1
|
Li J, Wang C, Zhao S, Qi L, Yu J, Hu X, Chen L, Sun Y, Wang D, Jiang Y, Du Y. Custom-Designed Probes for the Accurate Determination of Epidermal Growth Factor Receptor Mutations and Their Allelic Configuration. Anal Chem 2024; 96:10056-10063. [PMID: 38832555 DOI: 10.1021/acs.analchem.4c01771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The identification of single nucleotide polymorphisms (SNPs) is of paramount importance for disease diagnosis and clinical prognostication. In the context of nonsmall cell lung cancer (NSCLC), the emergence of resistance mutations, exemplified by the epidermal growth factor receptor (EGFR) T790 M and C797S, is intricately linked to the therapeutic efficacy of EGFR tyrosine kinase inhibitors (EGFR-TKIs). Herein, a highly efficient and specific SNP detection platform for T790 M and C797S mutations has been engineered through the integration of an asymmetric polymerase chain reaction (PCR) and an ingeniously tailored four-way junction (4WJ) probe. Notably, a molecular beacon (MB) probe was judiciously designed to discern the allelic configuration of these mutations. The administration of first- and third-generation EGFR-TKIs demonstrates therapeutic efficacy solely when the mutations are in the trans configuration, characterized by a low fluorescence signal. In contrast, significant fluorescence by the MB probe is indicative of the C797S mutation being in a cis arrangement with T790M, thereby rendering the cells refractory to the therapeutic interventions of both first- and third-generation EGFR-TKIs. The assay is capable of concurrently detecting two point-mutations and ascertaining their allelic positions in a single test within 1.5 h, enhancing both efficiency and simplicity. It also exhibits high accuracy in the identification of clinical samples, offering promising implications for therapeutic guidelines. By enabling tailored treatment plans based on specific genetic profiles, our approach not only advances the precision of NSCLC treatment strategies but also marks a significant contribution to personalized medicine.
Collapse
Affiliation(s)
- Jiaqi Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Songchen Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200000, China
| | - Lijuan Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingyuan Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xintong Hu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun 130022, China
| | - Liguo Chen
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun 130022, China
| | - Yi Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Duo Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun 130022, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun 130022, China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Zhang X, Wang S, Wang J, Sun X, Xue J, Wang Z, Yang T, Weng L, Wang B, Luo G. A ddPCR platform based on a microfluidic chip with a dual-function flow-focusing structure for sample-to-result DNA quantification analysis. LAB ON A CHIP 2024; 24:738-750. [PMID: 38192250 DOI: 10.1039/d3lc01078c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Droplet digital PCR (ddPCR) is a powerful method for absolute nucleic acid quantification with high precision and accuracy. However, complicated operational steps have hampered the use and diffusion of ddPCR. Therefore, an automated, easy-to-use, low-sample-consumption, and portable ddPCR platform is urgently needed. This paper proposes a microfluidic ddPCR platform based on a microfluidic chip that can realize the sample-to-result function by switching the rotary valve, achieving the dual function of the flow-focusing structure for droplet generation and readout. Sample, generation oil, and analysis oil were pre-added to the reservoirs. Droplets were generated due to focusing flow, and after passing through the integrated temporary storage bin in the rotary valve, the droplets and oil subsequently entered the collecting tube, improving the droplet-to-oil volume ratio for enhanced thermal cycle performance. Droplets with an average diameter of 107.44 μm and a CV of 2.38% were generated using our chip under the optimal pressures. High-performance thermal cycling was achieved through improvements of the droplet-to-oil volume ratio of the sample, the integrated heating lid, the pure copper heating base, and the temperature-controlling algorithm. Gradient quantification experiments were conducted for the HER2 and CEP17 genes extracted from breast cancer cells, yielding strong linear correlations with R2 values of 0.9996 for FAM and 0.9989 for CY5. Moreover, pronounced linearity was obtained between the detected concentrations of HER2 and CEP17, indicated by a slope of 1.0091 and an R2 of 0.9997, signifying consistent HER2 : CEP17 ratios across various sample dilutions. The outcomes of the quantitative analysis, encompassing the dynamic range and the consistency of the HER2 : CEP17 ratio using our ddPCR platform, meet the standards required for breast cancer assessment and therapy. Our ddPCR platform is automated, portable, and capable of stable droplet generation, high-efficiency amplification, realization of the sample-to-result function based on dual-function flow-focusing structure, and accuracy absolute quantification, underscoring its significant potential for ddPCR analysis in clinical diagnostics.
Collapse
Affiliation(s)
- Xiaoliang Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| | - Shun Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| | - Jinxian Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| | - Xiaojie Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| | - Jinbing Xue
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| | - Zhenya Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| | - Tianhang Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| | - Liangfei Weng
- Suzhou Guoke Medical Science & Technology Development Co. Ltd, Suzhou 215163, People's Republic of China
| | - Bidou Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| | - Gangyin Luo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China.
| |
Collapse
|
3
|
Jeon J, Jang SY, Kwak EJ, Lee SH, Byun JY, Kim YY, Ahn YG, Singh P, Moon K, Kim IS. Design and synthesis of 4th generation EGFR inhibitors against human triple (Del19/T790M/C797S) mutation. Eur J Med Chem 2023; 261:115840. [PMID: 37783102 DOI: 10.1016/j.ejmech.2023.115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Epidermal growth factor receptor (EGFR)-targeted therapy is used to treat EGFR mutation-induced non-small cell lung cancer (NSCLC). However, its efficacy does not last beyond a certain period due to the development of primary and secondary resistance. First and second-generation inhibitors (e.g., gefitinib, erlotinib, and afatinib) induce EGFR T790M mutations, while third-generation inhibitors (e.g., osimertinib) induce C797S as a major target resistance mutation. Therefore, the C797S mutation is being actively researched. In this study, we investigated the structure-activity relationship of several synthesized compounds as fourth-generation inhibitors against the C797S mutation. We identified a compound 13k that displayed nanomolar potency and high selectivity. Moreover, we used a triple mutant xenograft mouse model to evaluate the in vivo efficacy of 13k in inhibiting EGFR C797S, which demonstrated exceptional profiles and satisfactory EGFR C797S inhibition efficacy. Based on its excellent in vitro and in vivo profiles, compound 13k can be considered a promising candidate for treating EGFR C797S mutations.
Collapse
Affiliation(s)
- Jiyoung Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Hanmi Research Center, Hanmi Pharmaceutical Co., Ltd., Hwaseong, 18469, Republic of Korea
| | - Sun Young Jang
- Hanmi Research Center, Hanmi Pharmaceutical Co., Ltd., Hwaseong, 18469, Republic of Korea
| | - Eun Joo Kwak
- Hanmi Research Center, Hanmi Pharmaceutical Co., Ltd., Hwaseong, 18469, Republic of Korea
| | - Sun Hoe Lee
- Hanmi Research Center, Hanmi Pharmaceutical Co., Ltd., Hwaseong, 18469, Republic of Korea
| | - Joo-Yun Byun
- Hanmi Research Center, Hanmi Pharmaceutical Co., Ltd., Hwaseong, 18469, Republic of Korea
| | - Yu-Yon Kim
- Hanmi Research Center, Hanmi Pharmaceutical Co., Ltd., Hwaseong, 18469, Republic of Korea
| | - Young Gil Ahn
- Hanmi Research Center, Hanmi Pharmaceutical Co., Ltd., Hwaseong, 18469, Republic of Korea
| | - Pargat Singh
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyeongwon Moon
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
4
|
Bogožalec Košir A, Muller S, Žel J, Milavec M, Mallory AC, Dobnik D. Fast and Accurate Multiplex Identification and Quantification of Seven Genetically Modified Soybean Lines Using Six-Color Digital PCR. Foods 2023; 12:4156. [PMID: 38002213 PMCID: PMC10670894 DOI: 10.3390/foods12224156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The proliferation of genetically modified organisms (GMOs) presents challenges to GMO testing laboratories and policymakers. Traditional methods, like quantitative real-time PCR (qPCR), face limitations in quantifying the increasing number of GMOs in a single sample. Digital PCR (dPCR), specifically multiplexing, offers a solution by enabling simultaneous quantification of multiple GMO targets. This study explores the use of the Naica six-color Crystal dPCR platform for quantifying five GM soybean lines within a single six-plex assay. Two four-color assays were also developed for added flexibility. These assays demonstrated high specificity, sensitivity (limit of detection or LOD < 25 copies per reaction) and precision (bias to an estimated copy number concentration <15%). Additionally, two approaches for the optimization of data analysis were implemented. By applying a limit-of-blank (LOB) correction, the limit of quantification (LOQ) and LOD could be more precisely determined. Pooling of reactions additionally lowered the LOD, with a two- to eight-fold increase in sensitivity. Real-life samples from routine testing were used to confirm the assays' applicability for quantifying GM soybean lines in complex samples. This study showcases the potential of the six-color Crystal dPCR platform to revolutionize GMO testing, facilitating comprehensive analysis of GMOs in complex samples.
Collapse
Affiliation(s)
- Alexandra Bogožalec Košir
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Sabine Muller
- Stilla Technologies, Biopark 1, Mail du Professeur Georges Mathé, 94800 Villejuif, France
| | - Jana Žel
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Mojca Milavec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Allison C. Mallory
- Stilla Technologies, Biopark 1, Mail du Professeur Georges Mathé, 94800 Villejuif, France
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Calabrese S, Markl AM, Neugebauer M, Krauth SJ, Borst N, von Stetten F, Lehnert M. Reporter emission multiplexing in digital PCRs (REM-dPCRs): direct quantification of multiple target sequences per detection channel by population specific reporters. Analyst 2023; 148:5243-5254. [PMID: 37727114 DOI: 10.1039/d3an00191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Digital PCRs (dPCRs) are widely used methods for the detection and quantification of rare abundant sequences relevant to fields such as liquid biopsy or oncology. In order to increase the information content and save valuable sample materials, there is a significant need for digital multiplexing methods that are easy to establish, analyse, and interpret, and ideally allow the usage of existing lab equipment. Herein, we present a novel reporter emission multiplexing approach for the digital PCR method (REM-dPCR), which meets these requirements. It further increases the multiplexing capacity of commercial dPCR devices. For example, we present a stepwise increase in multiplexing degrees from a monochrome two-plex assay in one detection channel to a six-plex REM-dPCR assay in a three-color dPCR device for KRAS/BRAF single nucleotide polymorphism (SNP) target sequences. The guidelines for the REM-dPCR design are presented, and the process from duplex to six-plex assay establishment, taking into account the target sequence-dependent effects on assay performance, is discussed. Furthermore, the assay-specific, sensitive and precise quantification of different fractions of KRAS mutant and wild-type DNA sequences in different ratios is demonstrated. To increase the device capacitance and the degree of multiplexing, the REM-dPCR uses the advantage of n target-independent reporter molecules in combination with target sequence-specific mediator probes. Different reporter types are labelled with fluorophores of different signal intensities but not necessarily different emission spectra. This leads to the generation of n independent single-positive populations in the dataspace, created by k detection channels, whereby n > k and n ≥ 2. By usage of target-independent but population-specific reporter types, a fixed set of six optimized signalling molecules could be defined. This reporter set enables the robust generation and precise differentiation of multiple fluorescence signals in dPCRs and can be transferred to new target panels. The set which enables stable signal generation and differentiation in a specified device would allow easy transfer to new target panels.
Collapse
Affiliation(s)
| | - Anja M Markl
- Hahn-Schickard, 79110 Freiburg, Germany.
- Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Maximilian Neugebauer
- Hahn-Schickard, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Stefanie J Krauth
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
- School of Health and Wellbeing, General Practice and Primary Care, University of Glasgow, Glasgow, UK
| | - Nadine Borst
- Hahn-Schickard, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, 79110 Freiburg, Germany
| | | |
Collapse
|
6
|
Liu DD, Muliaditan D, Viswanathan R, Cui X, Cheow LF. Melt-Encoded-Tags for Expanded Optical Readout in Digital PCR (METEOR-dPCR) Enables Highly Multiplexed Quantitative Gene Panel Profiling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301630. [PMID: 37485651 PMCID: PMC10520687 DOI: 10.1002/advs.202301630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/27/2023] [Indexed: 07/25/2023]
Abstract
Digital PCR (dPCR) is an important tool for precise nucleic acid quantification in clinical setting, but the limited multiplexing capability restricts its applications for quantitative gene panel profiling. Here, this work describes melt-encoded-tags for expanded optical readout in digital PCR (METEOR-dPCR), a simple two-step assay that enables simultaneous quantification of a large panel of arbitrary genes in a dPCR platform. Target genes are quantitatively converted into DNA tags with unique melting temperatures through a ligation approach. These tags are then counted and distinguished by their melt-curve profiles on a dPCR platform. A multiplexing capacity of M^N, where M is the number of resolvable melting temperature and N is the number of fluorescence channel, can be achieved. This work validates METEOR-dPCR with simultaneous DNA copy number profiling of 60 targets using dPCR in cancer cells, and demonstrates its sensitivity for estimating tumor fraction in mixed tumor and normal DNA samples. The rapid, quantitative, and highly multiplexed METEOR-dPCR assay will have wide appeal for many clinical applications.
Collapse
Affiliation(s)
- Dong Dong Liu
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Daniel Muliaditan
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- Genome institute of SingaporeAgency for ScienceTechnology and ResearchSingapore138672Singapore
| | - Ramya Viswanathan
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| | - Xu Cui
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| | - Lih Feng Cheow
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| |
Collapse
|
7
|
de Abreu AR, Op de Beeck K, Laurent-Puig P, Taly V, Benhaim L. The Position of Circulating Tumor DNA in the Clinical Management of Colorectal Cancer. Cancers (Basel) 2023; 15:1284. [PMID: 36831626 PMCID: PMC9954551 DOI: 10.3390/cancers15041284] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer type worldwide, with over 1.9 million new cases and 935,000 related deaths in 2020. Within the next decade, the incidence of CRC is estimated to increase by 60% and the mortality by 80%. One of the underlying causes of poor prognosis is late detection, with 60 to 70% of the diagnoses occurring at advanced stages. Circulating cell-free DNA (ccfDNA) is probably the most promising tool for screening, diagnosis, prediction of therapeutic response, and prognosis. More specifically, the analysis of the tumor fraction within the ccfDNA (circulating tumor DNA, ctDNA) has great potential to improve the management of CRC. The present review provides an up-to-date and comprehensive overview of the various aspects related to ctDNA detection in CRC.
Collapse
Affiliation(s)
- Ana Regina de Abreu
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium
- Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Pierre Laurent-Puig
- UMR-S1138, CNRS SNC5096, Équipe labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Université de Paris, 75006 Paris, France
| | - Valerie Taly
- UMR-S1138, CNRS SNC5096, Équipe labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Université de Paris, 75006 Paris, France
| | - Leonor Benhaim
- UMR-S1138, CNRS SNC5096, Équipe labélisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Université de Paris, 75006 Paris, France
- Department of Visceral and Surgical Oncology, Gustave Roussy, Cancer Campus, 114 rue Edouard Vaillant, 94805 Villejuif, France
| |
Collapse
|
8
|
Hou Y, Chen S, Zheng Y, Zheng X, Lin JM. Droplet-based digital PCR (ddPCR) and its applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Jianping W, Zipeng L, Tengfei P, Song Z. A multiple detection method for distinguishing gene mutations based on melting curves of extended quenching probes. Heliyon 2022; 8:e11856. [DOI: 10.1016/j.heliyon.2022.e11856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/24/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
|
10
|
Ren Y, Cao L, You M, Ji J, Gong Y, Ren H, Xu F, Guo H, Hu J, Li Z. “SMART” digital nucleic acid amplification technologies for lung cancer monitoring from early to advanced stages. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Yin J, Xia L, Zou Z, Zhuang J, Mu Y. A direct and multiplex digital PCR chip for EGFR mutation. Talanta 2022; 250:123725. [PMID: 35834974 DOI: 10.1016/j.talanta.2022.123725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 12/25/2022]
Abstract
Digital PCR is a sensitive detection method, which has important applicability in liquid biopsy through the measurement of ctDNA. However, the current sample pre-processing of ctDNA and the multiplex detection capability of digital PCR have limitations. In view of the above two aspects, we developed a digital PCR chip with multiplex capability and established a direct amplification detection method without nucleic acid extraction. Through the design and processing of the chip, we established a self-priming multiplex digital PCR chip, which can detect 4 targets using single fluorescence. This method can be applied to most digital PCR chips. In addition, we used the plasma of lung cancer patients to establish a direct digital PCR detection method based on the chip, thereby avoiding disadvantages caused by the ctDNA extraction process. As a proof of concept, we prepared blood plasma samples with different concentration of ctDNA to prove the chip's multiplex detection capabilities and the results suggested that this multiplex digital PCR is accurate. Overall, our platform provides a novel and promising option for the detection of ctDNA.
Collapse
Affiliation(s)
- Juxin Yin
- School of Information and Electrical Engineering, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, China
| | - Liping Xia
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Zheyu Zou
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Jianjian Zhuang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China.
| |
Collapse
|
12
|
Riudavets M, Lamberts V, Vasseur D, Auclin E, Aldea M, Jovelet C, Naltet C, Lavaud P, Gazzah A, Aboubakar F, Dorta M, Remon J, Rouleau E, Ngocamus M, Nicotra C, Lacroix L, Besse B, Mezquita L, Planchard D. Clinical utility and outcomes impact of crystal digital PCR of sensitizing and resistance EGFR mutations in patients with advanced non-small cell lung cancer. Clin Lung Cancer 2022; 23:e377-e383. [DOI: 10.1016/j.cllc.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022]
|
13
|
Wu LR, Dai P, Wang MX, Chen SX, Cohen EN, Jayachandran G, Zhang JX, Serrano AV, Xie NG, Ueno NT, Reuben JM, Barcenas CH, Zhang DY. Ensemble of nucleic acid absolute quantitation modules for copy number variation detection and RNA profiling. Nat Commun 2022; 13:1791. [PMID: 35379811 PMCID: PMC8979981 DOI: 10.1038/s41467-022-29487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/18/2022] [Indexed: 12/03/2022] Open
Abstract
Current gold standard for absolute quantitation of a specific DNA sequence is droplet digital PCR (ddPCR), which has been applied to copy number variation (CNV) detection. However, the number of quantitation modules in ddPCR is limited by fluorescence channels, which thus limits the CNV sensitivity due to sampling error following Poisson distribution. Here we develop a PCR-based molecular barcoding NGS approach, quantitative amplicon sequencing (QASeq), for accurate absolute quantitation scalable to over 200 quantitation modules. By attaching barcodes to individual target molecules with high efficiency, 2-plex QASeq exhibits higher and more consistent conversion yield than ddPCR in absolute molecule count quantitation. Multiplexed QASeq improves CNV sensitivity allowing confident distinguishment of 2.05 ploidy from normal 2.00 ploidy. We apply multiplexed QASeq to serial longitudinal plasma cfDNA samples from patients with metastatic ERBB2+ (HER2+ ) breast cancer seeking association with tumor progression. We further show an RNA QASeq panel for targeted expression profiling.
Collapse
Affiliation(s)
- Lucia Ruojia Wu
- Department of Bioengineering, Rice University, Houston, TX, USA
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Peng Dai
- Department of Bioengineering, Rice University, Houston, TX, USA
- NuProbe USA, Houston, TX, USA
| | | | - Sherry Xi Chen
- Department of Bioengineering, Rice University, Houston, TX, USA
- NuProbe USA, Houston, TX, USA
| | - Evan N Cohen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gitanjali Jayachandran
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Nina Guanyi Xie
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James M Reuben
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos H Barcenas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | |
Collapse
|
14
|
Vargas DY, Tyagi S, Marras SA, Moerzinger P, Abin-Carriquiry JA, Cuello M, Rodriguez C, Martinez A, Makhnin A, Farina A, Patel C, Chuang TL, Li BT, Kramer FR. Multiplex SuperSelective PCR Assays for the Detection and Quantitation of Rare Somatic Mutations in Liquid Biopsies. J Mol Diagn 2022; 24:189-204. [PMID: 34954118 PMCID: PMC8961470 DOI: 10.1016/j.jmoldx.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
Abstract
SuperSelective primers, by virtue of their unique design, enable the simultaneous identification and quantitation of inherited reference genes and rare somatic mutations in routine multiplex PCR assays, while virtually eliminating signals from abundant wild-type sequences closely related to the target mutations. These assays are sensitive, specific, rapid, and low cost, and can be performed in widely available spectrofluorometric thermal cyclers. Herein, we provide examples of SuperSelective PCR assays that target eight different somatic EGFR mutations, irrespective of whether they occur in the same codon, occur at separate sites within the same exon, or involve deletions. In addition, we provide examples of SuperSelective PCR assays that detect specific EGFR mutations in circulating tumor DNA present in the plasma of liquid biopsies obtained from patients with non-small-cell lung cancer. The results suggest that multiplex SuperSelective PCR assays may enable the choice, and subsequent modification, of effective targeted therapies for the treatment of an individual's cancer, utilizing frequent noninvasive liquid biopsies.
Collapse
Affiliation(s)
- Diana Y. Vargas
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Salvatore A.E. Marras
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | | | | | - Mauricio Cuello
- Servicio de Oncología Clínica, Hospital de Clínicas, Montevideo, Uruguay
| | - Clara Rodriguez
- Servicio de Oncología Clínica, Hospital de Clínicas, Montevideo, Uruguay
| | | | - Alex Makhnin
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea Farina
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chintan Patel
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tuan L. Chuang
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bob T. Li
- Memorial Sloan Kettering Cancer Center, New York, New York,Weill-Cornell Medicine, New York, New York,Address correspondence to Fred R. Kramer, Ph.D., Public Health Research Institute, 225 Warren St., Newark, NJ 07103; or Bob T. Li, M.D., Thoracic Liquid Biopsy Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065.
| | - Fred R. Kramer
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey,Address correspondence to Fred R. Kramer, Ph.D., Public Health Research Institute, 225 Warren St., Newark, NJ 07103; or Bob T. Li, M.D., Thoracic Liquid Biopsy Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065.
| |
Collapse
|
15
|
Schlenker F, Kipf E, Deuter M, Höffkes I, Lehnert M, Zengerle R, von Stetten F, Scherer F, Wehrle J, von Bubnoff N, Juelg P, Hutzenlaub T, Borst N. Stringent Base Specific and Optimization-Free Multiplex Mediator Probe ddPCR for the Quantification of Point Mutations in Circulating Tumor DNA. Cancers (Basel) 2021; 13:cancers13225742. [PMID: 34830896 PMCID: PMC8616434 DOI: 10.3390/cancers13225742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Cancer treatment strategies and their follow-up monitoring are changing to personalized therapies, based on molecular genetic information from the individual person. Liquid biopsy, where this molecular information is derived from body fluids such as blood, has the potential to provide a systemic fingerprint of cancer dynamics, and, compared to tissue biopsy, is much less invasive for the patient. We used the previously published mediator probe PCR technology for liquid biopsy detection of several mutations in one reaction, so-called digital multiplex PCR. Quantification of point mutations in plasma eluates from follow-up patients using 4-plex digital assays showed a comparable performance to reference 2-plex assays. As a key feature, the presented multiplex assays require no laborious optimization as they use the same concentrations and cycling conditions for all targets. This allows for flexible design and interchangeable target panels, thus the assay is easily adaptable for individual patient monitoring and reduces sample consumption. Abstract There is an increasing demand for optimization-free multiplex assays to rapidly establish comprehensive target panels for cancer monitoring by liquid biopsy. We present the mediator probe (MP) PCR for the quantification of the seven most frequent point mutations and corresponding wild types (KRAS and BRAF) in colorectal carcinoma. Standardized parameters for the digital assay were derived using design of experiments. Without further optimization, the limit of detection (LoD) was determined through spiking experiments with synthetic mutant DNA in human genomic DNA. The limit of blank (LoB) was measured in cfDNA plasma eluates from healthy volunteers. The 2-plex and 4-plex MP ddPCR assays showed a LoB of 0 copies/mL except for 4-plex KRAS G13D (9.82 copies/mL) and 4-plex BRAF V600E (16.29 copies/mL) and allele frequencies of 0.004% ≤ LoD ≤ 0.38% with R2 ≥ 0.98. The quantification of point mutations in patient plasma eluates (18 patients) during follow-up using the 4-plex MP ddPCR showed a comparable performance to the reference assays. The presented multiplex assays need no laborious optimization, as they use the same concentrations and cycling conditions for all targets. This facilitates assay certification, allows a fast and flexible design process, and is thus easily adaptable for individual patient monitoring.
Collapse
Affiliation(s)
- Franziska Schlenker
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
| | - Elena Kipf
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
| | - Max Deuter
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.D.); (F.S.); (J.W.); (N.v.B.)
| | - Inga Höffkes
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
| | - Michael Lehnert
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Florian Scherer
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.D.); (F.S.); (J.W.); (N.v.B.)
| | - Julius Wehrle
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.D.); (F.S.); (J.W.); (N.v.B.)
| | - Nikolas von Bubnoff
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.D.); (F.S.); (J.W.); (N.v.B.)
- Department of Hematology and Oncology, Campus Lübeck, University Hospital Schleswig-Holstein, 23562 Lübeck, Germany
| | - Peter Juelg
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
| | - Tobias Hutzenlaub
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Nadine Borst
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (F.S.); (E.K.); (I.H.); (M.L.); (R.Z.); (F.v.S.); (P.J.); (T.H.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-203-73208
| |
Collapse
|
16
|
Olmedillas-López S, Olivera-Salazar R, García-Arranz M, García-Olmo D. Current and Emerging Applications of Droplet Digital PCR in Oncology: An Updated Review. Mol Diagn Ther 2021; 26:61-87. [PMID: 34773243 DOI: 10.1007/s40291-021-00562-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 12/14/2022]
Abstract
In the era of personalized medicine and targeted therapies for the management of patients with cancer, ultrasensitive detection methods for tumor genotyping, such as next-generation sequencing or droplet digital polymerase chain reaction (ddPCR), play a significant role. In the search for less invasive strategies for diagnosis, prognosis and disease monitoring, the number of publications regarding liquid biopsy approaches using ddPCR has increased substantially in recent years. There is a long list of malignancies in which ddPCR provides a reliable and accurate tool for detection of nucleic acid-based markers derived from cell-free DNA, cell-free RNA, circulating tumor cells, extracellular vesicles or exosomes when isolated from whole blood, plasma and serum, helping to anticipate tumor relapse or unveil intratumor heterogeneity and clonal evolution in response to treatment. This updated review describes recent developments in ddPCR platforms and provides a general overview about the major applications of liquid biopsy in blood, including its utility for molecular response and minimal residual disease monitoring in hematological malignancies or the therapeutic management of patients with colorectal or lung cancer, particularly for the selection and monitoring of treatment with tyrosine kinase inhibitors. Although plasma is the main source of genetic material for tumor genomic profiling, liquid biopsy by ddPCR is being investigated in a wide variety of biologic fluids, such as cerebrospinal fluid, urine, stool, ocular fluids, sputum, saliva, bronchoalveolar lavage, pleural effusion, mucin, peritoneal fluid, fine needle aspirate, bile or pancreatic juice. The present review focuses on these "alternative" sources of genetic material and their analysis by ddPCR in different kinds of cancers.
Collapse
Affiliation(s)
- Susana Olmedillas-López
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.
| | - Rocío Olivera-Salazar
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Mariano García-Arranz
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain
| | - Damián García-Olmo
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD), Avda. Reyes Católicos, 2, 28040, Madrid, Spain.,Department of Surgery, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain.,Department of Surgery, Fundación Jiménez Díaz University Hospital (FJD), 28040, Madrid, Spain
| |
Collapse
|
17
|
Schlenker F, Kipf E, Borst N, Hutzenlaub T, Zengerle R, von Stetten F, Juelg P. Virtual Fluorescence Color Channels by Selective Photobleaching in Digital PCR Applied to the Quantification of KRAS Point Mutations. Anal Chem 2021; 93:10538-10545. [PMID: 34279918 DOI: 10.1021/acs.analchem.1c01488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multiplexing of analyses is essential to reduce sample and reagent consumption in applications with large target panels. In applications such as cancer diagnostics, the required degree of multiplexing often exceeds the number of available fluorescence channels in polymerase chain reaction (PCR) devices. The combination of photobleaching-sensitive and photobleaching-resistant fluorophores of the same color can boost the degree of multiplexing by a factor of 2 per channel. The only additional hardware required to create virtual fluorescence color channels is a low-cost light-emitting diode (LED) setup for selective photobleaching. Here, we present an assay concept for fluorescence color multiplexing in up to 10 channels (five standard channels plus five virtual channels) using the mediator probe PCR with universal reporter (UR) fluorogenic oligonucleotides. We evaluate the photobleaching characteristic of 21 URs, which cover the whole spectral range from blue to crimson. This comprehensive UR data set is employed to demonstrate the use of three virtual channels in addition to the three standard channels of a commercial dPCR device (blue, green, and red) targeting cancer-associated point mutations (KRAS G12D and G12V). Moreover, a LOD (limit of detection) analysis of this assay confirms the high sensitivity of the multiplexing method (KRAS G12D: 16 DNA copies/reaction in the standard red channel and KRAS G12V: nine DNA copies/reaction in the virtual red channel). Based on the presented data set, optimal fluorogenic reporter combinations can be easily selected for the application-specific creation of virtual channels, enabling a high degree of multiplexing at low optical and technical effort.
Collapse
Affiliation(s)
| | - Elena Kipf
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Nadine Borst
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Tobias Hutzenlaub
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Peter Juelg
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
18
|
Marchio A, Batejat C, Vanhomwegen J, Feher M, Grassin Q, Chazal M, Raulin O, Farges-Berth A, Reibel F, Estève V, Dejean A, Jouvenet N, Manuguerra JC, Pineau P. ddPCR increases detection of SARS-CoV-2 RNA in patients with low viral loads. Arch Virol 2021; 166:2529-2540. [PMID: 34251549 PMCID: PMC8273560 DOI: 10.1007/s00705-021-05149-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 01/16/2023]
Abstract
RT-qPCR detection of SARS-CoV-2 RNA still represents the method of reference to diagnose and monitor COVID-19. From the onset of the pandemic, however, doubts have been expressed concerning the sensitivity of this molecular diagnosis method. Droplet digital PCR (ddPCR) is a third-generation PCR technique that is particularly adapted to detecting low-abundance targets. We developed two-color ddPCR assays for the detection of four different regions of SARS-CoV-2 RNA, including non-structural (IP4-RdRP, helicase) and structural (E, N) protein-encoding sequences. We observed that N or E subgenomic RNAs are generally more abundant than IP4 and helicase RNA sequences in cells infected in vitro, suggesting that detection of the N gene, coding for the most abundant subgenomic RNA of SARS-CoV-2, increases the sensitivity of detection during the highly replicative phase of infection. We investigated 208 nasopharyngeal swabs sampled in March-April 2020 in different hospitals of Greater Paris. We found that 8.6% of informative samples (n = 16/185, P < 0.0001) initially scored as “non-positive” (undetermined or negative) by RT-qPCR were positive for SARS-CoV-2 RNA by ddPCR. Our work confirms that the use of ddPCR modestly, but significantly, increases the proportion of upper airway samples testing positive in the framework of first-line diagnosis of a French population.
Collapse
Affiliation(s)
- Agnès Marchio
- Unité "Organisation nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.
| | - Christophe Batejat
- Cellule d'Intervention Biologique d'Urgence, Institut Pasteur, Paris, France
| | - Jessica Vanhomwegen
- Cellule d'Intervention Biologique d'Urgence, Institut Pasteur, Paris, France
| | - Maxence Feher
- Cellule d'Intervention Biologique d'Urgence, Institut Pasteur, Paris, France
| | - Quentin Grassin
- Cellule d'Intervention Biologique d'Urgence, Institut Pasteur, Paris, France
| | - Maxime Chazal
- Département de Virologie, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3569, Institut Pasteur, Paris, France
| | - Olivia Raulin
- Laboratoire de Biologie Médicale, Centre Hospitalier Compiègne-Noyon, Compiègne, France
| | - Anne Farges-Berth
- Laboratoire de Biologie Médicale, Groupe Hospitalier Nord-Essonne, Site de Longjumeau, Longjumeau, France
| | - Florence Reibel
- Laboratoire de Biologie Médicale, Groupe Hospitalier Nord-Essonne, Site d'Orsay, Orsay, France
| | - Vincent Estève
- Laboratoire de Biologie Médicale, Groupe Hospitalier Nord-Essonne, Site de Longjumeau, Longjumeau, France
- Laboratoire de Biologie Médicale, Groupe Hospitalier Nord-Essonne, Site d'Orsay, Orsay, France
| | - Anne Dejean
- Unité "Organisation nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Nolwenn Jouvenet
- Département de Virologie, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3569, Institut Pasteur, Paris, France
| | | | - Pascal Pineau
- Unité "Organisation nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.
| |
Collapse
|
19
|
Ahn YJ, Fuchs J, Houben A, Heckmann S. High-throughput measuring of meiotic recombination rates in barley pollen nuclei using Crystal Digital PCR TM. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:649-661. [PMID: 33949030 DOI: 10.1111/tpj.15305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Breeding exploits novel allelic combinations assured by meiotic recombination. Barley (Hordeum vulgare) single pollen nucleus genotyping enables measurement of meiotic recombination rates in gametes before fertilization without the need for segregating populations. However, so far, established methods rely on whole-genome amplification of every single pollen nucleus due to their limited DNA content, thus restricting the number of analyzed samples. In this study, high-throughput measurements of meiotic recombination rates in barley pollen nuclei without whole-genome amplification were performed through a Crystal Digital PCRTM -based genotyping assay. Meiotic recombination rates within two centromeric and two distal chromosomal intervals were measured in hybrid plants by genotyping a total of >42 000 individual pollen nuclei (up to 4900 nuclei analyzed per plant). Determined recombination frequencies in pollen nuclei were similar to frequencies in segregating populations. We improved the efficiency of the genotyping by pretreating the pollen nuclei with a thermostable restriction enzyme. Additional opportunities for a higher sample throughput and a further increase of the genotyping efficiency are presented and discussed. Taken together, single barley pollen nucleus genotyping based on Crystal Digital PCRTM enables reliable, rapid and high-throughput meiotic recombination measurements within defined chromosomal intervals of intraspecific hybrid plants. The successful encapsulation of nuclei from a range of species with different nuclear and genome sizes suggests that the proposed method is broadly applicable to genotyping single nuclei.
Collapse
Affiliation(s)
- Yun-Jae Ahn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, Stadt Seeland, 06466, Germany
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, Stadt Seeland, 06466, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, Stadt Seeland, 06466, Germany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, Stadt Seeland, 06466, Germany
| |
Collapse
|
20
|
Gaňová M, Zhang H, Zhu H, Korabečná M, Neužil P. Multiplexed digital polymerase chain reaction as a powerful diagnostic tool. Biosens Bioelectron 2021; 181:113155. [PMID: 33740540 DOI: 10.1016/j.bios.2021.113155] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/13/2021] [Accepted: 03/06/2021] [Indexed: 01/30/2023]
Abstract
The digital polymerase chain reaction (dPCR) multiplexing method can simultaneously detect and quantify closely related deoxyribonucleic acid sequences in complex mixtures. The dPCR concept is continuously improved by the development of microfluidics and micro- and nanofabrication, and different complex techniques are introduced. In this review, we introduce dPCR techniques based on sample compartmentalization, droplet- and chip-based systems, and their combinations. We then discuss dPCR multiplexing methods in both laboratory research settings and advanced or routine clinical applications. We focus on their strengths and weaknesses with regard to the character of biological samples and to the required precision of such analysis, as well as showing recently published work based on those methods. Finally, we envisage possible future achievements in this field.
Collapse
Affiliation(s)
- Martina Gaňová
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Haoqing Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Hanliang Zhu
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Marie Korabečná
- 1st Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University and General University Hospital, 12800, Prague, Czech Republic
| | - Pavel Neužil
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic; School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; The Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic.
| |
Collapse
|
21
|
Therapy Monitoring of EGFR-Positive Non–Small-Cell Lung Cancer Patients Using ddPCR Multiplex Assays. J Mol Diagn 2021; 23:495-505. [DOI: 10.1016/j.jmoldx.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022] Open
|
22
|
Abulaiti A, Salai A, Sun X, Yibulayin W, Gao Y, Gopinath SCB, Sun W. Nano-silica embedded polydimethylsiloxane on interdigitated sensor as adhesive polymer for detecting lung cancer mutation. Biotechnol Appl Biochem 2021; 69:451-460. [PMID: 33576539 DOI: 10.1002/bab.2122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/05/2021] [Indexed: 12/22/2022]
Abstract
Non-small cell lung cancer (NSCLC) incited by epidermal growth factor receptor (EGFR) mutation makes up ∼85% of lung cancer diagnosed and death cases worldwide. The presented study introduced an alternative approach in detecting EGFR mutation using nano-silica integrated with polydimethylsiloxane (PDMS) polymer on interdigitated electrode (IDE) sensor. A 400 μm gap-sized aluminum IDE was modified with nano-polymer layer, which was made up of silica nanoparticles and PDMS polymer. IDE and PDMS-coated IDE (PDMS/IDE) were imaged using electron microscopes that reveals its smooth and ideal sensor morphology. The nano-silica-integrated PDMS/IDE surface was immobilized with EGFR probe and target to specify the lung cancer detection. The sensor specificity was justified through the insignificant current readouts with one-base mismatch and noncomplementary targets. The sensitivity of nano-silica-integrated PDMS/IDE was examined with mutant target spiked in human serum, where the resulting current affirms the detection of EGFR mutation. Based on the slope of the calibration curve, the sensitivity of nano-silica-integrated PDMS/IDE was 2.24E-9 A M-1 . The sensor recognizes EGFR mutation lowest at 1 aM complementary mutant target; however, the detection limit obtained based on 3σ calculation is 10 aM with regression value of 0.97.
Collapse
Affiliation(s)
- Abulimiti Abulaiti
- Department of Thoracic Surgery, Xinjiang Tumor Hospital, Urumqi, People's Republic of China
| | - Adili Salai
- Department of Thoracic Surgery, Xinjiang Tumor Hospital, Urumqi, People's Republic of China
| | - Xiaohong Sun
- Department of Thoracic Surgery, Xinjiang Tumor Hospital, Urumqi, People's Republic of China
| | - Waresijiang Yibulayin
- Department of Thoracic Surgery, Xinjiang Tumor Hospital, Urumqi, People's Republic of China
| | - Yunfei Gao
- Department of Thoracic Surgery, Xinjiang Tumor Hospital, Urumqi, People's Republic of China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Wei Sun
- Department of Thoracic Surgery, Xinjiang Tumor Hospital, Urumqi, People's Republic of China
| |
Collapse
|
23
|
Anazawa T, Yamazaki M, Yamamoto S, Inaba R. Ultra-small four-emission-point spectral-detection system using seven-dichroic-mirror array. Talanta 2021; 222:121667. [PMID: 33167280 DOI: 10.1016/j.talanta.2020.121667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
An ultra-small and highly efficient spectral-detection system for four emission points was developed by integrating an injection-molded-plastic four-lens array, a seven-dichroic-mirror array, and an image sensor as one device. The seven-dichroic-mirror array was further miniaturized compared to our previous four-dichroic-mirror array by measures including reduction of the thickness of each dichroic mirror from 1.0 to 0.5 mm. As a result, the system enables highly sensitive and low-crosstalk seven-color detection of laser-induced fluorescence from four emission points of a four-capillary array. This capability allows simultaneous quantification of up-to-seven fluorophores concurrently present in each capillary. Sanger DNA sequencing and STR genotyping by four-capillary-array electrophoresis were experimentally demonstrated by the system.
Collapse
Affiliation(s)
- Takashi Anazawa
- Research & Development Group, Hitachi Ltd., 1-280 Higashi-koigakubo Kokubunji, Tokyo, 185-8601, Japan.
| | - Motohiro Yamazaki
- Analytical & Medical Solution Business Group, Hitachi High-Tech Corporation, 882 Ichige Hitachinaka, Ibaraki, 312-8504, Japan
| | - Shuhei Yamamoto
- Analytical & Medical Solution Business Group, Hitachi High-Tech Corporation, 882 Ichige Hitachinaka, Ibaraki, 312-8504, Japan
| | - Ryoji Inaba
- Analytical & Medical Solution Business Group, Hitachi High-Tech Corporation, 882 Ichige Hitachinaka, Ibaraki, 312-8504, Japan
| |
Collapse
|
24
|
The Role of the Liquid Biopsy in Decision-Making for Patients with Non-Small Cell Lung Cancer. J Clin Med 2020; 9:jcm9113674. [PMID: 33207619 PMCID: PMC7696948 DOI: 10.3390/jcm9113674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
Liquid biopsy is a rapidly emerging tool of precision oncology enabling minimally invasive molecular diagnostics and longitudinal monitoring of treatment response. For the clinical management of advanced stage lung cancer patients, detection and quantification of circulating tumor DNA (ctDNA) is now widely adopted into clinical practice. Still, interpretation of results and validation of ctDNA-based treatment decisions remain challenging. We report here our experience implementing liquid biopsies into the clinical management of lung cancer. We discuss advantages and limitations of distinct ctDNA assay techniques and highlight our approach to the analysis of recurrent molecular alterations found in lung cancer. Moreover, we report three exemplary clinical cases illustrating the complexity of interpreting liquid biopsy results in clinical practice. These cases underscore the potential and current limitations of liquid biopsy, focusing on the difficulty of interpreting discordant findings. In our view, despite all current limitations, the analysis of ctDNA in lung cancer patients is an essential and highly versatile complementary diagnostic tool for the clinical management of lung cancer patients in the era of precision oncology.
Collapse
|
25
|
The new opportunities in medicinal chemistry of fourth-generation EGFR inhibitors to overcome C797S mutation. Eur J Med Chem 2020; 210:112995. [PMID: 33243531 DOI: 10.1016/j.ejmech.2020.112995] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a receptor for epithelial growth factor (EGF) cell proliferation and signaling, which is related to the inhibition of tumor cell proliferation, angiogenesis, tumor invasion, metastasis, and apoptosis. Thus, it has become an important target for the treatment of non-small cell lung cancer (NSCLC). The first to the third-generation EGFR inhibitors have demonstrated powerful efficacy and brought a prospect to patients. Unfortunately, after 9-15 months of treatment, they all developed resistance without exception. As for the resistance of third-generation inhibitors, no major breakthrough has been made in this field. In this review, we discussed the recent advances in medicinal chemistry of fourth-generation EGFR-TKIs, as well as further discussed the clinical challenges and future prospects of treating patients with EGFR mutations resistant to third-generation EGFR-TKIs.
Collapse
|
26
|
Nakagawa T, Tanaka J, Harada K, Shiratori A, Shimazaki Y, Yokoi T, Uematsu C, Kohara Y. 10-Plex Digital Polymerase Chain Reaction with Four-Color Melting Curve Analysis for Simultaneous KRAS and BRAF Genotyping. Anal Chem 2020; 92:11705-11713. [PMID: 32786457 DOI: 10.1021/acs.analchem.0c01704] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Digital PCR (dPCR) is a promising method for performing liquid biopsies that quantifies nucleic acids more sensitively than real-time PCR. However, dPCR shows large fluctuations in the fluorescence intensity of droplets or wells due to insufficient PCR amplification in the small partitions, limiting the multiplexing capability of using the fluorescence intensity. In this study, we propose a measurement method that combines dPCR with melting curve analysis for highly multiplexed genotyping. A sample was digitized into a silicon chip with up to 2 × 104 wells in which asymmetric PCR was performed to obtain more single-stranded amplicons that were complementary to molecular beacon probes. Fluorescence images were captured while controlling the temperature of the chip, and the melting curve was measured for each well. Then, genotyping was performed by using the fluorescence intensity, the dye color of the probe, and the melting temperature (Tm). Because the Tm of the PCR products is not highly dependent on the amplification efficiency of PCR, genotyping accuracy is improved by using Tm values, enabling highly multiplexed genotyping. The concept was confirmed by simultaneously identifying wild-type KRAS, BRAF, and eight mutants of these genes (G12D, G12R, G12V, G13D, G12A, G12C, G12S, and V600E) through four-color melting curve analysis. To the best of our knowledge, this is the first demonstration of the genotyping of 10 DNA groups including single mutations of cancer-related genes by combining dPCR with four-color melting curve analysis.
Collapse
Affiliation(s)
- Tatsuo Nakagawa
- Biosystems Research Department, Research & Development Group, Hitachi, Ltd.,1-280, Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
| | - Junko Tanaka
- Biosystems Research Department, Research & Development Group, Hitachi, Ltd.,1-280, Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
| | - Kunio Harada
- Biosystems Research Department, Research & Development Group, Hitachi, Ltd.,1-280, Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
| | - Akiko Shiratori
- Biosystems Research Department, Research & Development Group, Hitachi, Ltd.,1-280, Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
| | - Yuzuru Shimazaki
- Biosystems Research Department, Research & Development Group, Hitachi, Ltd.,1-280, Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
| | - Takahide Yokoi
- Biosystems Research Department, Research & Development Group, Hitachi, Ltd.,1-280, Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
| | - Chihiro Uematsu
- Biosystems Research Department, Research & Development Group, Hitachi, Ltd.,1-280, Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
| | - Yoshinobu Kohara
- Biosystems Research Department, Research & Development Group, Hitachi, Ltd.,1-280, Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan
| |
Collapse
|
27
|
Henley WH, Siegfried NA, Ramsey JM. Spatially isolated reactions in a complex array: using magnetic beads to purify and quantify nucleic acids with digital and quantitative real-time PCR in thousands of parallel microwells. LAB ON A CHIP 2020; 20:1771-1779. [PMID: 32347869 DOI: 10.1039/d0lc00069h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quantitative real-time PCR (qPCR) has been the standard for nucleic acid quantification as it has a large dynamic range and good sensitivity. Digital PCR is rapidly supplanting qPCR in many applications as it provides excellent quantitative precision. However, both techniques require extensive sample preparation, and highly multiplexed assays that quantify multiple targets can be difficult to design and optimize. Here we describe a new nucleic acid quantification method that we call Spatially Isolated Reactions in a Complex Array (SIRCA), a highly parallel nucleic acid preparation, amplification, and detection approach that uses superparamagnetic microbeads in an array of thousands of 100 fL microwells to simplify sample purification and reduce reagent dispensing steps. Primers, attached to superparamagnetic microbeads through a thermo-labile bond, capture and separate target sequences from the sample. The microbeads are then magnetically loaded into a microwell array such that wells predominately contain a single bead. Master mix, lacking primers, is added before sealing the reaction wells with hydrophobic oil. Thermocycling releases the primer pair from the beads during PCR amplification. At low target concentrations, most beads capture, on average, less than one target molecule, and precise, digital PCR quantification can be derived from the percentage of positive reactions. At higher concentrations, qPCR signal is used to determine the average number of target molecules per reaction, significantly extending the dynamic range beyond the digital saturation point. We demonstrate that SIRCA can quantify DNA and RNA targets using thousands of parallel reactions, achieving attomolar limits of detection and a linear dynamic range of 105. The work reported here is a first step towards multiplexed SIRCA assays.
Collapse
Affiliation(s)
- W Hampton Henley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
28
|
Sforzi J, Ferrauto G, Aime S, Geninatti Crich S. A Simple and Fast Assay Based on Carboxyfluorescein-Loaded Liposome for Quantitative DNA Detection. ACS OMEGA 2020; 5:1764-1772. [PMID: 32039311 PMCID: PMC7003241 DOI: 10.1021/acsomega.9b01457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/28/2019] [Indexed: 05/06/2023]
Abstract
The development of an innovative and easy way to run assays for the quantitative detection of DNA present in biological fluids (i.e., blood, urine, and saliva) is of great interest for early diagnosis (e.g., tumors) and personalized medicine. Herein, a new quantitative assay based on the use of highly sensitive carboxyfluorescein-loaded liposomes as signal amplification systems is reported. The method has been tested for the detection of low amounts of DNA sequences. The reported proof of concept exploits a target DNA molecule as a linker between two complementary oligonucleotides. One oligonucleotide is biotinylated at its 3' end and binds to streptavidin-coupled magnetic beads, whereas the other one is conjugated to a cholesterol molecule incorporated in the phospholipidic bilayer of the fluorescent liposomes. In the presence of the target fragment, the correct formation of a construct takes place as witnessed by a strong fluorescence signal, amplified by dissolving lipidic nanoparticles with Triton X-100. The system is able to detect specific nucleotide sequences with a very low detection threshold of target DNA (tens of picomolar). The assay allows the detection of both single- and double-stranded DNA. Studies performed in human blood serum show the correct assembling of the probe but with a reduction of limit of detection (up to ∼1 nM). This liposome signal amplification strategy could be used not only for the detection of DNA but also for other nucleic acids (mRNA; microRNA) that are difficult to be quantified by currently available protocols.
Collapse
Affiliation(s)
- Jacopo Sforzi
- Molecular
Imaging Center, Department of Molecular Biotechnology and Health Sciences and IBB-CNR, c/o
Molecular Biotechnology Center, University
of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Giuseppe Ferrauto
- Molecular
Imaging Center, Department of Molecular Biotechnology and Health Sciences and IBB-CNR, c/o
Molecular Biotechnology Center, University
of Torino, Via Nizza 52, 10126 Torino, Italy
- E-mail:
| | - Silvio Aime
- Molecular
Imaging Center, Department of Molecular Biotechnology and Health Sciences and IBB-CNR, c/o
Molecular Biotechnology Center, University
of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Simonetta Geninatti Crich
- Molecular
Imaging Center, Department of Molecular Biotechnology and Health Sciences and IBB-CNR, c/o
Molecular Biotechnology Center, University
of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
29
|
Menezes R, Dramé-Maigné A, Taly V, Rondelez Y, Gines G. Streamlined digital bioassays with a 3D printed sample changer. Analyst 2020; 145:572-581. [DOI: 10.1039/c9an01744e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Off-chip sample changer device increase the sample throughput of droplet digital bioassays.
Collapse
Affiliation(s)
- Roberta Menezes
- Centre de Recherche des Cordeliers
- INSERM
- Sorbonne Université
- USPC
- Université Paris Descartes
| | - Adèle Dramé-Maigné
- Laboratoire Gulliver
- UMR7083 CNRS
- ESPCI Paris
- PSL Research University
- 75005 Paris
| | - Valérie Taly
- Centre de Recherche des Cordeliers
- INSERM
- Sorbonne Université
- USPC
- Université Paris Descartes
| | - Yannick Rondelez
- Laboratoire Gulliver
- UMR7083 CNRS
- ESPCI Paris
- PSL Research University
- 75005 Paris
| | - Guillaume Gines
- Laboratoire Gulliver
- UMR7083 CNRS
- ESPCI Paris
- PSL Research University
- 75005 Paris
| |
Collapse
|
30
|
Aluminosilicate Nanocomposite on Genosensor: A Prospective Voltammetry Platform for Epidermal Growth Factor Receptor Mutant Analysis in Non-small Cell Lung Cancer. Sci Rep 2019; 9:17013. [PMID: 31745155 PMCID: PMC6863915 DOI: 10.1038/s41598-019-53573-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the most serious threats to human where 85% of lethal death caused by non-small cell lung cancer (NSCLC) induced by epidermal growth factor receptor (EGFR) mutation. The present research focuses in the development of efficient and effortless EGFR mutant detection strategy through high-performance and sensitive genosensor. The current amplified through 250 µm sized fingers between 100 µm aluminium electrodes indicates the voltammetry signal generated by means of the mutant DNA sequence hybridization. To enhance the DNA immobilization and hybridization, ∼25 nm sized aluminosilicate nanocomposite synthesized from the disposed joss fly ash was deposited on the gaps between aluminium electrodes. The probe, mutant (complementary), and wild (single-base pair mismatch) targets were designed precisely from the genomic sequences denote the detection of EGFR mutation. Fourier-transform Infrared Spectroscopy analysis was performed at every step of surface functionalization evidences the relevant chemical bonding of biomolecules on the genosensor as duplex DNA with peak response at 1150 cm−1 to 1650 cm−1. Genosensor depicts a sensitive EGFR mutation as it is able to detect apparently at 100 aM mutant against 1 µM DNA probe. The insignificant voltammetry signal generated with wild type strand emphasizes the specificity of genosensor in the detection of single base pair mismatch. The inefficiency of genosensor in detecting EGFR mutation in the absence of aluminosilicate nanocomposite implies the insensitivity of genosensing DNA hybridization and accentuates the significance of aluminosilicate. Based on the slope of the calibration curve, the attained sensitivity of aluminosilicate modified genosensor was 3.02E-4 A M−1. The detection limit of genosensor computed based on 3σ calculation, relative to the change of current proportional to the logarithm of mutant concentration is at 100 aM.
Collapse
|
31
|
Marras SAE, Tyagi S, Antson DO, Kramer FR. Color-coded molecular beacons for multiplex PCR screening assays. PLoS One 2019; 14:e0213906. [PMID: 30883590 PMCID: PMC6422326 DOI: 10.1371/journal.pone.0213906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/04/2019] [Indexed: 11/19/2022] Open
Abstract
The number of different fluorescent colors that can be distinguished in a PCR screening assay restricts the number of different targets that can be detected. If only six colors can be distinguished, and the probe for each target is labeled with a unique color, then only six different targets can be identified. Yet, it is often desirable to identify more targets. For instance, the rapid identification of which bacterial species (if any) is present in a patient's normally sterile blood sample, out of a long list of species, would enable appropriate actions to be taken to prevent sepsis. We realized that the number of different targets that can be identified in a screening assay can be increased significantly by utilizing a unique combination of two colors for the identification of each target species. We prepared a demonstration assay in which 15 different molecular beacon probe pairs were present, each pair specific for the same identifying sequence in the 16S ribosomal RNA gene of a different bacterial species, and each pair labeled with a unique combination of two fluorophores out of the six differently colored fluorophores that our PCR instrument could distinguish. In a set of PCR assays, each containing all 30 color-coded molecular beacons, and each containing DNA from a different bacterial species, the only two colors that arose in each real-time assay identified the species-specific target sequence that was present. Due to the intrinsic low background of molecular beacon probes, these reactions were specific and extremely sensitive, and the threshold cycle reflected the abundance of the target sequence present in each sample.
Collapse
Affiliation(s)
- Salvatore A. E. Marras
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Sanjay Tyagi
- Public Health Research Institute, Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Dan-Oscar Antson
- Center for Technology Licensing, Weill Cornell Medical Center, Cornell University, New York, New York, United States of America
| | - Fred Russell Kramer
- Public Health Research Institute, Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|