1
|
Martinez R, Finocchiaro C, Delhaye L, Gysens F, Anckaert J, Trypsteen W, Versteven M, Lion E, Van Lint S, Vermaelen K, de Bony EJ, Mestdagh P. A co-culture model to study modulators of tumor immune evasion through scalable arrayed CRISPR-interference screens. Front Immunol 2024; 15:1444886. [PMID: 39497819 PMCID: PMC11532180 DOI: 10.3389/fimmu.2024.1444886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Cancer cells effectively evade immune surveillance, not only through the well-known PD-1/PD-L1 pathway but also via alternative mechanisms that impair patient response to immune checkpoint inhibitors. We present a novel co-culture model that pairs a reporter T-cell line with different melanoma cell lines that have varying immune evasion characteristics. We developed a scalable high-throughput lentiviral arrayed CRISPR interference (CRISPRi) screening protocol to conduct gene perturbations in both T-cells and melanoma cells, enabling the identification of genes that modulate tumor immune evasion. Our study functionally validates the co-culture model system and demonstrates the performance of the CRISPRi-screening protocol by modulating the expression of known regulators of tumor immunity. Together, our work provides a robust framework for future research aimed at systematically exploring mechanisms of tumor immune evasion.
Collapse
Affiliation(s)
- Ramiro Martinez
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Chiara Finocchiaro
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
| | - Louis Delhaye
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, Flanders Institute for Biotechnology – UGENT (VIB-UGENT), Ghent, Belgium
| | - Fien Gysens
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Wim Trypsteen
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Maarten Versteven
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sandra Van Lint
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University, Ghent, Belgium
| | - Karim Vermaelen
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University, Ghent, Belgium
| | - Eric James de Bony
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Ito M, Koido S, Iwamoto T, Morimoto S, Fujiki F, Sugiyama H, Matsumoto S, Effenberger C, Kiyotani K, Shiba K. Enhancing the immunogenicity of Wilms tumor 1 epitope in mesothelioma cells with immunoproteasome inhibitors. PLoS One 2024; 19:e0308330. [PMID: 39116074 PMCID: PMC11309442 DOI: 10.1371/journal.pone.0308330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
The immunogenicity of cancer cells is influenced by several factors, including the expression of the major histocompatibility complex class I (MHC-I), antigen expression, and the repertoire of proteasome-produced epitope peptides. The malignant pleural mesothelioma cell line ACC-MEOS-4 (MESO-4) expresses high levels of MHC-I and Wilms tumor 1 (WT1) tumor antigens. Using a functional T cell reporter assay specific for the HLA-A*24:02 restricted WT1 epitope (WT1235, CMTWNQMNL), we searched for factors that augmented the immunogenicity of MESO-4, focusing on proteasomes, which have a central role in the antigen processing machinery. ONX-0914, a selective inhibitor of the immunoproteasome subunit β5i, enhanced immunogenicity dose-dependently at low concentrations without cytotoxicity. In addition, CD8+ T lymphocytes recognizing WT1 showed greater cytotoxicity against MESO-4 pre-treated with ONX-0914. MESO-4 expresses a standard proteasome (SP) and immunoproteasome (IP). Notably, IP has distinct catalytic activity from SP, favoring the generation of antigenic peptides with high affinity for MHC-I in antigen-presenting cells and cancer cells. In vitro, immunoproteasome digestion assay and mass spectrometry analysis showed that IP cleaved WT1235 internally after the hydrophobic residues. Importantly, this internal cleavage of the WT1235 epitope was mitigated by ONX-0914. These results suggest that ONX-0914 prevents the internal destructive cleavage of WT1235 by IP, thereby promoting the specific presentation of the WT1 epitope by MESO-4. In conclusion, selective IP inhibitors might offer a means to modulate cancer cell immunogenicity by directing the presentation of particular tumor epitopes.
Collapse
Affiliation(s)
- Masaki Ito
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, Chiba, Japan
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shigeo Koido
- The Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, Chiba, Japan
| | - Takeo Iwamoto
- Core Research Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Soyoko Morimoto
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumihiro Fujiki
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Saki Matsumoto
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Clara Effenberger
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kiyotaka Shiba
- Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
3
|
Hanssens H, Meeus F, De Vlaeminck Y, Lecocq Q, Puttemans J, Debie P, De Groof TWM, Goyvaerts C, De Veirman K, Breckpot K, Devoogdt N. Scrutiny of chimeric antigen receptor activation by the extracellular domain: experience with single domain antibodies targeting multiple myeloma cells highlights the need for case-by-case optimization. Front Immunol 2024; 15:1389018. [PMID: 38720898 PMCID: PMC11077437 DOI: 10.3389/fimmu.2024.1389018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Multiple myeloma (MM) remains incurable, despite the advent of chimeric antigen receptor (CAR)-T cell therapy. This unfulfilled potential can be attributed to two untackled issues: the lack of suitable CAR targets and formats. In relation to the former, the target should be highly expressed and reluctant to shedding; two characteristics that are attributed to the CS1-antigen. Furthermore, conventional CARs rely on scFvs for antigen recognition, yet this withholds disadvantages, mainly caused by the intrinsic instability of this format. VHHs have been proposed as valid scFv alternatives. We therefore intended to develop VHH-based CAR-T cells, targeting CS1, and to identify VHHs that induce optimal CAR-T cell activation together with the VHH parameters required to achieve this. Methods CS1-specific VHHs were generated, identified and fully characterized, in vitro and in vivo. Next, they were incorporated into second-generation CARs that only differ in their antigen-binding moiety. Reporter T-cell lines were lentivirally transduced with the different VHH-CARs and CAR-T cell activation kinetics were evaluated side-by-side. Affinity, cell-binding capacity, epitope location, in vivo behavior, binding distance, and orientation of the CAR-T:MM cell interaction pair were investigated as predictive parameters for CAR-T cell activation. Results Our data show that the VHHs affinity for its target antigen is relatively predictive for its in vivo tumor-tracing capacity, as tumor uptake generally decreased with decreasing affinity in an in vivo model of MM. This does not hold true for their CAR-T cell activation potential, as some intermediate affinity-binding VHHs proved surprisingly potent, while some higher affinity VHHs failed to induce equal levels of T-cell activation. This could not be attributed to cell-binding capacity, in vivo VHH behavior, epitope location, cell-to-cell distance or binding orientation. Hence, none of the investigated parameters proved to have significant predictive value for the extent of CAR-T cell activation. Conclusions We gained insight into the predictive parameters of VHHs in the CAR-context using a VHH library against CS1, a highly relevant MM antigen. As none of the studied VHH parameters had predictive value, defining VHHs for optimal CAR-T cell activation remains bound to serendipity. These findings highlight the importance of screening multiple candidates.
Collapse
Affiliation(s)
- Heleen Hanssens
- Laboratory of Molecular Imaging and Therapy (MITH), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory for Hematology and Immunology (HEIM), Translational Oncology Research Center, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fien Meeus
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Janik Puttemans
- Laboratory of Molecular Imaging and Therapy (MITH), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pieterjan Debie
- Laboratory of Molecular Imaging and Therapy (MITH), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Timo W. M. De Groof
- Laboratory of Molecular Imaging and Therapy (MITH), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Laboratory for Hematology and Immunology (HEIM), Translational Oncology Research Center, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Translational Oncology Research Center, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Laboratory of Molecular Imaging and Therapy (MITH), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
4
|
Suwabe T, Shibasaki Y, Tamura S, Katagiri T, Fuse K, Ida-Kurasaki T, Ushiki T, Sone H, Narita M, Masuko M. Decade-long WT1-specific CTLs induced by WT1 peptide vaccination. Int J Hematol 2024; 119:399-406. [PMID: 38427208 DOI: 10.1007/s12185-024-03723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION The peptide-based cancer vaccine targeting Wilms' tumor 1 (WT1) is a promising immunotherapeutic strategy for hematological malignancies. It remains unclear how long and to what extent the WT1-specific CD8 + cytotoxic T cell (CTL) persist after WT1 peptide vaccination. METHODS The WT1 peptide vaccine was administered with written consent to a patient with CML in the chronic phase who did not respond well to imatinib, and the patient was followed for 12 years after vaccination. Immune monitoring was performed by specific amplification of WT1-specific CTLs using a mixed lymphocyte peptide culture. T-cell receptors (TCRs) of amplified WT1-specific CTLs were analyzed using next-generation sequencing. This study was approved by the Institutional Review Board of our institution. RESULT WT1-specific CTLs, which were initially detected during WT1 peptide vaccination, persisted at a frequency of less than 5 cells per 1,000,000 CD8 + T cells for more than 10 years. TCR repertoire analysis confirmed the diversity of WT1-specific CTLs 11 years after vaccination. CTLs exhibited WT1 peptide-specific cytotoxicity in vitro. CONCLUSION The WT1 peptide vaccine induced an immune response that persists for more than 10 years, even after cessation of vaccination in the CML patient.
Collapse
Affiliation(s)
- Tatsuya Suwabe
- Department of Hematopoietic Stem Cell Transplantation, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Yasuhiko Shibasaki
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Suguru Tamura
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Takayuki Katagiri
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Kyoko Fuse
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Tori Ida-Kurasaki
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Takashi Ushiki
- Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, 1-754 Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Miwako Narita
- Laboratory of Hematology and Oncology, Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Masayoshi Masuko
- Department of Hematopoietic Stem Cell Transplantation, Niigata University Medical and Dental Hospital, Niigata, Japan.
| |
Collapse
|
5
|
Kirk AM, Crawford JC, Chou CH, Guy C, Pandey K, Kozlik T, Shah RK, Chung S, Nguyen P, Zhang X, Wang J, Bell M, Mettelman RC, Allen EK, Pogorelyy MV, Kim H, Minervina AA, Awad W, Bajracharya R, White T, Long D, Gordon B, Morrison M, Glazer ES, Murphy AJ, Jiang Y, Fitzpatrick EA, Yarchoan M, Sethupathy P, Croft NP, Purcell AW, Federico SM, Stewart E, Gottschalk S, Zamora AE, DeRenzo C, Strome SE, Thomas PG. DNAJB1-PRKACA fusion neoantigens elicit rare endogenous T cell responses that potentiate cell therapy for fibrolamellar carcinoma. Cell Rep Med 2024; 5:101469. [PMID: 38508137 PMCID: PMC10983114 DOI: 10.1016/j.xcrm.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Fibrolamellar carcinoma (FLC) is a liver tumor with a high mortality burden and few treatment options. A promising therapeutic vulnerability in FLC is its driver mutation, a conserved DNAJB1-PRKACA gene fusion that could be an ideal target neoantigen for immunotherapy. In this study, we aim to define endogenous CD8 T cell responses to this fusion in FLC patients and evaluate fusion-specific T cell receptors (TCRs) for use in cellular immunotherapies. We observe that fusion-specific CD8 T cells are rare and that FLC patient TCR repertoires lack large clusters of related TCR sequences characteristic of potent antigen-specific responses, potentially explaining why endogenous immune responses are insufficient to clear FLC tumors. Nevertheless, we define two functional fusion-specific TCRs, one of which has strong anti-tumor activity in vivo. Together, our results provide insights into the fragmented nature of neoantigen-specific repertoires in humans and indicate routes for clinical development of successful immunotherapies for FLC.
Collapse
Affiliation(s)
- Allison M Kirk
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kirti Pandey
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Tanya Kozlik
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ravi K Shah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shanzou Chung
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Phuong Nguyen
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaoyu Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jin Wang
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Matthew Bell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hyunjin Kim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anastasia A Minervina
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Walid Awad
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Resha Bajracharya
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Toni White
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Donald Long
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Brittney Gordon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michelle Morrison
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan S Glazer
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Andrew J Murphy
- Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yixing Jiang
- Department of Medical Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Elizabeth A Fitzpatrick
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Sara M Federico
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anthony E Zamora
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Scott E Strome
- College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
6
|
Bekker G, Numoto N, Kawasaki M, Hayashi T, Yabuno S, Kozono Y, Shimizu T, Kozono H, Ito N, Oda M, Kamiya N. Elucidation of binding mechanism, affinity, and complex structure between mWT1 tumor-associated antigen peptide and HLA-A*24:02. Protein Sci 2023; 32:e4775. [PMID: 37661929 PMCID: PMC10510467 DOI: 10.1002/pro.4775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/02/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
We have applied our advanced computational and experimental methodologies to investigate the complex structure and binding mechanism of a modified Wilms' Tumor 1 (mWT1) protein epitope to the understudied Asian-dominant allele HLA-A*24:02 (HLA-A24) in aqueous solution. We have applied our developed multicanonical molecular dynamics (McMD)-based dynamic docking method to analyze the binding pathway and mechanism, which we verified by comparing the highest probability structures from simulation with our experimentally solved x-ray crystal structure. Subsequent path sampling MD simulations elucidated the atomic details of the binding process and indicated that first an encounter complex is formed between the N-terminal's positive charge of the 9-residue mWT1 fragment peptide and a cluster of negative residues on the surface of HLA-A24, with the major histocompatibility complex (MHC) molecule preferring a predominantly closed conformation. The peptide first binds to this closed MHC conformation, forming an encounter complex, after which the binding site opens due to increased entropy of the binding site, allowing the peptide to bind to form the native complex structure. Further sequence and structure analyses also suggest that although the peptide loading complex would help with stabilizing the MHC molecule, the binding depends in a large part on the intrinsic affinity between the MHC molecule and the antigen peptide. Finally, our computational tools and analyses can be of great benefit to study the binding mechanism of different MHC types to their antigens, where it could also be useful in the development of higher affinity variant peptides and for personalized medicine.
Collapse
Affiliation(s)
- Gert‐Jan Bekker
- Institute for Protein Research, Osaka UniversitySuitaOsakaJapan
| | - Nobutaka Numoto
- Medical Research Institute, Tokyo Medical and Dental University (TMDU)TokyoJapan
| | - Maki Kawasaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyotoKyotoJapan
| | - Takahiro Hayashi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyotoKyotoJapan
| | - Saaya Yabuno
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyotoKyotoJapan
| | - Yuko Kozono
- Research Institute for Biomedical Sciences, Tokyo University of ScienceNodaChibaJapan
| | - Takeyuki Shimizu
- Department of Immunology, Kochi Medical SchoolKochi UniversityNankoku‐shiKochiJapan
| | - Haruo Kozono
- Research Institute for Biomedical Sciences, Tokyo University of ScienceNodaChibaJapan
| | - Nobutoshi Ito
- Medical Research Institute, Tokyo Medical and Dental University (TMDU)TokyoJapan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyotoKyotoJapan
| | - Narutoshi Kamiya
- Graduate School of Information ScienceUniversity of HyogoKobeHyogoJapan
| |
Collapse
|
7
|
Fujiki F, Morimoto S, Nishida Y, Tanii S, Aoyama N, Inatome M, Inoue K, Katsuhara A, Nakajima H, Nakata J, Nishida S, Tsuboi A, Oka Y, Oji Y, Sogo S, Sugiyama H. Establishment of a novel NFAT-GFP reporter platform useful for the functional avidity maturation of HLA class II-restricted TCRs. Cancer Immunol Immunother 2023; 72:2347-2356. [PMID: 36939853 PMCID: PMC10264488 DOI: 10.1007/s00262-023-03420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/01/2023] [Indexed: 03/21/2023]
Abstract
CD4+ T cells that recognize antigenic peptides presented on HLA class II are essential for inducing an optimal anti-tumor immune response, and adoptive transfer of tumor antigen-specific TCR-transduced CD4+ T cells with high responsiveness against tumor is a promising strategy for cancer treatment. Whereas a precise evaluation method of functional avidity, an indicator of T cell responsiveness against tumors, has been established for HLA class I-restricted TCRs, it remains unestablished for HLA class II-restricted TCRs. In this study, we generated a novel platform cell line, CD4-2D3, in which GFP reporter was expressed by NFAT activation via TCR signaling, for correctly evaluating functional avidity of HLA class II-restricted TCRs. Furthermore, using this platform cell line, we succeeded in maturating functional avidity of an HLA class II-restricted TCR specific for a WT1-derived helper peptide by substituting amino acids in complementarity determining region 3 (CDR3) of the TCR. Importantly, we demonstrated that transduction of an avidity-maturated TCR conferred strong cytotoxicity against WT1-expressing leukemia cells on CD4+ T cells, compared to that of its original TCR. Thus, CD4-2D3 cell line should be useful not only to evaluate TCR functional avidity in HLA class II-restricted TCRs but also to screen appropriate TCRs for clinical applications such as cancer immunotherapy.
Collapse
Affiliation(s)
- Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - Soyoko Morimoto
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Nishida
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoe Tanii
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Nao Aoyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Miki Inatome
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kento Inoue
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akiko Katsuhara
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Jun Nakata
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sumiyuki Nishida
- Strategic Global Partnership & X (Cross)-Innovation Initiative, Graduate School of Medicine, Osaka University & Osaka University Hospital, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Oka
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yusuke Oji
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinji Sogo
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Department of Research Management, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
- Joint Research Chair of Immune Therapeutic Drug Discovery IFReC, Osaka University Graduate School of Medicine, Suita, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
8
|
Xiong C, Huang L, Kou H, Wang C, Zeng X, Sun H, Liu S, Wu B, Li J, Wang X, Wang Z, Chen L. Identification of novel HLA-A*11:01-restricted HPV16 E6/E7 epitopes and T-cell receptors for HPV-related cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-004790. [PMID: 36180070 PMCID: PMC9528665 DOI: 10.1136/jitc-2022-004790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Chengjie Xiong
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lihong Huang
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hedan Kou
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Chenwei Wang
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaomin Zeng
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hanli Sun
- Guangdong Xiangxue Life Sciences, Guangzhou, China
| | - Shangyuan Liu
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bin Wu
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingyao Li
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoling Wang
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zibing Wang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Lin Chen
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Fujiki F, Morimoto S, Katsuhara A, Okuda A, Ogawa S, Ueda E, Miyazaki M, Isotani A, Ikawa M, Nishida S, Nakajima H, Tsuboi A, Oka Y, Nakata J, Hosen N, Kumanogoh A, Oji Y, Sugiyama H. T Cell-Intrinsic Vitamin A Metabolism and Its Signaling Are Targets for Memory T Cell-Based Cancer Immunotherapy. Front Immunol 2022; 13:935465. [PMID: 35844620 PMCID: PMC9280205 DOI: 10.3389/fimmu.2022.935465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Memory T cells play an essential role in infectious and tumor immunity. Vitamin A metabolites such as retinoic acid are immune modulators, but the role of vitamin A metabolism in memory T-cell differentiation is unclear. In this study, we identified retinol dehydrogenase 10 (Rdh10), which metabolizes vitamin A to retinal (RAL), as a key molecule for regulating T cell differentiation. T cell-specific Rdh10 deficiency enhanced memory T-cell formation through blocking RAL production in infection model. Epigenetic profiling revealed that retinoic acid receptor (RAR) signaling activated by vitamin A metabolites induced comprehensive epigenetic repression of memory T cell-associated genes, including TCF7, thereby promoting effector T-cell differentiation. Importantly, memory T cells generated by Rdh deficiency and blocking RAR signaling elicited potent anti-tumor responses in adoptive T-cell transfer setting. Thus, T cell differentiation is regulated by vitamin A metabolism and its signaling, which should be novel targets for memory T cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Fumihiro Fujiki
- Department of Cancer Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- *Correspondence: Fumihiro Fujiki, ; Haruo Sugiyama,
| | - Soyoko Morimoto
- Department of Cancer Stem Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akiko Katsuhara
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akane Okuda
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Saeka Ogawa
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eriko Ueda
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Maki Miyazaki
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ayako Isotani
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshihiro Oka
- Department of Cancer Stem Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Jun Nakata
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Naoki Hosen
- Department of Cancer Stem Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Yusuke Oji
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Graduate School of Medicine, Osaka University, Suita, Japan
- *Correspondence: Fumihiro Fujiki, ; Haruo Sugiyama,
| |
Collapse
|
10
|
Nishida S, Morimoto S, Oji Y, Morita S, Shirakata T, Enomoto T, Tsuboi A, Ueda Y, Yoshino K, Shouq A, Kanegae M, Ohno S, Fujiki F, Nakajima H, Nakae Y, Nakata J, Hosen N, Kumanogoh A, Oka Y, Kimura T, Sugiyama H. Cellular and Humoral Immune Responses Induced by an HLA Class I-restricted Peptide Cancer Vaccine Targeting WT1 Are Associated With Favorable Clinical Outcomes in Advanced Ovarian Cancer. J Immunother 2022; 45:56-66. [PMID: 34874330 PMCID: PMC8654282 DOI: 10.1097/cji.0000000000000405] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/22/2021] [Indexed: 11/25/2022]
Abstract
The HLA-A*24:02-restricted peptide vaccine targeting Wilms' tumor 1 (WT1) (WT1 vaccine) is a promising therapeutic strategy for ovarian cancer; however, its efficacy varies among patients. In this study, we analyzed WT1-specific immune responses in patients with advanced or recurrent ovarian cancer that was refractory to standard chemotherapies and their associations with clinical outcomes. In 25 patients, the WT1 vaccine was administered subcutaneously weekly for 3 months and biweekly thereafter until disease progression or severe adverse events. We assessed Wilms' tumor 1-specific cytotoxic T lymphocytes (WT1-CTLs) and Wilms' tumor 1 peptide-specific immunoglobulin G (WT1235-IgG). After vaccination, the percentage of tetramer high-avidity population of WT1-CTLs among CD8+ T lymphocytes (%tet-hi WT1-CTL) and the WT1235-IgG titer increased significantly, although the values were extremely low or below the limit of detection before vaccination (%tet-hi WT1-CTL: 0.003%-0.103%.; WT1235-IgG: <0.05-0.077 U/mL). Patients who had %tet-hi WT1-CTL of ≥0.25% (n=6) or WT1235-IgG of ≥0.10 U/mL (n=12) had a significantly longer progression-free survival than those of patients in the other groups. In addition, an increase in WT1235-IgG corresponded to a significantly longer progression-free survival (P=0.0496). In patients with systemic inflammation, as evidenced by elevated C-reactive protein levels, the induction of tet-hi WT1-CTL or WT1235-IgG was insufficient. Decreased serum albumin levels, multiple tumor lesions, poor performance status, and excess ascites negatively influenced the clinical effectiveness of the WT1 vaccine. In conclusion, the WT1 vaccine induced antigen-specific cellular and humoral immunity in patients with refractory ovarian cancer. Both %tet-hi WT1-CTL and WT1235-IgG levels are prognostic markers for the WT1 vaccine.
Collapse
Affiliation(s)
| | | | | | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto
| | | | - Takayuki Enomoto
- Obstetrics and Gynecology, Osaka University Graduates School of Medicine
- Department of Obstetrics and Gynecology, Niigata University Medical School, Niigata
| | | | - Yutaka Ueda
- Obstetrics and Gynecology, Osaka University Graduates School of Medicine
| | - Kiyoshi Yoshino
- Obstetrics and Gynecology, Osaka University Graduates School of Medicine
- Department of Obstetrics and Gynecology, University of Occupational and Environmental Health, Kita-Kyushu, Fukuoka Prefecture
| | | | | | - Satoshi Ohno
- Cancer Immunotherapy
- Clinical Research Support Center, Shimane University Faculty of Medicine, Izumo, Shimane Prefecture, Japan
| | | | | | - Yoshiki Nakae
- Departments of Respiratory Medicine and Clinical Immunology
| | | | | | - Atsushi Kumanogoh
- Departments of Respiratory Medicine and Clinical Immunology
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka Prefecture
| | - Yoshihiro Oka
- Cancer Stem Cell Biology
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University
| | - Tadashi Kimura
- Obstetrics and Gynecology, Osaka University Graduates School of Medicine
| | | |
Collapse
|
11
|
Wang S, Liu Y, Li Y, Lv M, Gao K, He Y, Wei W, Zhu Y, Dong X, Xu X, Li Z, Liu L, Liu Y. High-Throughput Functional Screening of Antigen-Specific T Cells Based on Droplet Microfluidics at a Single-Cell Level. Anal Chem 2021; 94:918-926. [PMID: 34852202 DOI: 10.1021/acs.analchem.1c03678] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lack of an efficient method for the identification of tumor antigen-specific T cell receptors (TCRs) impedes the development of T cell-based cancer immunotherapies. Here, we introduce a droplet-based microfluidic platform for function-based screening and sorting of tumor antigen-specific T cells with high throughput. We built a reporter cell line by co-transducing the TCR library and reporter genes at the downstream of TCR signaling, and reporter cells fluoresced upon functionally binding with antigens. We co-encapsulated reporter cells and antigen-presenting cells in droplets to allow for stimulation on a single-cell level. Functioning reporter cells specific against the antigen were identified in the microfluidic channel based on the fluorescent signals of the droplets, which were immediately sorted out using dielectrophoresis. We validated the reporter system and sorting results using flow cytometry. We then performed single-cell RNA sequencing on the sorted cells to further validate this platform and demonstrate the compatibility with genetic characterizations. Our platform provides a means for precise and efficient T cell immunotherapy, and the droplet-based high-throughput TCR screening method could potentially facilitate immunotherapeutic screening and promote T cell-based anti-tumor therapies.
Collapse
Affiliation(s)
- Shiyu Wang
- BGI-Shenzhen, Shenzhen 518083, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yijian Li
- BGI-Shenzhen, Shenzhen 518083, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Menghua Lv
- BGI-Shenzhen, Shenzhen 518083, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Gao
- BGI-Shenzhen, Shenzhen 518083, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying He
- Department of Gynaecological Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen 518116, China
| | - Wenbo Wei
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.,The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China
| | - Zida Li
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen 518083, China.,Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Ya Liu
- BGI-Shenzhen, Shenzhen 518083, China.,Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518100, China
| |
Collapse
|
12
|
The Quest for the Best: How TCR Affinity, Avidity, and Functional Avidity Affect TCR-Engineered T-Cell Antitumor Responses. Cells 2020; 9:cells9071720. [PMID: 32708366 PMCID: PMC7408146 DOI: 10.3390/cells9071720] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past decades, adoptive transfer of T cells has revolutionized cancer immunotherapy. In particular, T-cell receptor (TCR) engineering of T cells has marked important milestones in developing more precise and personalized cancer immunotherapies. However, to get the most benefit out of this approach, understanding the role that TCR affinity, avidity, and functional avidity play on how TCRs and T cells function in the context of tumor-associated antigen (TAA) recognition is vital to keep generating improved adoptive T-cell therapies. Aside from TCR-related parameters, other critical factors that govern T-cell activation are the effect of TCR co-receptors on TCR–peptide-major histocompatibility complex (pMHC) stabilization and TCR signaling, tumor epitope density, and TCR expression levels in TCR-engineered T cells. In this review, we describe the key aspects governing TCR specificity, T-cell activation, and how these concepts can be applied to cancer-specific TCR redirection of T cells.
Collapse
|
13
|
van Ens D, Mousset CM, Hutten TJA, van der Waart AB, Campillo-Davo D, van der Heijden S, Vodegel D, Fredrix H, Woestenenk R, Parga-Vidal L, Jansen JH, Schaap NPM, Lion E, Dolstra H, Hobo W. PD-L1 siRNA-mediated silencing in acute myeloid leukemia enhances anti-leukemic T cell reactivity. Bone Marrow Transplant 2020; 55:2308-2318. [PMID: 32528120 DOI: 10.1038/s41409-020-0966-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) is an immune-susceptible malignancy, as demonstrated by its responsiveness to allogeneic stem cell transplantation (alloSCT). However, by employing inhibitory signaling pathways, including PD-1/PD-L1, leukemia cells suppress T cell-mediated immune attack. Notably, impressive clinical efficacy has been obtained with PD-1/PD-L1 blocking antibodies in cancer patients. Yet, these systemic treatments are often accompanied by severe toxicity, especially after alloSCT. Here, we investigated RNA interference technology as an alternative strategy to locally interfere with PD-1/PD-L1 signaling in AML. We demonstrated efficient siRNA-mediated PD-L1 silencing in HL-60 and patients' AML cells. Importantly, WT1-antigen T cell receptor+ PD-1+ 2D3 cells showed increased activation toward PD-L1 silenced WT1+ AML. Moreover, PD-L1 silenced AML cells significantly enhanced the activation, degranulation, and IFN-γ production of minor histocompatibility antigen-specific CD8+ T cells. Notably, PD-L1 silencing was equally effective as PD-1 antibody blockade. Together, our study demonstrates that PD-L1 silencing may be an effective strategy to augment AML immune-susceptibility. This provides rationale for further development of targeted approaches to locally interfere with immune escape mechanisms in AML, thereby minimizing severe toxicity. In combination with alloSCT and/or adoptive T cell transfer, this strategy could be very appealing to boost graft-versus-leukemia immunity and improve outcome in AML patients.
Collapse
Affiliation(s)
- Diede van Ens
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Charlotte M Mousset
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tim J A Hutten
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anniek B van der Waart
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Diana Campillo-Davo
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sanne van der Heijden
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Denise Vodegel
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hanny Fredrix
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rob Woestenenk
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Loreto Parga-Vidal
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicolaas P M Schaap
- Department of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eva Lion
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute, Faculty of Medicine & Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Harry Dolstra
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine - Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
14
|
Zong S, Mi T, Flores LG, Alpert A, Olivares S, Patel K, Maiti S, Mcnamara G, Cooper LJN, Torikai H. Very rapid cloning, expression and identifying specificity of T-cell receptors for T-cell engineering. PLoS One 2020; 15:e0228112. [PMID: 32040512 PMCID: PMC7010234 DOI: 10.1371/journal.pone.0228112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/07/2020] [Indexed: 11/29/2022] Open
Abstract
Neoantigens can be predicted and in some cases identified using the data obtained from the whole exome sequencing and transcriptome sequencing of tumor cells. These sequencing data can be coupled with single-cell RNA sequencing for the direct interrogation of the transcriptome, surfaceome, and pairing of αβ T-cell receptors (TCRαβ) from hundreds of single T cells. Using these 2 large datasets, we established a platform for identifying antigens recognized by TCRαβs obtained from single T cells. Our approach is based on the rapid expression of cloned TCRαβ genes as Sleeping Beauty transposons and the determination of the introduced TCRαβs’ antigen specificity and avidity using a reporter cell line. The platform enables the very rapid identification of tumor-reactive TCRs for the bioengineering of T cells with redirected specificity.
Collapse
Affiliation(s)
- Shan Zong
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Tiejuan Mi
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Leo G. Flores
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Amir Alpert
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Simon Olivares
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Krina Patel
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Sourindra Maiti
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - George Mcnamara
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Laurence J. N. Cooper
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Ziopharm Oncology, Inc., Boston, Massachusetts, United States of America
| | - Hiroki Torikai
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Rapid Assessment of Functional Avidity of Tumor-Specific T Cell Receptors Using an Antigen-Presenting Tumor Cell Line Electroporated with Full-Length Tumor Antigen mRNA. Cancers (Basel) 2020; 12:cancers12020256. [PMID: 31972992 PMCID: PMC7072428 DOI: 10.3390/cancers12020256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
The functional avidity of T-cell receptor (TCR)-engineered T cells towards their cognate epitope plays a crucial role in successfully targeting and killing tumor cells expressing the tumor-associated antigen (TAA). When evaluating in vitro functional T-cell avidity, an important aspect that is often neglected is the antigen-presenting cell (APC) used in the assay. Cell-based models for antigen-presentation, such as tumor cell lines, represent a valid alternative to autologous APCs due to their availability, off-the-shelf capabilities, and the broad range of possibilities for modification via DNA or messenger RNA (mRNA) transfection. To find a valuable model APC for in vitro validation of TAA Wilms’ tumor 1 (WT1)-specific TCRs, we tested four different WT1 peptide-pulsed HLA-A2+ tumor cell lines commonly used in T-cell stimulation assays. We found the multiple myeloma cell line U266 to be a suitable model APC to evaluate differences in mean functional avidity (EC50) values of transgenic TCRs following transfection in 2D3 Jurkat T cells. Next, to assess the dose-dependent antigen-specific responsiveness of WT1 TCR-engineered 2D3 T cells to endogenously processed epitopes, we electroporated U266 cells with different amounts of full-length antigen WT1 mRNA. Finally, we analyzed the functional avidity of WT1 TCR-transfected primary CD8 T cells towards WT1 mRNA-electroporated U266 cells. In this study, we demonstrate that both the APC and the antigen loading method (peptide pulsing versus full-length mRNA transfection) to analyze T-cell functional avidity have a significant impact on the EC50 values of a given TCR. For rapid assessment of the functional avidity of a cloned TCR towards its endogenously processed MHC I-restricted epitope, we showcase that the TAA mRNA-transfected U266 cell line is a suitable and versatile model APC.
Collapse
|