was significantly decreased which was accompanied by increased production of reactive oxygen species (ROS) and decreased phosphorylation of extracellular signal-regulated kinase (ERK) and glycogen synthase 3 (GSK3β). ROS inhibitor reversed the glucose deficiency-induced cytotoxicity and restored the reduced phosphorylation of ERK and GSK3β. While metformin did not alter cell viability in normal glucose media, it further increased cell death and ROS production under glucose deficiency. However, D-BHB reversed cytotoxicity, ROS production, and the decrease in phosphorylation of ERK and GSK3β induced by the glucose deficiency. ERK inhibitor reversed the D-BHB-induced increase in cell viability under glucose deficiency, whereas GSK3β inhibitor did not restore glucose deficiency-induced cytotoxicity. Finally, the protective effect of D-BHB against glucose deficiency was confirmed in primary neuronal cells. We demonstrate that glucose deficiency-induced cytotoxicity is mediated by ERK inhibition through ROS production, which is attenuated by D-BHB and intensified by metformin.
Collapse
|
23
|
Interaction of the Small GTPase Cdc42 with Arginine Kinase Restricts White Spot Syndrome Virus in Shrimp. J Virol 2017; 91:JVI.01916-16. [PMID: 28031362 DOI: 10.1128/jvi.01916-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/16/2016] [Indexed: 12/24/2022] Open
Abstract
Many types of small GTPases are widely expressed in eukaryotes and have different functions. As a crucial member of the Rho GTPase family, Cdc42 serves a number of functions, such as regulating cell growth, migration, and cell movement. Several RNA viruses employ Cdc42-hijacking tactics in their target cell entry processes. However, the function of Cdc42 in shrimp antiviral immunity is not clear. In this study, we identified a Cdc42 protein in the kuruma shrimp (Marsupenaeus japonicus) and named it MjCdc42. MjCdc42 was upregulated in shrimp challenged by white spot syndrome virus (WSSV). The knockdown of MjCdc42 and injection of Cdc42 inhibitors increased the proliferation of WSSV. Further experiments determined that MjCdc42 interacted with an arginine kinase (MjAK). By analyzing the binding activity and enzyme activity of MjAK and its mutant, ΔMjAK, we found that MjAK could enhance the replication of WSSV in shrimp. MjAK interacted with the envelope protein VP26 of WSSV. An inhibitor of AK activity, quercetin, could impair the function of MjAK in WSSV replication. Further study demonstrated that the binding of MjCdc42 and MjAK depends on Cys271 of MjAK and suppresses the WSSV replication-promoting effect of MjAK. By interacting with the active site of MjAK and suppressing its enzyme activity, MjCdc42 inhibits WSSV replication in shrimp. Our results demonstrate a new function of Cdc42 in the cellular defense against viral infection in addition to the regulation of actin and phagocytosis, which has been reported in previous studies. IMPORTANCE The interaction of Cdc42 with arginine kinase plays a crucial role in the host defense against WSSV infection. This study identifies a new mechanism of Cdc42 in innate immunity and enriches the knowledge of the antiviral innate immunity of invertebrates.
Collapse
|
24
|
Bastola T, An RB, Kim YC, Kim J, Seo J. Cearoin Induces Autophagy, ERK Activation and Apoptosis via ROS Generation in SH-SY5Y Neuroblastoma Cells. Molecules 2017; 22:molecules22020242. [PMID: 28178193 PMCID: PMC6155915 DOI: 10.3390/molecules22020242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/26/2017] [Accepted: 02/02/2017] [Indexed: 11/25/2022] Open
Abstract
Neuroblastomas are the most common solid extracranial tumors in childhood. We investigated the anticancer effect of cearoin isolated from Dalbergia odorifera in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with various doses of cearoin. The viability was measured by MTT assay. DCFDA fluorescence assay and Griess assay were used for the measurement of intracellular reactive oxygen species (ROS) and nitric oxide (NO), respectively. Western blot analysis was performed to clarify the molecular pathway involved. Cearoin induced cell death in a dose-dependent manner. Cearoin increased the phosporylation of ERK, the conversion of LC3B-I to LC3B-II, decrease in Bcl2 expression, the activation of caspase-3, and the cleavage of PARP, indicating the induction of autophagy and apoptosis. Furthermore, cearoin treatment increased the production of ROS and NO. Co-treatment with the antioxidant N-acetylcysteine completely abolished cearoin-mediated autophagy, ERK activation and apoptosis, suggesting the critical role of ROS in cearoin-induced anticancer effects. Moreover, co-treatment with ERK inhibitor PD98059 partially reversed cearoin-induced cell death, indicating the involvement of ERK in cearoin anticancer effects. These data reveal that cearoin induces autophagy, ERK activation and apoptosis in neuroblastoma SH-SY5Y cells, which is mediated primarily by ROS generation, suggesting its therapeutic application for the treatment of neuroblastomas.
Collapse
Affiliation(s)
- Tonking Bastola
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 570-749, Korea.
| | - Ren-Bo An
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
- Laboratory of Natural Resources of Changbai Mountain & Functional Molecules Yanbian University, Ministry of Education, Yanji 133002, Jilin, China.
| | - Youn-Chul Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 570-749, Korea.
| | - Jaehyo Kim
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 570-749, Korea.
- Department of Meridian & Acupoint, College of Korean Medicine, Wonkwang University, Iksan 570-749, Korea.
| | - Jungwon Seo
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 570-749, Korea.
- Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 570-749, Korea.
| |
Collapse
|
25
|
PPAR Gamma in Neuroblastoma: The Translational Perspectives of Hypoglycemic Drugs. PPAR Res 2016; 2016:3038164. [PMID: 27799938 PMCID: PMC5069360 DOI: 10.1155/2016/3038164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma (NB) is the most common and aggressive pediatric cancer, characterized by a remarkable phenotypic diversity and high malignancy. The heterogeneous clinical behavior, ranging from spontaneous remission to fatal metastatic disease, is attributable to NB biology and genetics. Despite major advances in therapies, NB is still associated with a high morbidity and mortality. Thus, novel diagnostic, prognostic, and therapeutic approaches are required, mainly to improve treatment outcomes of high-risk NB patients. Among neuroepithelial cancers, NB is the most studied tumor as far as PPAR ligands are concerned. PPAR ligands are endowed with antitumoral effects, mainly acting on cancer stem cells, and constitute a possible add-on therapy to antiblastic drugs, in particular for NB with unfavourable prognosis. While discussing clinical background, this review will provide a synopsis of the major studies about PPAR expression in NB, focusing on the potential beneficial effects of hypoglycemic drugs, thiazolidinediones and metformin, to reduce the occurrence of relapses as well as tumor regrowth in NB patients.
Collapse
|
26
|
Cellular Stress and p53-Associated Apoptosis by Juniperus communis L. Berry Extract Treatment in the Human SH-SY5Y Neuroblastoma Cells. Int J Mol Sci 2016; 17:ijms17071113. [PMID: 27420050 PMCID: PMC4964488 DOI: 10.3390/ijms17071113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/19/2022] Open
Abstract
Plant phenolics have shown to activate apoptotic cell death in different tumourigenic cell lines. In this study, we evaluated the effects of juniper berry extract (Juniperus communis L.) on p53 protein, gene expression and DNA fragmentation in human neuroblastoma SH-SY5Y cells. In addition, we analyzed the phenolic composition of the extract. We found that juniper berry extract activated cellular relocalization of p53 and DNA fragmentation-dependent cell death. Differentially expressed genes between treated and non-treated cells were evaluated with the cDNA-RDA (representational difference analysis) method at the early time point of apoptotic process when p53 started to be activated and no caspase activity was detected. Twenty one overexpressed genes related to cellular stress, protein synthesis, cell survival and death were detected. Interestingly, they included endoplasmic reticulum (ER) stress inducer and sensor HSPA5 and other ER stress-related genes CALM2 and YKT6 indicating that ER stress response was involved in juniper berry extract mediated cell death. In composition analysis, we identified and quantified low concentrations of fifteen phenolic compounds. The main groups of them were flavones, flavonols, phenolic acids, flavanol and biflavonoid including glycosides of quercetin, apigenin, isoscutellarein and hypolaetin. It is suggested that juniper berry extract induced the p53-associated apoptosis through the potentiation and synergism by several phenolic compounds.
Collapse
|
27
|
Ueno S, Kimura T, Yamaga T, Kawada A, Ochiai T, Endou H, Sakurai H. Metformin enhances anti-tumor effect of L-type amino acid transporter 1 (LAT1) inhibitor. J Pharmacol Sci 2016; 131:110-7. [PMID: 27262901 DOI: 10.1016/j.jphs.2016.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/17/2016] [Accepted: 04/24/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In many cancer cells, L-type amino acid transporter 1 (LAT1) transports neutral amino acids with bulky side chain, which activate mammalian target of rapamycin (mTOR) to cause cell proliferation. An anti-diabetic drug, metformin, has been shown to activate AMP-activated protein kinase (AMPK), which leads to inhibition of mTOR. LAT1 inhibition in combination with metformin could result in more prominent suppression of mTOR activity. PURPOSE Anti-proliferative effect of a newly developed LAT1 specific inhibitor JPH203 in combination with metformin is evaluated in 2 head and neck cancer cell lines, Ca9-22 and HEp-2 cells and in nude mice inoculated with Ca9-22 cells. RESULTS AND DISCUSSION By MTT assay, 0.5 mM metformin inhibited proliferation of Ca9-22 cells to 70% of control. In the presence of 100 μM JPH203, proliferation of Ca9-22 cells was inhibited to 60% of control. By combining these 2 drugs, proliferation of Ca9-22 was significantly inhibited to 40% of control. However, this regimen was not very effective against HEp-2 cells. This combination also suppressed in vivo growth of Ca9-22 cells in a xenotransplant model. A combination of anti-LAT1 drug with metformin may be an effective anti-proliferative therapy for certain subsets of cancers.
Collapse
Affiliation(s)
- Seiji Ueno
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan
| | - Toru Kimura
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan
| | - Takashi Yamaga
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan
| | | | | | - Hitoshi Endou
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan; J-Pharma Co. Ltd., Yokohama, Kanagawa, 230-0046, Japan
| | - Hiroyuki Sakurai
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
28
|
Othman EM, Oli RG, Arias-Loza PA, Kreissl MC, Stopper H. Metformin Protects Kidney Cells From Insulin-Mediated Genotoxicity In Vitro and in Male Zucker Diabetic Fatty Rats. Endocrinology 2016; 157:548-59. [PMID: 26636185 DOI: 10.1210/en.2015-1572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperinsulinemia is thought to enhance cancer risk. A possible mechanism is induction of oxidative stress and DNA damage by insulin, Here, the effect of a combination of metformin with insulin was investigated in vitro and in vivo. The rationales for this were the reported antioxidative properties of metformin and the aim to gain further insights into the mechanisms responsible for protecting the genome from insulin-mediated oxidative stress and damage. The comet assay, a micronucleus frequency test, and a mammalian gene mutation assay were used to evaluate the DNA damage produced by insulin alone or in combination with metformin. For analysis of antioxidant activity, oxidative stress, and mitochondrial disturbances, the cell-free ferric reducing antioxidant power assay, the superoxide-sensitive dye dihydroethidium, and the mitochondrial membrane potential-sensitive dye 5,5',6,6'tetrachloro-1,1',3,3'-tetraethylbenzimidazol-carbocyanine iodide were applied. Accumulation of p53 and pAKT were analyzed. As an in vivo model, hyperinsulinemic Zucker diabetic fatty rats, additionally exposed to insulin during a hyperinsulinemic-euglycemic clamp, were treated with metformin. In the rat kidney samples, dihydroethidium staining, p53 and pAKT analysis, and quantification of the oxidized DNA base 8-oxo-7,8-dihydro-2'-deoxyguanosine were performed. Metformin did not show intrinsic antioxidant activity in the cell-free assay, but protected cultured cells from insulin-mediated oxidative stress, DNA damage, and mutation. Treatment of the rats with metformin protected their kidneys from oxidative stress and genomic damage induced by hyperinsulinemia. Metformin may protect patients from genomic damage induced by elevated insulin levels. This may support efforts to reduce the elevated cancer risk that is associated with hyperinsulinemia.
Collapse
Affiliation(s)
- Eman Maher Othman
- Institute of Pharmacology and Toxicology (E.M.O., R.G.O., H.S.), University of Würzburg, D-97078 Würzburg, Germany; Department of Analytical Chemistry (E.M.O.), Faculty of Pharmacy, University of El-Minia, 61519 Minia, Egypt; and Department of Nuclear Medicine (P.-A.A.-L., M.C.K.), University Hospital Würzburg, Würzburg 97080, Germany
| | - R G Oli
- Institute of Pharmacology and Toxicology (E.M.O., R.G.O., H.S.), University of Würzburg, D-97078 Würzburg, Germany; Department of Analytical Chemistry (E.M.O.), Faculty of Pharmacy, University of El-Minia, 61519 Minia, Egypt; and Department of Nuclear Medicine (P.-A.A.-L., M.C.K.), University Hospital Würzburg, Würzburg 97080, Germany
| | - Paula-Anahi Arias-Loza
- Institute of Pharmacology and Toxicology (E.M.O., R.G.O., H.S.), University of Würzburg, D-97078 Würzburg, Germany; Department of Analytical Chemistry (E.M.O.), Faculty of Pharmacy, University of El-Minia, 61519 Minia, Egypt; and Department of Nuclear Medicine (P.-A.A.-L., M.C.K.), University Hospital Würzburg, Würzburg 97080, Germany
| | - Michael C Kreissl
- Institute of Pharmacology and Toxicology (E.M.O., R.G.O., H.S.), University of Würzburg, D-97078 Würzburg, Germany; Department of Analytical Chemistry (E.M.O.), Faculty of Pharmacy, University of El-Minia, 61519 Minia, Egypt; and Department of Nuclear Medicine (P.-A.A.-L., M.C.K.), University Hospital Würzburg, Würzburg 97080, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology (E.M.O., R.G.O., H.S.), University of Würzburg, D-97078 Würzburg, Germany; Department of Analytical Chemistry (E.M.O.), Faculty of Pharmacy, University of El-Minia, 61519 Minia, Egypt; and Department of Nuclear Medicine (P.-A.A.-L., M.C.K.), University Hospital Würzburg, Würzburg 97080, Germany
| |
Collapse
|
29
|
Fest S, Soldati R, Christiansen NM, Zenclussen ML, Kilz J, Berger E, Starke S, Lode HN, Engel C, Zenclussen AC, Christiansen H. Targeting of heme oxygenase-1 as a novel immune regulator of neuroblastoma. Int J Cancer 2015; 138:2030-42. [PMID: 26595750 DOI: 10.1002/ijc.29933] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
Abstract
Heme oxygenase (HO)-1 catalyzes the degradation of cytotoxic heme into biliverdin and blocks antitumor immune responses, thus protecting cancer against host defense. Whether this scenario also applies to neuroblastoma (NB), the most common extracranial solid childhood tumor, is not known. Here, we demonstrate for the first time a prognostic relevance of HO-1 expression in samples from NB patients and show that targeting of HO-1 prevents both cancer resistance against cellular stress and immune escape in the syngeneic NXS2 A/J mouse model of NB. High HO-1 RNA expression in NB tissues emerged as unfavorable prognostic marker, in particular for patients older than 18 months as indicated by univariate as well as multivariate survival probability analyses including disease stage and MYCN status. On the basis of this observation we aimed to target HO-1 by systemic as well as tumor-specific zinc protoporphyrin-mediated HO-1 suppression in a syngeneic immunocompetent NB mouse model. This resulted in 50% reduction of primary tumor growth and a suppression of spontaneous liver metastases. Importantly, HO-1 inhibition abrogated immune cell paralysis affecting CD4 and CD8 T-effector cells. This in turn reverted HO-1-dependent immune escape mechanisms in NB by increasing NB apoptosis and improved DC maturation. In summary, HO-1 emerges as a novel immune regulator in NB and emerges as a promising target for the development of therapeutic approaches.
Collapse
Affiliation(s)
- Stefan Fest
- Laboratory of Pediatric Immunotherapy, Department of Pediatrics, Medical Faculty, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany.,Department of Pediatric Oncology, University of Leipzig, Leipzig, Germany
| | - Rocio Soldati
- Laboratory of Pediatric Immunotherapy, Department of Pediatrics, Medical Faculty, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany.,Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | | | - Maria L Zenclussen
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Jana Kilz
- Laboratory of Pediatric Immunotherapy, Department of Pediatrics, Medical Faculty, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany.,Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Elisa Berger
- Laboratory of Pediatric Immunotherapy, Department of Pediatrics, Medical Faculty, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany.,Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Sven Starke
- Department of Pediatric Oncology, University of Leipzig, Leipzig, Germany
| | - Holger N Lode
- Department of Pediatrics and Pediatric Hematology/Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | | |
Collapse
|
30
|
Mouhieddine TH, Nokkari A, Itani MM, Chamaa F, Bahmad H, Monzer A, El-Merahbi R, Daoud G, Eid A, Kobeissy FH, Abou-Kheir W. Metformin and Ara-a Effectively Suppress Brain Cancer by Targeting Cancer Stem/Progenitor Cells. Front Neurosci 2015; 9:442. [PMID: 26635517 PMCID: PMC4655242 DOI: 10.3389/fnins.2015.00442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022] Open
Abstract
Background: Gliomas and neuroblastomas pose a great health burden worldwide with a poor and moderate prognosis, respectively. Many studies have tried to find effective treatments for these primary malignant brain tumors. Of interest, the AMP-activated protein kinase (AMPK) pathway was found to be associated with tumorigenesis and tumor survival, leading to many studies on AMPK drugs, especially Metformin, and their potential role as anti-cancer treatments. Cancer stem cells (CSCs) are a small population of slowly-dividing, treatment-resistant, undifferentiated cancer cells that are being discovered in a multitude of cancers. They are thought to be responsible for replenishing the tumor with highly proliferative cells and increasing the risk of recurrence. Methods: Metformin and 9-β-d-Arabinofuranosyl Adenine (Ara-a) were used to study the role of the AMPK pathway in vitro on U251 (glioblastoma) and SH-SY5Y (neuroblastoma) cell lines. Results: We found that both drugs are able to decrease the survival of U251 and SH-SY5Y cell lines in a 2D as well as a 3D culture model. Metformin and Ara-a significantly decreased the invasive ability of these cancer cell lines. Treatment with these drugs decreased the sphere-forming units (SFU) of U251 cells, with Ara-a being more efficient, signifying the extinction of the CSC population. However, if treatment is withdrawn before all SFUs are extinguished, the CSCs regain some of their sphere-forming capabilities in the case of Metformin but not Ara-a treatment. Conclusion: Metformin and Ara-a have proved to be effective in the treatment of glioblastomas and neuroblastomas, in vitro, by targeting their cancer stem/progenitor cell population, which prevents recurrence.
Collapse
Affiliation(s)
- Tarek H Mouhieddine
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Amaly Nokkari
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Muhieddine M Itani
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Hisham Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Alissar Monzer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Rabih El-Merahbi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Georges Daoud
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Assaad Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| |
Collapse
|
31
|
Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds. Drug Discov Today 2015; 21:190-199. [PMID: 26456577 DOI: 10.1016/j.drudis.2015.09.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 01/10/2023]
Abstract
Drug repositioning is gaining increasing attention in drug discovery because it represents a smart way to exploit new molecular targets of a known drug or target promiscuity among diverse diseases, for medical uses different from the one originally considered. In this review, we focus on known non-oncological drugs with new therapeutic applications in oncology, explaining the rationale behind this approach and providing practical evidence. Moving from incompleteness of the knowledge of drug-target interactions, particularly for older molecules, we highlight opportunities for repurposing compounds as cancer therapeutics, underling the biologically and clinically relevant affinities for new targets. Ideal candidates for repositioning can contribute to the therapeutically unmet need for more-efficient anticancer agents, including drugs that selectively target cancer stem cells.
Collapse
|
32
|
Tripathi DM, Erice E, Lafoz E, García-Calderó H, Sarin SK, Bosch J, Gracia-Sancho J, García-Pagán JC. Metformin reduces hepatic resistance and portal pressure in cirrhotic rats. Am J Physiol Gastrointest Liver Physiol 2015; 309:G301-9. [PMID: 26138461 DOI: 10.1152/ajpgi.00010.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/27/2015] [Indexed: 01/31/2023]
Abstract
Increased hepatic vascular resistance is the primary factor in the development of portal hypertension. Metformin ameliorates vascular cells function in several vascular beds. Our study was aimed at evaluating the effects, and the underlying mechanisms, of metformin on hepatic and systemic hemodynamics in cirrhotic rats and its possible interaction with the effects of propranolol (Prop), the current standard treatment for portal hypertension. CCl4-cirrhotic rats received by gavage metformin 300 mg/kg or its vehicle once a day for 1 wk, before mean arterial pressure (MAP), portal pressure (PP), portal blood flow (PBF), hepatic vascular resistance, and putative molecular/cellular mechanisms were measured. In a subgroup of cirrhotic rats, the hemodynamic response to acute Prop (5 mg/kg iv) was assessed. Effects of metformin ± Prop on PP and MAP were validated in common bile duct ligated-cirrhotic rats. Metformin-treated CCl4-cirrhotic rats had lower PP and hepatic vascular resistance than vehicle-treated rats, without significant changes in MAP or PBF. Metformin caused a significant reduction in liver fibrosis (Sirius red), hepatic stellate cell activation (α-smooth muscle actin, platelet-derived growth factor receptor β polypeptide, transforming growth factor-βR1, and Rho kinase), hepatic inflammation (CD68 and CD163), superoxide (dihydroethidium staining), and nitric oxide scavenging (protein nitrotyrosination). Prop, by decreasing PBF, further reduced PP. Similar findings were observed in common bile duct ligated-cirrhotic rats. Metformin administration reduces PP by decreasing the structural and functional components of the elevated hepatic resistance of cirrhosis. This effect is additive to that of Prop. The potential impact of this pharmacological combination, otherwise commonly used in patients with cirrhosis and diabetes, needs clinical evaluation.
Collapse
Affiliation(s)
- Dinesh M Tripathi
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; and Institute of Liver and Biliary Sciences, New Delhi, India
| | - Eva Erice
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; and
| | - Erica Lafoz
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; and
| | - Héctor García-Calderó
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; and
| | - Shiv K Sarin
- Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jaime Bosch
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; and
| | - Jordi Gracia-Sancho
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; and
| | - Juan Carlos García-Pagán
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain; and
| |
Collapse
|
33
|
Gao XY, Geng XJ, Zhai WL, Zhang XW, Wei Y, Hou GJ. Effect of combined treatment with cyclophosphamidum and allicin on neuroblastoma-bearing mice. ASIAN PAC J TROP MED 2015; 8:137-41. [PMID: 25902028 DOI: 10.1016/s1995-7645(14)60304-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/20/2014] [Accepted: 01/15/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate the efficacy of allicin combined with cyclophosphamide on neuroblastoma (NB)-bearing mice and explore the immunological mechanism in it. METHODS A total of 30 NB-bearing mice were equally randomized into model group, cyclophosphamide group and combined therapy group, 10 nudemice were set as normal saline (NS) group. Cyclophosphamide group and combined therapy group were weekly injected with 60 mg/kg cyclophosphamide for four weeks; besides, combined therapy group was given with allicin (10 mg/kg/d) by gastric perfusion for 4 weeks; model group and NS group were given with the same volume of NS. Serum VEGF content was detected by ELISA pre-treating (0 d) and on the 3rd d, 14th d and 28th d; on 29th d, all mice were sacrificed and the tumor, liver, spleen and thymic tissues were weighted. Tumors were made into paraffin section for detecting tumor cell apoptosis and proliferation by TUNEL and BrdU method, respectively. Survival curves were drawn by Kaplan-Meier method. RESULTS After treatment, both treatment groups relieved on viscera indexes, VEGF level, T cell subsets distribution and tumor growth and each index of combined therapy group was better than cyclophosphamide group (P<0.05 or 0.01); only combined therapy group could significantly increase the lifetime of NB-bearing mice (μ (2)=5.667, P=0.017). CONCLUSIONS Allicin can improve T cell subsets distribution and inhibit VEGF expression through its immunomodulatory activity, thereby improve the efficiency on NB in coordination with cyclophosphamide.
Collapse
Affiliation(s)
- Xiang-Yang Gao
- Department of General Surgery, Children's Hospital of Zhengzhou, Zhengzhou, China
| | - Xian-Jie Geng
- Department of General Surgery, Children's Hospital of Zhengzhou, Zhengzhou, China
| | - Wen-Long Zhai
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xian-Wei Zhang
- Department of General Surgery, Children's Hospital of Zhengzhou, Zhengzhou, China
| | - Yuan Wei
- Department of General Surgery, Children's Hospital of Zhengzhou, Zhengzhou, China
| | - Guang-Jun Hou
- Department of General Surgery, Children's Hospital of Zhengzhou, Zhengzhou, China.
| |
Collapse
|