1
|
Chester JG, Carcamo B, Gudis DA, Bustamante D, Eisig SB, Ombrello MJ, Chung WK, Milner JD. PLCG2 variants in cherubism. J Allergy Clin Immunol 2024:S0091-6749(24)00868-6. [PMID: 39197752 DOI: 10.1016/j.jaci.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Cherubism is most commonly caused by rare heterozygous gain-of-function (GOF) missense variants in SH3BP2, which appear to signal through phospholipase C gamma 2 (PLCG2) to cause excessive osteoclast activity leading to expansile lesions in facial bones in childhood. GOF variants in PLCG2 lead to autoinflammatory PLCG2-associated antibody deficiency and immune dysregulation (autoinflammatory PLAID, or PLAID-GOF), characterized by variably penetrant autoinflammatory, autoimmune, infectious, and atopic manifestations. Cherubism has not been reported in PLAID to date. OBJECTIVE We determined whether GOF PLCG2 variants may be associated with cherubism. METHODS Clinical, laboratory, and genomic data from 2 patients with cherubism and other clinical symptoms observed in patients with PLCG2 variants were reviewed. Primary B-cell receptor-induced calcium flux was assessed by flow cytometry. RESULTS Two patients with lesions consistent with cherubism but no SH3BP2 variants were found to have rare PLCG2 variants previously shown to be GOF in vitro, leading to increased primary B-cell receptor-induced calcium flux in one patient's B cells. Variable humoral defects, autoinflammatory rash, and other clinical and laboratory findings consistent with PLAID were observed as well. CONCLUSION GOF PLCG2 variants likely represent a novel genetic driver of cherubism and should be assessed in SH3BP2-negative cases. Expansile bony lesions expand the phenotypic landscape of autoinflammatory PLAID, and bone imaging should be considered in PLAID patients.
Collapse
Affiliation(s)
- Jennifer G Chester
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care, Columbia University, New York, NY
| | - Benjamin Carcamo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, Texas Tech University Health Sciences Center, El Paso, Tex
| | - David A Gudis
- Department of Otolaryngology-Head and Neck Surgery, Division of Rhinology and Anterior Skull Base Surgery, Columbia University, New York, NY
| | - Daniel Bustamante
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, Tex
| | - Sidney B Eisig
- Section of Hospital Dentistry, Division of Oral and Maxillofacial Surgery, Columbia University, New York, NY
| | - Michael J Ombrello
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Joshua D Milner
- Department of Pediatrics, Division of Allergy, Immunology, and Rheumatology, Columbia University, New York, NY.
| |
Collapse
|
2
|
Bull D, Matte JC, Navarron CM, McIntyre R, Whiting P, Katan M, Ducotterd F, Magno L. The hypermorphic PLCγ2 S707Y variant dysregulates microglial cell function - Insight into PLCγ2 activation in brain health and disease, and opportunities for therapeutic modulation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166978. [PMID: 38061598 DOI: 10.1016/j.bbadis.2023.166978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Phospholipase C-gamma 2 (PLCγ2) is highly expressed in hematopoietic and immune cells, where it is a key signalling node enabling diverse cellular functions. Within the periphery, gain-of-function (GOF) PLCγ2 variants, such as the strongly hypermorphic S707Y, cause severe immune dysregulation. The milder hypermorphic mutation PLCγ2 P522R increases longevity and confers protection in central nervous system (CNS) neurodegenerative disorders, implicating PLCγ2 as a novel therapeutic target for treating these CNS indications. Currently, nothing is known about what consequences strong PLCγ2 GOF has on CNS functionality, and more precisely on the specific biological functions of microglia. Using the PLCγ2 S707Y variant as a model of chronic activation we investigated the functional consequences of strong PLCγ2 GOF on human microglia. PLCγ2 S707Y expressing human inducible pluripotent stem cells (hiPSC)-derived microglia exhibited hypermorphic enzymatic activity under both basal and stimulated conditions, compared to PLCγ2 wild type. Despite the increase in PLCγ2 enzymatic activity, the PLCγ2 S707Y hiPSC-derived microglia display diminished functionality for key microglial processes including phagocytosis and cytokine secretion upon inflammatory challenge. RNA sequencing revealed a downregulation of genes related to innate immunity and response, providing molecular support for the phenotype observed. Our data suggests that chronic activation of PLCγ2 elicits a detrimental phenotype that is contributing to unfavourable CNS functions, and informs on the therapeutic window for targeting PLCγ2 in the CNS. Drug candidates targeting PLCγ2 will need to precisely mimic the effects of the PLCγ2 P522R variant on microglial function, but not those of the PLCγ2 S707Y variant.
Collapse
Affiliation(s)
- Daniel Bull
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Julie C Matte
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Carmen M Navarron
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Rebecca McIntyre
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Paul Whiting
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Fiona Ducotterd
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Lorenza Magno
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
3
|
Joseph RE, Lowe J, Fulton DB, Engen JR, Wales TE, Andreotti AH. The Conformational State of the BTK Substrate PLCγ Contributes to Ibrutinib Resistance. J Mol Biol 2022; 434:167422. [PMID: 34954235 PMCID: PMC8924901 DOI: 10.1016/j.jmb.2021.167422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/17/2022]
Abstract
Mutations in PLCγ, a substrate of the tyrosine kinase BTK, are often found in patients who develop resistance to the BTK inhibitor Ibrutinib. However, the mechanisms by which these PLCγ mutations cause Ibrutinib resistance are unclear. Under normal signaling conditions, BTK mediated phosphorylation of Y783 within the PLCγ cSH2-linker promotes the intramolecular association of this site with the adjacent cSH2 domain resulting in active PLCγ. Thus, the cSH2-linker region in the center of the regulatory gamma specific array (γSA) of PLCγ is a key feature controlling PLCγ activity. Even in the unphosphorylated state this linker exists in a conformational equilibrium between free and bound to the cSH2 domain. The position of this equilibrium is optimized within the properly regulated PLCγ enzyme but may be altered in the context of mutations. We therefore assessed the conformational status of four resistance associated mutations within the PLCγ γSA and find that they each alter the conformational equilibrium of the γSA leading to a shift toward active PLCγ. Interestingly, two distinct modes of mutation induced activation are revealed by this panel of Ibrutinib resistance mutations. These findings, along with the recently determined structure of fully autoinhibited PLCγ, provide new insight into the nature of the conformational change that occurs within the γSA regulatory region to affect PLCγ activation. Improving our mechanistic understanding of how B cell signaling escapes Ibrutinib treatment via mutations in PLCγ will aid in the development of strategies to counter drug resistance.
Collapse
Affiliation(s)
- Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Jacques Lowe
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA. https://twitter.com/dbfulton
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA. https://twitter.com/jrengen
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
4
|
Park HS, Oh A, Keum CW, Lee J, Lee JK, Son BR, Shin KS, Hahn YS. A novel likely pathogenic PLCG2 variant in a patient with a recurrent skin blistering disease and B-cell lymphopenia. Eur J Med Genet 2021; 65:104387. [PMID: 34768012 DOI: 10.1016/j.ejmg.2021.104387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/15/2021] [Accepted: 11/07/2021] [Indexed: 11/03/2022]
Abstract
Pathogenic variants of PLCG2 encoding phospholipase C gamma 2 (PLCγ2) were first reported in 2012 and their clinical manifestations vary widely. PLCG2-associated antibody deficiency and immune dysregulation (PLAID) and autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation (APLAID) are representative examples of PLCG2 pathogenic variants. In this report, we describe a 17-year-old male with recurrent blistering skin lesions, B-cell lymphopenia, and asthma. Distinct from the patients in previous reports, this patient had the heterozygous de novo c.2119T > C missense variant (NM_002661.4) resulting in a serine to proline amino acid substitution (p.Ser707Pro). The variant located to the PLCγ2 C-terminal Src homology 2 (cSH2) domain, which is a critical site for the restriction of intrinsic enzyme activity. This variant could be classified as "likely pathogenic" according to American College of Medical Genetics and Genomics guidelines. Laboratory results showed a reduction in circulating B cells without a decrease of serum IgG and IgA. Our findings expand the variety of clinical phenotypes for PLCG2 missense variants.
Collapse
Affiliation(s)
- Hee Sue Park
- Department of Laboratory Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea; Department of Laboratory Medicine, Chungbuk National University, College of Medicine, Cheongju, Republic of Korea
| | - Arum Oh
- Department of Pediatrics, Chungbuk National University Hospital, Cheongju, Republic of Korea; Department of Pediatrics, Chungbuk National University, College of Medicine, Cheongju, Republic of Korea
| | - Chang Won Keum
- Rare Genetic Disease Research Center, 3billion Inc, Seoul, Republic of Korea
| | - Jisu Lee
- Department of Pediatrics, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Joon Kee Lee
- Department of Pediatrics, Chungbuk National University Hospital, Cheongju, Republic of Korea; Department of Pediatrics, Chungbuk National University, College of Medicine, Cheongju, Republic of Korea
| | - Bo Ra Son
- Department of Laboratory Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea; Department of Laboratory Medicine, Chungbuk National University, College of Medicine, Cheongju, Republic of Korea
| | - Kyeong Seob Shin
- Department of Laboratory Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea; Department of Laboratory Medicine, Chungbuk National University, College of Medicine, Cheongju, Republic of Korea
| | - Youn-Soo Hahn
- Department of Pediatrics, Chungbuk National University Hospital, Cheongju, Republic of Korea; Department of Pediatrics, Chungbuk National University, College of Medicine, Cheongju, Republic of Korea.
| |
Collapse
|
5
|
Phospholipase Cγ2 regulates endocannabinoid and eicosanoid networks in innate immune cells. Proc Natl Acad Sci U S A 2021; 118:2112971118. [PMID: 34607960 DOI: 10.1073/pnas.2112971118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Human genetic studies have pointed to a prominent role for innate immunity and lipid pathways in immunological and neurodegenerative disorders. Our understanding of the composition and function of immunomodulatory lipid networks in innate immune cells, however, remains incomplete. Here, we show that phospholipase Cγ2 (PLCγ2 or PLCG2)-mutations in which are associated with autoinflammatory disorders and Alzheimer's disease-serves as a principal source of diacylglycerol (DAG) pools that are converted into a cascade of bioactive endocannabinoid and eicosanoid lipids by DAG lipase (DAGL) and monoacylglycerol lipase (MGLL) enzymes in innate immune cells. We show that this lipid network is tonically stimulated by disease-relevant human mutations in PLCγ2, as well as Fc receptor activation in primary human and mouse macrophages. Genetic disruption of PLCγ2 in mouse microglia suppressed DAGL/MGLL-mediated endocannabinoid-eicosanoid cross-talk and also caused widespread transcriptional and proteomic changes, including the reorganization of immune-relevant lipid pathways reflected in reductions in DAGLB and elevations in PLA2G4A. Despite these changes, Plcg2 -/- mice showed generally normal proinflammatory cytokine and chemokine responses to lipopolysaccharide treatment, instead displaying a more restricted deficit in microglial activation that included impairments in prostaglandin production and CD68 expression. Our findings enhance the understanding of PLCγ2 function in innate immune cells, delineating a role in cross-talk with endocannabinoid/eicosanoid pathways and modulation of subsets of cellular responses to inflammatory stimuli.
Collapse
|
6
|
Aksentijevich I, Schnappauf O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat Rev Rheumatol 2021; 17:405-425. [PMID: 34035534 DOI: 10.1038/s41584-021-00614-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
Monogenic autoinflammatory diseases are a group of rheumatologic disorders caused by dysregulation in the innate immune system. The molecular mechanisms of these disorders are linked to defects in inflammasome-mediated, NF-κB-mediated or interferon-mediated inflammatory signalling pathways, cytokine receptors, the actin cytoskeleton, proteasome complexes and various enzymes. As with other human disorders, disease-causing variants in a single gene can present with variable expressivity and incomplete penetrance. In some cases, pathogenic variants in the same gene can be inherited either in a recessive or dominant manner and can cause distinct and seemingly unrelated phenotypes, although they have a unifying biochemical mechanism. With an enhanced understanding of protein structure and functionality of protein domains, genotype-phenotype correlations are beginning to be unravelled. Many of the mutated proteins are primarily expressed in haematopoietic cells, and their malfunction leads to systemic inflammation. Disease presentation is also defined by a specific effect of the mutant protein in a particular cell type and, therefore, the resulting phenotype might be more deleterious in one tissue than in another. Many patients present with the expanded immunological disease continuum that includes autoinflammation, immunodeficiency, autoimmunity and atopy, which necessitate genetic testing.
Collapse
Affiliation(s)
- Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Oskar Schnappauf
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Magno L, Bunney TD, Mead E, Svensson F, Bictash MN. TREM2/PLCγ2 signalling in immune cells: function, structural insight, and potential therapeutic modulation. Mol Neurodegener 2021; 16:22. [PMID: 33823896 PMCID: PMC8022522 DOI: 10.1186/s13024-021-00436-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/24/2021] [Indexed: 01/21/2023] Open
Abstract
The central role of the resident innate immune cells of the brain (microglia) in neurodegeneration has become clear over the past few years largely through genome-wide association studies (GWAS), and has rapidly become an active area of research. However, a mechanistic understanding (gene to function) has lagged behind. That is now beginning to change, as exemplified by a number of recent exciting and important reports that provide insight into the function of two key gene products – TREM2 (Triggering Receptor Expressed On Myeloid Cells 2) and PLCγ2 (Phospholipase C gamma2) – in microglia, and their role in neurodegenerative disorders. In this review we explore and discuss these recent advances and the opportunities that they may provide for the development of new therapies.
Collapse
Affiliation(s)
- Lorenza Magno
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK.
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Emma Mead
- Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7FZ, UK
| | - Fredrik Svensson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Magda N Bictash
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
8
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
9
|
Martín-Nalda A, Fortuny C, Rey L, Bunney TD, Alsina L, Esteve-Solé A, Bull D, Anton MC, Basagaña M, Casals F, Deyá A, García-Prat M, Gimeno R, Juan M, Martinez-Banaclocha H, Martinez-Garcia JJ, Mensa-Vilaró A, Rabionet R, Martin-Begue N, Rudilla F, Yagüe J, Estivill X, García-Patos V, Pujol RM, Soler-Palacín P, Katan M, Pelegrín P, Colobran R, Vicente A, Arostegui JI. Severe Autoinflammatory Manifestations and Antibody Deficiency Due to Novel Hypermorphic PLCG2 Mutations. J Clin Immunol 2020; 40:987-1000. [PMID: 32671674 PMCID: PMC7505877 DOI: 10.1007/s10875-020-00794-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/20/2020] [Indexed: 01/28/2023]
Abstract
Autoinflammatory diseases (AIDs) were first described as clinical disorders characterized by recurrent episodes of seemingly unprovoked sterile inflammation. In the past few years, the identification of novel AIDs expanded their phenotypes toward more complex clinical pictures associating vasculopathy, autoimmunity, or immunodeficiency. Herein, we describe two unrelated patients suffering since the neonatal period from a complex disease mainly characterized by severe sterile inflammation, recurrent bacterial infections, and marked humoral immunodeficiency. Whole-exome sequencing detected a novel, de novo heterozygous PLCG2 variant in each patient (p.Ala708Pro and p.Leu845_Leu848del). A clear enhanced PLCγ2 activity for both variants was demonstrated by both ex vivo calcium responses of the patient's B cells to IgM stimulation and in vitro assessment of PLC activity. These data supported the autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation (APLAID) diagnosis in both patients. Immunological evaluation revealed a severe decrease of immunoglobulins and B cells, especially class-switched memory B cells, with normal T and NK cell counts. Analysis of bone marrow of one patient revealed a reduced immature B cell fraction compared with controls. Additional investigations showed that both PLCG2 variants activate the NLRP3-inflammasome through the alternative pathway instead of the canonical pathway. Collectively, the evidences here shown expand APLAID diversity toward more severe phenotypes than previously reported including dominantly inherited agammaglobulinemia, add novel data about its genetic basis, and implicate the alternative NLRP3-inflammasome activation pathway in the basis of sterile inflammation.
Collapse
Affiliation(s)
- Andrea Martín-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Claudia Fortuny
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Department of Pediatrics, Hospital Sant Joan de Deu, Esplugues, Spain
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
| | - Lourdes Rey
- Department of Pediatrics, Hospital Alvaro Cunqueiro, Vigo, Spain
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Laia Alsina
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
- Department of Allergy and Clinical Immunology Clinical Immunology and Primary, Immunodeficiencies Unit, Hospital Sant Joan de Déu, Esplugues, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
| | - Ana Esteve-Solé
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
- Department of Allergy and Clinical Immunology Clinical Immunology and Primary, Immunodeficiencies Unit, Hospital Sant Joan de Déu, Esplugues, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
| | - Daniel Bull
- ARUK Drug Discovery Institute, University College London, London, UK
| | - Maria Carmen Anton
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
| | - María Basagaña
- Allergy Section, Hospital Universitari Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, Spain
| | - Ferran Casals
- Genomics Core Facility, Experimental and Health Sciences Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Angela Deyá
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
- Department of Allergy and Clinical Immunology Clinical Immunology and Primary, Immunodeficiencies Unit, Hospital Sant Joan de Déu, Esplugues, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
| | - Marina García-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Ramon Gimeno
- Department of Immunology, Hospital del Mar, Institut Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Manel Juan
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Helios Martinez-Banaclocha
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Juan J Martinez-Garcia
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Anna Mensa-Vilaró
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
| | - Raquel Rabionet
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRJSD, CIBERER, Barcelona, Spain
| | - Nieves Martin-Begue
- Department of Pediatric Ophthalmology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Francesc Rudilla
- Histocompatibility and Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, Spain
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Jordi Yagüe
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Estivill
- Quantitative Genomic Medicine Laboratories (qGenomics), Esplugues del Llobregat, Barcelona, Catalonia, Spain
| | - Vicente García-Patos
- Department of Pediatric Dermatology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Ramon M Pujol
- Department of Dermatology, Hospital del Mar, Institut Mar d'Investigacions Mèdiques, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Matilda Katan
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Pablo Pelegrín
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain
| | - Asun Vicente
- Department of Pediatric Dermatology, Hospital Sant Joan de Deu, Esplugues, Spain
| | - Juan I Arostegui
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Abstract
Agents that specifically target pathologic mechanisms of survival have now been approved for the treatment of chronic lymphocytic leukemia in both the treatment-naive and relapsed/refractory settings. These 4 agents include the Bruton tyrosine kinase inhibitor ibrutinib, the B-cell leukemia/lymphoma-2 inhibitor venetoclax, and the phosphatidylinositol-3 kinase inhibitors idelalisib and duvelisib. Although clinical outcomes are improved with all of these inhibitors, acquired resistance does occur and leads to progression of disease. Resistance to targeted therapy can occur through direct mutations of the target or through the overexpression of alternative cell survival pathways not affected by the specific inhibitor. Determining which patients will develop resistance, why resistance occurs, how to overcome resistance, and when to test for resistance are all subjects of ongoing research. In this review, we describe the current data relative to the development of resistance to targeted therapies in CLL.
Collapse
|
11
|
Jiang Z, Feng A, Tao LI. Inherited Autoinflammatory Disease with Immunodeficiency Combined with IgA Nephropathy. AKTUEL RHEUMATOL 2020. [DOI: 10.1055/a-1135-8602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractThe etiology of unexplained periodic fever is often complex, and hereditary factors play an important role. This article describes a 26-year-old chinese women with intermittent fever for 9 years, with 10-year history of IgA nephropathy. Her fever is relieved during pregnancy, but after a baby is born, fever reappears, accompanied by headache, gasping after activity, chest pain, abdominal pain, blood in the stool, ataxia, intermittent back erythema, skin biopsy suggests amyloidosis, the autoinflammatory PLCG2 associated antibody deficiency and immune dysregulation was diagnosed by genetic testing. The fever was gradually relieved after treatment with rilonacept.
Collapse
Affiliation(s)
- Zhifeng Jiang
- Nephrology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China
| | - Aiqiao Feng
- Nephrology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China
| | - L I Tao
- Nephrology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China
| |
Collapse
|
12
|
Wist M, Meier L, Gutman O, Haas J, Endres S, Zhou Y, Rösler R, Wiese S, Stilgenbauer S, Hobeika E, Henis YI, Gierschik P, Walliser C. Noncatalytic Bruton's tyrosine kinase activates PLCγ 2 variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells. J Biol Chem 2020; 295:5717-5736. [PMID: 32184360 DOI: 10.1074/jbc.ra119.011946] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/26/2020] [Indexed: 12/25/2022] Open
Abstract
Treatment of patients with chronic lymphocytic leukemia (CLL) with inhibitors of Bruton's tyrosine kinase (BTK), such as ibrutinib, is limited by primary or secondary resistance to this drug. Examinations of CLL patients with late relapses while on ibrutinib, which inhibits BTK's catalytic activity, revealed several mutations in BTK, most frequently resulting in the C481S substitution, and disclosed many mutations in PLCG2, encoding phospholipase C-γ2 (PLCγ2). The PLCγ2 variants typically do not exhibit constitutive activity in cell-free systems, leading to the suggestion that in intact cells they are hypersensitive to Rac family small GTPases or to the upstream kinases spleen-associated tyrosine kinase (SYK) and Lck/Yes-related novel tyrosine kinase (LYN). The sensitivity of the PLCγ2 variants to BTK itself has remained unknown. Here, using genetically-modified DT40 B lymphocytes, along with various biochemical assays, including analysis of PLCγ2-mediated inositol phosphate formation, inositol phospholipid assessments, fluorescence recovery after photobleaching (FRAP) static laser microscopy, and determination of intracellular calcium ([Ca2+] i ), we show that various CLL-specific PLCγ2 variants such as PLCγ2S707Y are hyper-responsive to activated BTK, even in the absence of BTK's catalytic activity and independently of enhanced PLCγ2 phospholipid substrate supply. At high levels of B-cell receptor (BCR) activation, which may occur in individual CLL patients, catalytically-inactive BTK restored the ability of the BCR to mediate increases in [Ca2+] i Because catalytically-inactive BTK is insensitive to active-site BTK inhibitors, the mechanism involving the noncatalytic BTK uncovered here may contribute to preexisting reduced sensitivity or even primary resistance of CLL to these drugs.
Collapse
Affiliation(s)
- Martin Wist
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Laura Meier
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Orit Gutman
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jennifer Haas
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sascha Endres
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yuan Zhou
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Reinhild Rösler
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University Medical Center, 89081 Ulm, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, Ulm University Medical Center, 89081 Ulm, Germany
| | - Elias Hobeika
- Institute of Immunology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yoav I Henis
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany.
| | - Claudia Walliser
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
13
|
Liu Y, Bunney TD, Khosa S, Macé K, Beckenbauer K, Askwith T, Maslen S, Stubbs C, de Oliveira TM, Sader K, Skehel M, Gavin AC, Phillips C, Katan M. Structural insights and activating mutations in diverse pathologies define mechanisms of deregulation for phospholipase C gamma enzymes. EBioMedicine 2020; 51:102607. [PMID: 31918402 PMCID: PMC7000336 DOI: 10.1016/j.ebiom.2019.102607] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND PLCγ enzymes are key nodes in cellular signal transduction and their mutated and rare variants have been recently implicated in development of a range of diseases with unmet need including cancer, complex immune disorders, inflammation and neurodegenerative diseases. However, molecular nature of activation and the impact and dysregulation mechanisms by mutations, remain unclear; both are critically dependent on comprehensive characterization of the intact PLCγ enzymes. METHODS For structural studies we applied cryo-EM, cross-linking mass spectrometry and hydrogen-deuterium exchange mass spectrometry. In parallel, we compiled mutations linked to main pathologies, established their distribution and assessed their impact in cells and in vitro. FINDINGS We define structure of a complex containing an intact, autoinhibited PLCγ1 and the intracellular part of FGFR1 and show that the interaction is centred on the nSH2 domain of PLCγ1. We define the architecture of PLCγ1 where an autoinhibitory interface involves the cSH2, spPH, TIM-barrel and C2 domains; this relative orientation occludes PLCγ1 access to its substrate. Based on this framework and functional characterization, the mechanism leading to an increase in PLCγ1 activity for the largest group of mutations is consistent with the major, direct impact on the autoinhibitory interface. INTERPRETATION We reveal features of PLCγ enzymes that are important for determining their activation status. Targeting such features, as an alternative to targeting the PLC active site that has so far not been achieved for any PLC, could provide new routes for clinical interventions related to various pathologies driven by PLCγ deregulation. FUND: CR UK, MRC and AstaZeneca.
Collapse
Affiliation(s)
- Yang Liu
- Discovery Sciences, R&D, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Tom D. Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Sakshi Khosa
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Kévin Macé
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Katharina Beckenbauer
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Trevor Askwith
- Drug Discovery Group, Translational Research Office, School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Kasim Sader
- Cambridge Cryo-EM Pharmaceutical Consortium, Thermo Fisher Scientific, 11 JJ Thomson Avenue, Madingley Road, Cambridge, CB3 0FF, UK
| | - Mark Skehel
- Drug Discovery Group, Translational Research Office, School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Anne-Claude Gavin
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, UK
- Department for Cell Physiology and Metabolism, University of Geneva, Centre Medical Universitaire, Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | | | - Matilda Katan
- Discovery Sciences, R&D, AstraZeneca, Cambridge, CB4 0WG, UK
| |
Collapse
|