1
|
Spizzichino S, Di Fonzo F, Marabelli C, Tramonti A, Chaves-Sanjuan A, Parroni A, Boumis G, Liberati FR, Paone A, Montemiglio LC, Ardini M, Jakobi AJ, Bharadwaj A, Swuec P, Tartaglia GG, Paiardini A, Contestabile R, Mai A, Rotili D, Fiorentino F, Macone A, Giorgi A, Tria G, Rinaldo S, Bolognesi M, Giardina G, Cutruzzolà F. Structure-based mechanism of riboregulation of the metabolic enzyme SHMT1. Mol Cell 2024; 84:2682-2697.e6. [PMID: 38996576 DOI: 10.1016/j.molcel.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 01/26/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
RNA can directly control protein activity in a process called riboregulation; only a few mechanisms of riboregulation have been described in detail, none of which have been characterized on structural grounds. Here, we present a comprehensive structural, functional, and phylogenetic analysis of riboregulation of cytosolic serine hydroxymethyltransferase (SHMT1), the enzyme interconverting serine and glycine in one-carbon metabolism. We have determined the cryoelectron microscopy (cryo-EM) structure of human SHMT1 in its free- and RNA-bound states, and we show that the RNA modulator competes with polyglutamylated folates and acts as an allosteric switch, selectively altering the enzyme's reactivity vs. serine. In addition, we identify the tetrameric assembly and a flap structural motif as key structural elements necessary for binding of RNA to eukaryotic SHMT1. The results presented here suggest that riboregulation may have played a role in evolution of eukaryotic SHMT1 and in compartmentalization of one-carbon metabolism. Our findings provide insights for RNA-based therapeutic strategies targeting this cancer-linked metabolic pathway.
Collapse
Affiliation(s)
- Sharon Spizzichino
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Federica Di Fonzo
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Marabelli
- Department of Molecular Medicine, University of Pavia, Via Forlanini 3, 27100 Pavia, Italy
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy; Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Alessia Parroni
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Romana Liberati
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, P.le A. Moro 5, 00185 Rome, Italy
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy
| | - Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Arjen J Jakobi
- Department of Bionanoscience, Kavli Institute of Nanoscience Deft, Delft University of Technology, Van der Maasweg, 92629 HZ Delft, the Netherlands
| | - Alok Bharadwaj
- Department of Bionanoscience, Kavli Institute of Nanoscience Deft, Delft University of Technology, Van der Maasweg, 92629 HZ Delft, the Netherlands
| | - Paolo Swuec
- CryoElectron Microscopy Facility, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Gian Gaetano Tartaglia
- Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy; Department of Biology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Roberto Contestabile
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Alessandra Giorgi
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Giancarlo Tria
- CNR Institute of Crystallography - URT Caserta c/o Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche (DiSTABiF), Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy; Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; Department of Biochemical Sciences, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
2
|
Jassem HA, Thaaban AJ. Prognostic value of serum phosphoglycerate dehydrogenase and glycine levels in breast cancer. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2024; 23:69-74. [PMID: 39391524 PMCID: PMC11462141 DOI: 10.5114/pm.2024.140004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/12/2024] [Indexed: 10/12/2024]
Abstract
Introduction Breast cancer (BC) is the most frequent cancer in women and is a serious worldwide health issue. Phosphoglycerate dehydrogenase (PHGDH) is an enzyme that catalyses the first steps in the serine biosynthetic pathways downstream of glycolysis. Phosphoglycerate and glycine are produced by a series of enzymatic processes from the glycolysis intermediate 3-phosphoglycerate. The aim of the study was to indicate the levels of PHGDH and glycine in patients with breast cancer. Material and methods The study was performed from December 2022 to March 2023. The total number of samples was 135 samples - 65 samples were collected from women with breast cancer, and 70 samples were from healthy women as a control group. Blood samples (5 ml) were obtained from all study group members. The complete blood count (CBC) neutrophils/lymphocytes, and haemoglobin ratio analysis was done on a CBC haematology analyser (Sysmex, Japan). Serum PHGDH and glycine were measure by enzyme-linked immunosorbent assay. Results The study findings revealed a significant increase in the neutrophil/lymphocytes ratio and a decrease in PHGDH level in patients with BC compare to controls (p < 0.01), while the serum glycine level showed a significant increase in patients with BC compare to the control group (p < 0.01). Conclusions Reduced PHGDH level and high glycine concentration in patients with BC could act as a prognostic factor in cancer development.
Collapse
Affiliation(s)
- Hussam Abd Jassem
- Medical Chemistry Department, College of Medicine, University of AL-Qadisiyah, Al- Diywaniyah, Iraq
| | - Anwar Jasib Thaaban
- Medical Chemistry Department, College of Medicine, University of AL-Qadisiyah, Al- Diywaniyah, Iraq
| |
Collapse
|
3
|
Wang M, Zhang H, Lu Z, Su W, Tan Y, Wang J, Jia X. PSAT1 mediated EMT of colorectal cancer cells by regulating Pl3K/AKT signaling pathway. J Cancer 2024; 15:3183-3198. [PMID: 38706897 PMCID: PMC11064270 DOI: 10.7150/jca.93789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/09/2024] [Indexed: 05/07/2024] Open
Abstract
Background: The metastasis of colorectal cancer (CRC) is one of the significant barriers impeding its treated consequence and bring about high mortality, less surgical resection rate and poor prognosis of CRC patients. PSAT1 is an enzyme involved in serine biosynthesis. The studies showed that PSAT1 plays the part of a crucial character in the regulation of tumor metastasis. And Epithelial-Mesenchymal Transition (EMT) is a process of cell reprogramming in which epithelialcells obtain mesenchymal phenotypes. It is a crucial course in promoting cell metastasis and the progression of malignant tumors. The relationship between PSAT1 and EMT in colorectal cancer, as well as the underlying molecular mechanisms, remains enigmatic and warrants thorough exploration. These findings suggest that PSAT1 may serve as a promising therapeutic target for mitigating colorectal cancer metastasis and holds the potential to emerge as a valuable prognostic biomarker in forthcoming research endeavors. Materials and Methods: Utilizing TCGA dataset in conjunction with clinical CRC specimens, our initial focus was directed towards an in-depth examination of PSAT1 expression within CRC, specifically exploring its potential correlation with the adverse prognostic outcomes experienced by patients. Furthermore, we conducted a comprehensive investigation into the regulatory influence exerted by PSAT1 on CRC through the utilization of siRNA knockdown techniques. In the realm of in vitro experimentation, we meticulously evaluated the impact of PSAT1 on various facets of CRC progression, including cell migration, invasion, proliferation, and colony formation. In order to elucidate the intricate effects in question, we adopted a multifaceted methodology that encompassed a range of assays and analyses. These included wound healing assays, transwell assays, utilization of the Cell Counting Kit-8 (CCK-8) assay, and colony formation assays. By employing this diverse array of investigative techniques, we were able to achieve a comprehensive comprehension of the multifaceted role that PSAT1 plays in the pathogenesis of colorectal cancer. This multifarious analysis greatly contributed to our in-depth understanding of the complex mechanisms at play in colorectal cancer pathogenesis. Using WB and PCR experiments, we found that PSAT1 has a role in regulating EMT development in CRC.In terms of mechanism, we found that PSAT1 affected EMT by Regulating Pl3K/AKT Signaling Pathway. Results: Our investigation revealed a noteworthy down-regulation of PSAT1 expression in CRC specimens. Importantly, this down-regulation exhibited a significant positive correlation with the unfavorable prognosis of patients afflicted with CRC. Functionally, our study showcased that the siRNA-mediated knockdown of PSAT1 markedly enhanced various key aspects of CRC pathogenesis in an in vitro setting. Specifically, this included a substantial promotion of CRC cell migration, invasion, proliferation, and colony formation. Moreover, the silencing of PSAT1 also demonstrated a substantial promotion of the EMT process. Intriguingly, our research unveiled a hitherto unexplored mechanism underlying the regulatory role of PSAT1 in CRC and EMT. We have established, for the first time, that PSAT1 exerts its influence by modulating the activation of the PI3K/AKT Signaling Pathway. This mechanistic insight provides a valuable contribution to the understanding of the molecular underpinnings of CRC progression and EMT induction mediated by PSAT1. Conclusions: In unison, our research findings shed light on the previously uncharted and significant role of the PSAT1/PI3K/AKT axis in the initiation of the EMT process in CRC. Furthermore, our discoveries introduce a novel biomarker with potential implications for the clinical diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Mingjin Wang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, 230012 Hefei, Anhui, China
- The Key Laboratory of Hepatobiliary Pancreas, Southern District, Anhui Provincial Hospital, The First Affliated Hosnital of USTC, University of Science and Technology of China, 230022 Hefei, Anhui, China
| | - Houshun Zhang
- Department of Pathology, Anhui Provincial Hospital, The First Affliated Hosnital of USTC, University of Science and Technology of China, 230002 Hefei, Anhui, China
| | - Zhiyuan Lu
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, 230012 Hefei, Anhui, China
| | - Wenrui Su
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, 230012 Hefei, Anhui, China
| | - Yanan Tan
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, 230012 Hefei, Anhui, China
| | - Jiayu Wang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, 230012 Hefei, Anhui, China
| | - Xiaoyi Jia
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, 230012 Hefei, Anhui, China
| |
Collapse
|
4
|
Yoon CS, Nifantiev NE, Yashunsky DV, Kim HK, Han J. Neopetroside-B alleviates doxorubicin-induced cardiotoxicity via mitochondrial protection. Biomed Pharmacother 2023; 165:115232. [PMID: 37523986 DOI: 10.1016/j.biopha.2023.115232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
Doxorubicin, a member of the anthracycline family, is a widely prescribed anticancer chemotherapy drug. Unfortunately, cumulative doses of doxorubicin can cause mitochondrial dysfunction, leading to acute or chronic cardiotoxicity. This study demonstrated that Neopetroside-B (NPS-B) protects cardiomyocytes in the presence of doxorubicin. NPS-B improved mitochondrial function in cardiomyocytes by increasing ATP production and oxygen consumption rates. On the other hand, NPS-B negatively influenced cancer cell lines by increasing reactive oxygen species. We analyzed NPS-B-influenced metabolites (VIP > 1.0; AUC>0.7; p < 0.05) and proteins (FC > 2.0) and constructed metabolite-protein enrichment, which showed that NPS-B affected uracil metabolism and NAD-binding proteins (e.g., aldehyde dehydrogenase and glutathione reductase) in cardiomyocytes. However, for the cancer cells, NPS-B decreased the NAD+/NADH balance, impairing cell viability. In a xenograft mouse model treated with doxorubicin, NPS-B reduced cardiac fibrosis and improved cardiac function. NPS-B may be a beneficial intervention to reducing doxorubicin-induced cardiotoxicity with anticancer effects.
Collapse
Affiliation(s)
- Chang Shin Yoon
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Department of Physiology, College of Medicine, Inje University, Busan 47397, the Republic of Korea
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Department of Physiology, College of Medicine, Inje University, Busan 47397, the Republic of Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Department of Physiology, College of Medicine, Inje University, Busan 47397, the Republic of Korea.
| |
Collapse
|
5
|
Murali R, Balasubramaniam V, Srinivas S, Sundaram S, Venkatraman G, Warrier S, Dharmarajan A, Gandhirajan RK. Deregulated Metabolic Pathways in Ovarian Cancer: Cause and Consequence. Metabolites 2023; 13:metabo13040560. [PMID: 37110218 PMCID: PMC10141515 DOI: 10.3390/metabo13040560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ovarian cancers are tumors that originate from the different cells of the ovary and account for almost 4% of all the cancers in women globally. More than 30 types of tumors have been identified based on the cellular origins. Epithelial ovarian cancer (EOC) is the most common and lethal type of ovarian cancer which can be further divided into high-grade serous, low-grade serous, endometrioid, clear cell, and mucinous carcinoma. Ovarian carcinogenesis has been long attributed to endometriosis which is a chronic inflammation of the reproductive tract leading to progressive accumulation of mutations. Due to the advent of multi-omics datasets, the consequences of somatic mutations and their role in altered tumor metabolism has been well elucidated. Several oncogenes and tumor suppressor genes have been implicated in the progression of ovarian cancer. In this review, we highlight the genetic alterations undergone by the key oncogenes and tumor suppressor genes responsible for the development of ovarian cancer. We also summarize the role of these oncogenes and tumor suppressor genes and their association with a deregulated network of fatty acid, glycolysis, tricarboxylic acid and amino acid metabolism in ovarian cancers. Identification of genomic and metabolic circuits will be useful in clinical stratification of patients with complex etiologies and in identifying drug targets for personalized therapies against cancer.
Collapse
Affiliation(s)
- Roopak Murali
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Vaishnavi Balasubramaniam
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Satish Srinivas
- Department of Radiation Oncology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| |
Collapse
|
6
|
Anti-colon cancer effects of Spirulina polysaccharide and its mechanism based on 3D models. Int J Biol Macromol 2023; 228:559-569. [PMID: 36581031 DOI: 10.1016/j.ijbiomac.2022.12.244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/03/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Spirulina polysaccharides (PSP) possess significant biological properties. However, it is still a lack of investigation on the anti-colorectal cancer effect and mechanism. In this study, PSP showed significant effects on LoVo cell spheroids with an IC50 value of 0.1943 mg/mL. The analysis of transcriptomics and metabolomics indicated the impact of PSP on LoVo spheroid cells through involvement in the two pathways of "glycine, serine, and threonine metabolism" and "ABC transporters". And, the q-PCR data further verified the pointed mechanism of PSP on colon cancer (CC) by regulating the expression levels of relevant genes in the synthesis pathways of serine and glycine in tumor cells. Furthermore, the anti-colon cancer effects of PSP were verified via other human colon cancer cell lines HCT116 and HT29 spheroids (IC50 = 0.0646 mg/mL and 0.2213 mg/mL, respectively), and three patient-derived organoids (PDOs) with IC50 values ranging from 3.807 to 7.788 mg/mL. In addition, this study found that a mild concentration of PSP cannot enhance the anti-tumor effect of 5-Fu. And a significant inhibition was found of PSP in 5-Fu resistance organoids. These results illustrated that PSP could be a treatment or supplement for 5-Fu resistant colorectal cancer (CRC).
Collapse
|
7
|
Chee JM, Lanoue L, Clary D, Higgins K, Bower L, Flenniken A, Guo R, Adams DJ, Bosch F, Braun RE, Brown SDM, Chin HJG, Dickinson ME, Hsu CW, Dobbie M, Gao X, Galande S, Grobler A, Heaney JD, Herault Y, de Angelis MH, Mammano F, Nutter LMJ, Parkinson H, Qin C, Shiroishi T, Sedlacek R, Seong JK, Xu Y, Brooks B, McKerlie C, Lloyd KCK, Westerberg H, Moshiri A. Genome-wide screening reveals the genetic basis of mammalian embryonic eye development. BMC Biol 2023; 21:22. [PMID: 36737727 PMCID: PMC9898963 DOI: 10.1186/s12915-022-01475-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Microphthalmia, anophthalmia, and coloboma (MAC) spectrum disease encompasses a group of eye malformations which play a role in childhood visual impairment. Although the predominant cause of eye malformations is known to be heritable in nature, with 80% of cases displaying loss-of-function mutations in the ocular developmental genes OTX2 or SOX2, the genetic abnormalities underlying the remaining cases of MAC are incompletely understood. This study intended to identify the novel genes and pathways required for early eye development. Additionally, pathways involved in eye formation during embryogenesis are also incompletely understood. This study aims to identify the novel genes and pathways required for early eye development through systematic forward screening of the mammalian genome. RESULTS Query of the International Mouse Phenotyping Consortium (IMPC) database (data release 17.0, August 01, 2022) identified 74 unique knockout lines (genes) with genetically associated eye defects in mouse embryos. The vast majority of eye abnormalities were small or absent eyes, findings most relevant to MAC spectrum disease in humans. A literature search showed that 27 of the 74 lines had previously published knockout mouse models, of which only 15 had ocular defects identified in the original publications. These 12 previously published gene knockouts with no reported ocular abnormalities and the 47 unpublished knockouts with ocular abnormalities identified by the IMPC represent 59 genes not previously associated with early eye development in mice. Of these 59, we identified 19 genes with a reported human eye phenotype. Overall, mining of the IMPC data yielded 40 previously unimplicated genes linked to mammalian eye development. Bioinformatic analysis showed that several of the IMPC genes colocalized to several protein anabolic and pluripotency pathways in early eye development. Of note, our analysis suggests that the serine-glycine pathway producing glycine, a mitochondrial one-carbon donator to folate one-carbon metabolism (FOCM), is essential for eye formation. CONCLUSIONS Using genome-wide phenotype screening of single-gene knockout mouse lines, STRING analysis, and bioinformatic methods, this study identified genes heretofore unassociated with MAC phenotypes providing models to research novel molecular and cellular mechanisms involved in eye development. These findings have the potential to hasten the diagnosis and treatment of this congenital blinding disease.
Collapse
Affiliation(s)
- Justine M Chee
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Louise Lanoue
- Mouse Biology Program, University of California Davis, Davis, CA, USA
| | - Dave Clary
- Mouse Biology Program, University of California Davis, Davis, CA, USA
| | - Kendall Higgins
- University of Miami: Miller School of Medicine, Miami, FL, USA
| | - Lynette Bower
- Mouse Biology Program, University of California Davis, Davis, CA, USA
| | - Ann Flenniken
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Ruolin Guo
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - David J Adams
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fatima Bosch
- Centre of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Steve D M Brown
- Medical Research Council Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, UK
| | - H-J Genie Chin
- National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), Taipei City, Taiwan
| | - Mary E Dickinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chih-Wei Hsu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Michael Dobbie
- Phenomics Australia, The John Curtin School of Medical Research, Canberra, Australia
| | - Xiang Gao
- Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Sanjeev Galande
- Indian Institutes of Science Education and Research, Pune, India
| | - Anne Grobler
- Faculty of Health Sciences, PCDDP North-West University, Potchefstroom, South Africa
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabio Mammano
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Monterotondo Scalo, Italy
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Helen Parkinson
- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Chuan Qin
- National Laboratory Animal Center, National Applied Research Laboratories, Beijing, China
| | | | - Radislav Sedlacek
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - J-K Seong
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ying Xu
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, China
| | - Brian Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Colin McKerlie
- The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - K C Kent Lloyd
- Mouse Biology Program, University of California Davis, Davis, CA, USA
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Henrik Westerberg
- Medical Research Council Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, UK
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Sacramento, CA, USA.
- UC Davis Eye Center, 4860 Y St., Ste. 2400, Sacramento, CA, 95817, USA.
| |
Collapse
|
8
|
Xiao Q, Yu F, Yan L, Zhao H, Zhang F. Alterations in circulating markers in HIV/AIDS patients with poor immune reconstitution: Novel insights from microbial translocation and innate immunity. Front Immunol 2022; 13:1026070. [PMID: 36325329 PMCID: PMC9618587 DOI: 10.3389/fimmu.2022.1026070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
After long-term anti-retroviral therapy (ART) treatment, most human immunodeficiency virus (HIV)/Acquired Immure Deficiency Syndrome (AIDS) patients can achieve virological suppression and gradual recovery of CD4+ T-lymphocyte (CD4+ T cell) counts. However, some patients still fail to attain normal CD4+ T cell counts; this group of patients are called immune non-responders (INRs), and these patients show severe immune dysfunction. The potential mechanism of poor immune reconstitution (PIR) remains unclear and the identification of uniform biomarkers to predict the occurrence of PIR is particularly vital. But limited information is available on the relationship between circulating markers of INRs and immune recovery. Hence, this review summarises alterations in the intestine microbiota and associated markers in the setting of PIR to better understand host-microbiota-metabolite interactions in HIV immune reconstitution and to identify biomarkers that can predict recovery of CD4+ T cell counts in INRs.
Collapse
Affiliation(s)
- Qing Xiao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fengting Yu
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Liting Yan
- Infectious Disease Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongxin Zhao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fujie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Agostini M, Mancini M, Candi E. Long non-coding RNAs affecting cell metabolism in cancer. Biol Direct 2022; 17:26. [PMID: 36182907 PMCID: PMC9526990 DOI: 10.1186/s13062-022-00341-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/27/2021] [Indexed: 11/10/2022] Open
Abstract
Metabolic reprogramming is commonly recognized as one important hallmark of cancers. Cancer cells present significant alteration of glucose metabolism, oxidative phosphorylation, and lipid metabolism. Recent findings demonstrated that long non-coding RNAs control cancer development and progression by modulating cell metabolism. Here, we give an overview of breast cancer metabolic reprogramming and the role of long non-coding RNAs in driving cancer-specific metabolic alteration.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Department Experimental Medicine, University of Rome "Tor Vergata", TOR, Via Montpellier,1, 00133, Rome, Italy
| | - Mara Mancini
- IDI-IRCCS, Via Monti di Creta 104, 00166, Rome, Italy
| | - Eleonora Candi
- Department Experimental Medicine, University of Rome "Tor Vergata", TOR, Via Montpellier,1, 00133, Rome, Italy. .,IDI-IRCCS, Via Monti di Creta 104, 00166, Rome, Italy.
| |
Collapse
|
10
|
Grading of endometrial cancer using 1H HR-MAS NMR-based metabolomics. Sci Rep 2021; 11:18160. [PMID: 34518615 PMCID: PMC8438077 DOI: 10.1038/s41598-021-97505-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022] Open
Abstract
The tissue metabolomic characteristics associated with endometrial cancer (EC) at different grades were studied using high resolution (400 MHz) magic angle spinning (HR-MAS) proton spectroscopy. The metabolic profiles were obtained from 64 patients (14 with grade 1 (G1), 33 with grade 2 (G2) and 17 with grade 3 (G3) tumors) and compared with the profile acquired from 10 patients with the benign disorders. OPLS-DA revealed increased valine, isoleucine, leucine, hypotaurine, serine, lysine, ethanolamine, choline and decreased creatine, creatinine, glutathione, ascorbate, glutamate, phosphoethanolamine and scyllo-inositol in all EC grades in reference to the non-transformed tissue. The increased levels of taurine was additionally detected in the G1 and G2 tumors in comparison to the control tissue, while the elevated glycine, N-acetyl compound and lactate—in the G1 and G3 tumors. The metabolic features typical for the G1 tumors are the increased dimethyl sulfone, phosphocholine, and decreased glycerophosphocholine and glutamine levels, while the decreased myo-inositol level is characteristic for the G2 and G3 tumors. The elevated 3-hydroxybutyrate, alanine and betaine levels were observed in the G3 tumors. The differences between the grade G1 and G3 malignances were mainly related to the perturbations of phosphoethanolamine and phosphocholine biosynthesis, inositol, betaine, serine and glycine metabolism. The statistical significance of the OPLS-DA modeling was also verified by an univariate analysis. HR-MAS NMR based metabolomics provides an useful insight into the metabolic reprogramming in endometrial cancer.
Collapse
|
11
|
Zeng Y, Zhang J, Xu M, Chen F, Zi R, Yue J, Zhang Y, Chen N, Chin YE. Roles of Mitochondrial Serine Hydroxymethyltransferase 2 (SHMT2) in Human Carcinogenesis. J Cancer 2021; 12:5888-5894. [PMID: 34476002 PMCID: PMC8408114 DOI: 10.7150/jca.60170] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022] Open
Abstract
In the last few years, cellular metabolic reprogramming has been acknowledged as a hallmark of human cancer and evaluated for its crucial role in supporting the proliferation and survival of human cancer cells. In a variety of human tumours, including hepatocellular carcinoma (HCC), breast cancer and non-small-cell lung cancer (NSCLC), a large amount of carbon is reused in serine/glycine biosynthesis, accompanied by higher expression of the key glycine synthetic enzyme mitochondrial serine hydroxymethyltransferase 2 (SHMT2). This enzyme can convert serine into glycine and a tetrahydrofolate-bound one-carbon unit, ultimately supporting thymidine synthesis and purine synthesis and promoting tumour growth. In tumour samples, elevated expression of SHMT2 was found to be associated with poor prognosis. In this review, the pivotal roles of SHMT2 in human carcinogenesis are described, highlighting the underlying regulatory mechanisms through promotion of tumour progression. In conclusion, SHMT2 may serve as a prognostic marker and a target for anticancer therapies.
Collapse
Affiliation(s)
- Yuanyuan Zeng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China.,Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jie Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Mengmeng Xu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Fuxian Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Ruidong Zi
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jicheng Yue
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yanan Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Nannan Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Y Eugene Chin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
12
|
Fan Y, Wang L, Ding Y, Sheng Q, Zhang C, Li Y, Han C, Lu B, Dou X. Long non-coding RNA RP4-694A7.2 Promotes Hepatocellular Carcinoma Cell Proliferation and Metastasis through the Regulation of PSAT1. J Cancer 2021; 12:5633-5643. [PMID: 34405023 PMCID: PMC8364640 DOI: 10.7150/jca.59348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/10/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Long noncoding RNAs (lncRNAs) have emerged as gene regulators in various cancers, including hepatocellular carcinoma (HCC). However, the biological roles and mechanisms of many lncRNAs in HCC tumorigenesis remain unknown. Aim: To identify novel lncRNAs associated with proliferation and metastasis in HCC. Methods: Expression profiles of lncRNAs were analyzed in HCC using two GSE datasets (GSE94660 and GSE104310). Functional studies were performed, including cell proliferation, colony formation, wound healing, and Transwell assays. Fluorescence in-situ hybridization (FISH), tandem mass tag (TMT) analyses, parallel reaction monitoring (PRM), and rescue assays were performed to evaluate the mechanisms underlying the effects of RP4-694A7.2. Results: RP4-694A7.2 levels were higher in HCC tissues than in normal liver tissues in published GSE datasets and were elevated in HCC cell lines. Cell function assays revealed that RP4-694A7.2 promotes cell proliferation, invasion, and migration. Furthermore, RP4-694A7.2 was primarily found to be located in the cytoplasm by FISH assay. Then, TMT assay was performed to predict proteins associated with RP4-694A7.2, and 28 cytoplastic proteins were identified by PRM. Finally, phosphoserine aminotransferase 1 (PSAT1) was found to be regulated by RP4-694A7.2 to modulate growth and metastasis in HCC cells using a rescue assay. Conclusions: These results suggested that RP4-694A7.2 promotes HCC cell proliferation and metastasis via PSAT1, providing a candidate therapeutic target for further research.
Collapse
Affiliation(s)
- Yaoxin Fan
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China.,Key Laboratory of Viral hepatitis, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China
| | - Lin Wang
- Department of Health Management, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China
| | - Yang Ding
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China.,Key Laboratory of Viral hepatitis, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China
| | - Qiuju Sheng
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China.,Key Laboratory of Viral hepatitis, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China
| | - Chong Zhang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China.,Key Laboratory of Viral hepatitis, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China
| | - Yanwei Li
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China.,Key Laboratory of Viral hepatitis, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China
| | - Chao Han
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China.,Key Laboratory of Viral hepatitis, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China
| | - Bingchao Lu
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China.,Key Laboratory of Viral hepatitis, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China
| | - Xiaoguang Dou
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China.,Key Laboratory of Viral hepatitis, Shengjing Hospital of China Medical University, No. 39, Huaxiang Road, Shenyang Liaoning province, China
| |
Collapse
|
13
|
Marchetti P, Antonov A, Anemona L, Vangapandou C, Montanaro M, Botticelli A, Mauriello A, Melino G, Catani MV. New immunological potential markers for triple negative breast cancer: IL18R1, CD53, TRIM, Jaw1, LTB, PTPRCAP. Discov Oncol 2021; 12:6. [PMID: 35201443 PMCID: PMC8777524 DOI: 10.1007/s12672-021-00401-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of cancer death in women worldwide, and settings of specific prognostic factors and efficacious therapies are made difficult by phenotypic heterogeneity of BC subtypes. Therefore, there is a current urgent need to define novel predictive genetic predictors that may be useful for stratifying patients with distinct prognostic outcomes. Here, we looked for novel molecular signatures for triple negative breast cancers (TNBCs). By a bioinformatic approach, we identified a panel of genes, whose expression was positively correlated with disease-free survival in TNBC patients, namely IL18R1, CD53, TRIM, Jaw1, LTB, and PTPRCAP, showing specific immune expression profiles linked to survival prediction; most of these genes are indeed expressed in immune cells and are required for productive lymphocyte activation. According to our hypothesis, these genes were not, or poorly, expressed in different TNBC cell lines, derived from either primary breast tumours or metastatic pleural effusions. This conclusion was further supported in vivo, as immuno-histochemical analysis on biopsies of TNBC invasive ductal carcinomas highlighted differential expression of these six genes in cancer cells, as well as in intra- and peri-tumoral infiltrating lymphocytes. Our data open to the possibility that inter-tumour heterogeneity of immune markers might have predictive value; further investigations are recommended in order to establish the real power of cancer-related immune profiles as prognostic factors.
Collapse
Affiliation(s)
- Paolo Marchetti
- Oncology Unit, Department of Clinical and Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy
| | - Alexey Antonov
- MRC Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR UK
| | - Lucia Anemona
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Chaitania Vangapandou
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Andrea Botticelli
- Oncology Unit, Department of Clinical and Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| | - M. Valeria Catani
- Department of Experimental Medicine, Torvergata Oncoscience Research (TOR), University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
14
|
Liu C, Wang L, Liu X, Tan Y, Tao L, Xiao Y, Deng P, Wang H, Deng Q, Lin Y, Jie H, Zhang H, Zhang J, Peng Y, Zhang H, Zhou Z, Sun Q, Cen X, Zhao Y. Cytoplasmic SHMT2 drives the progression and metastasis of colorectal cancer by inhibiting β-catenin degradation. Am J Cancer Res 2021; 11:2966-2986. [PMID: 33456583 PMCID: PMC7806468 DOI: 10.7150/thno.48699] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/12/2020] [Indexed: 02/05/2023] Open
Abstract
Introduction: Serine hydroxymethyltransferase 2 (SHMT2) plays a critical role in serine-glycine metabolism to drive cancer cell proliferation. However, the nonmetabolic function of SHMT2 in tumorigenesis, especially in human colorectal cancer (CRC) progression, remains largely unclear. Methods: SHMT2 expression in human CRC cells was identified by western blot and immunofluorescence assay. The CRC cell proliferation, migration, and invasion after SHMT2 knockdown or overexpression were explored through in vitro and in vivo assays. Immunofluorescence, mRNA-seq, co-immunoprecipitation, chromatin immunoprecipitation-qPCR and immunohistochemistry assays were used to investigate the underlying mechanisms behind the SHMT2 nonmetabolic function. Results: We demonstrated that SHMT2 was distributed in the cytoplasm and nucleus of human CRC cells. SHMT2 knockdown resulted in the significant inhibition of CRC cell proliferation, which was not restored by serine, glycine, or formate supplementation. The invasion and migration of CRC cells were suppressed after SHMT2 knockdown. Mechanistically, SHMT2 interacted with β-catenin in the cytoplasm. This interaction inhibited the ubiquitylation-mediated degradation of β-catenin and subsequently modulated the expression of its target genes, leading to the promotion of CRC cell proliferation and metastasis. Notably, the lysine 64 residue on SHMT2 (SHMT2K64) mediated its interaction with β-catenin. Moreover, transcription factor TCF4 interacted with β-catenin, which in turn increased SHMT2 expression, forming an SHMT2/β-catenin positive feedback loop. In vivo xenograft experiments confirmed that SHMT2 promoted the growth and metastasis of CRC cells. Finally, the level of SHMT2 was found to be significantly increased in human CRC tissues. The SHMT2 level was correlated with an increased level of β-catenin, associated with CRC progression and predicted poor patient survival. Conclusion: Taken together, our findings reveal a novel nonmetabolic function of SHMT2 in which it stabilizes β-catenin to prevent its ubiquitylation-mediated degradation and provide a potential therapeutic strategy for CRC therapy.
Collapse
|
15
|
Zhang J, Wang E, Zhang L, Zhou B. PSPH induces cell autophagy and promotes cell proliferation and invasion in the hepatocellular carcinoma cell line Huh7 via the AMPK/mTOR/ULK1 signaling pathway. Cell Biol Int 2020; 45:305-319. [PMID: 33079432 DOI: 10.1002/cbin.11489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022]
Abstract
Phosphoserine phosphatase (PSPH), a key enzyme of the l-serine synthesis pathway, has been involved in cancer progression and survival. However, limited evidence revealed the PSPH influence on hepatocellular carcinoma (HCC). Herein, we observed that PSPH expression was upregulated in both HCC tissues and cell lines, which was determined by western blotting. TCGA database showed that the PSPH protein levels were significantly upregulated and affected patient survival rates in HCC. Then gain- and loss-of-function manipulations were performed by transfection with a pcDNA-PSPH expression vector or a specific short interfering RNA against PSPH in Huh7 cells. Huh7 cell proliferation, stemness, invasion, and apoptosis were assessed by using CCK-8 test, colony formation assay, Transwell assay, and Flow cytometry analysis, respectively, and levels of autophagy-related proteins were detected by using western blotting. The results showed that PSPH could induce Huh7 cell autophagy, promote cell proliferation and invasion, and inhibit apoptosis. The knockdown of PSPH could inhibit Huh7 cell proliferation, invasion, and autophagy. Furthermore, PSPH activated Liver kinase B1 (LKB1) and TGF beta-activated kinase 1 (TAK1), affected the adenosine 5'-monophosphate-activated protein kinase (AMPK)/mTOR/ULK1 signaling pathway, but could not activate calcium/calmodulin-dependent protein kinase kinase (CaMKK) in Huh7 cells. Inhibition of either LKB1, TAK1, or AMPK could eliminate the effect of PSPH overexpression on Huh7 cell behaviors. However, inhibition of CaMKK could not influence the effect of PSPH overexpression on Huh7 cell behaviors. In conclusion, PSPH could induce autophagy, promote proliferation and invasion, and inhibit apoptosis in HCC cells via the AMPK/mTOR/ULK1 signaling pathway.
Collapse
Affiliation(s)
- Jianli Zhang
- The Second General Surgery Department, Xi'an Central Hospital, Xi'an, China
| | - Erhao Wang
- Department of Medicine, Institute for DNA and its Products, Xi'an, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bo Zhou
- Digestive System Department, The Second Affiliand Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Bouzidi A, Magnifico MC, Paiardini A, Macone A, Boumis G, Giardina G, Rinaldo S, Liberati FR, Lauro C, Limatola C, Lanzillotta C, Tramutola A, Perluigi M, Sgarbi G, Solaini G, Baracca A, Paone A, Cutruzzolà F. Cytosolic serine hydroxymethyltransferase controls lung adenocarcinoma cells migratory ability by modulating AMP kinase activity. Cell Death Dis 2020; 11:1012. [PMID: 33243973 PMCID: PMC7691363 DOI: 10.1038/s41419-020-03215-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Nutrient utilization and reshaping of metabolism in cancer cells is a well-known driver of malignant transformation. Less clear is the influence of the local microenvironment on metastasis formation and choice of the final organ to invade. Here we show that the level of the amino acid serine in the cytosol affects the migratory properties of lung adenocarcinoma (LUAD) cells. Inhibition of serine or glycine uptake from the extracellular milieu, as well as knockdown of the cytosolic one-carbon metabolism enzyme serine hydroxymethyltransferase (SHMT1), abolishes migration. Using rescue experiments with a brain extracellular extract, and direct measurements, we demonstrate that cytosolic serine starvation controls cell movement by increasing reactive oxygen species formation and decreasing ATP levels, thereby promoting activation of the AMP sensor kinase (AMPK) by phosphorylation. Activation of AMPK induces remodeling of the cytoskeleton and finally controls cell motility. These results highlight that cytosolic serine metabolism plays a key role in controlling motility, suggesting that cells are able to dynamically exploit the compartmentalization of this metabolism to adapt their metabolic needs to different cell functions (movement vs. proliferation). We propose a model to explain the relevance of serine/glycine metabolism in the preferential colonization of the brain by LUAD cells and suggest that the inhibition of serine/glycine uptake and/or cytosolic SHMT1 might represent a successful strategy to limit the formation of brain metastasis from primary tumors, a major cause of death in these patients.
Collapse
Affiliation(s)
- Amani Bouzidi
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Maria Chiara Magnifico
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Via Orabona 4, 70121, Bari, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Francesca Romana Liberati
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Clotilde Lauro
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Gianluca Sgarbi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Giancarlo Solaini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Alessandra Baracca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Alessio Paone
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Francesca Cutruzzolà
- Department of Biochemical Sciences A. Rossi Fanelli, Laboratory Affiliated to Istituto Pasteur Italia, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
17
|
Li MK, Liu LX, Zhang WY, Zhan HL, Chen RP, Feng JL, Wu LF. Long non‑coding RNA MEG3 suppresses epithelial‑to‑mesenchymal transition by inhibiting the PSAT1‑dependent GSK‑3β/Snail signaling pathway in esophageal squamous cell carcinoma. Oncol Rep 2020; 44:2130-2142. [PMID: 32901893 PMCID: PMC7550985 DOI: 10.3892/or.2020.7754] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the main subtype of esophageal cancer in China, and the prognosis of patients remains poor mainly due to the occurrence of lymph node and distant metastasis. The long non‑coding RNA (lncRNA) maternally expressed gene 3 (MEG3) has been shown to have tumor‑suppressive properties and to play an important role in epithelial‑to‑mesenchymal transition (EMT) in some solid tumors. However, whether MEG3 is involved in EMT in ESCC remains unclear. In the present study, the MEG3 expression level and its association with tumorigenesis were determined in 43 tumor tissues of patients with ESCC and in ESCC cells using reverse transcription‑quantitative PCR analysis. Gene microarray analysis was performed to detect differentially expressed genes (DEGs). Based on the functional annotation results, the effects of ectopic expression of MEG3 on cell growth, migration, invasion and EMT were assessed. MEG3 expression level was found to be markedly lower in tumor tissues and cells. Statistical analysis revealed that MEG3 expression was significantly negatively associated with lymph node metastasis and TNM stage in ESCC. Fluorescence in situ hybridization assay demonstrated that MEG3 was expressed mainly in the nucleus. Ectopic expression of MEG3 inhibited cell proliferation, migration, invasion and cell cycle progression in EC109 cells. Gene microarray results demonstrated that 177 genes were differentially expressed ≥2.0 fold in MEG3‑overexpressing cells, including 23 upregulated and 154 downregulated genes. Functional annotation revealed that the DEGs were mainly involved in amino acid biosynthetic process, mitogen‑activated protein kinase signaling, and serine and glycine metabolism. Further experiments indicated that the ectopic expression of MEG3 significantly suppressed cell proliferation, migration, invasion and EMT by downregulating phosphoserine aminotransferase 1 (PSAT1). In pathological tissues, PSAT1 and MEG3 were significantly negatively correlated, and high expression of PSAT1 predicted poor survival. Taken together, these results suggest that MEG3 may be a useful prognostic biomarker and may suppress EMT by inhibiting the PSAT1‑dependent glycogen synthase kinase‑3β/Snail signaling pathway in ESCC.
Collapse
Affiliation(s)
- Ming-Kai Li
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Li-Xuan Liu
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Wei-Yi Zhang
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Hao-Lian Zhan
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Rui-Pei Chen
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jia-Lin Feng
- Department of Information, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ling-Fei Wu
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Professor Ling-Fei Wu, Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, 69 Dongxia Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
18
|
Jia J, Liu Q, Jin X, Xu H. Uptake and imaging of glycine functionalized gold nanoclusters in Spodoptera frugiperda (Sf9) cells. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Han X, Wang D, Zhao P, Liu C, Hao Y, Chang L, Zhao J, Zhao W, Mu L, Wang J, Li H, Kong Q, Han J. Inference of Subpathway Activity Profiles Reveals Metabolism Abnormal Subpathway Regions in Glioblastoma Multiforme. Front Oncol 2020; 10:1549. [PMID: 33072547 PMCID: PMC7533644 DOI: 10.3389/fonc.2020.01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/20/2020] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is the most malignant form of glioma and represents 81% of malignant brain and central nervous system (CNS) tumors. Like most cancers, GBM causes metabolic recombination to promote cell survival, proliferation, and invasion of cancer cells. In this study, we propose a method for constructing the metabolic subpathway activity score matrix to accurately identify abnormal targets of GBM metabolism. By integrating gene expression data from different sequencing methods, our method identified 25 metabolic subpathways that were significantly abnormal in the GBM patient population, and most of these subpathways have been reported to have an effect on GBM. Through the analysis of 25 GBM-related metabolic subpathways, we found that (S)-2,3-Epoxysqualene, which was at the central region of the sterol biosynthesis subpathway, may have a greater impact on the entire pathway, suggesting a potential high association with GBM. Analysis of CCK8 cell activity indicated that (S)-2,3-Epoxysqualene can indeed inhibit the activity of U87-MG cells. By flow cytometry, we demonstrated that (S)-2,3-Epoxysqualene not only arrested the U87-MG cell cycle in the G0/G1 phase but also induced cell apoptosis. These results confirm the reliability of our proposed metabolic subpathway identification method and suggest that (S)-2,3-Epoxysqualene has potential therapeutic value for GBM. In order to make the method more broadly applicable, we have developed an R system package crmSubpathway to perform disease-related metabolic subpathway identification and it is freely available on the GitHub (https://github.com/hanjunwei-lab/crmSubpathway).
Collapse
Affiliation(s)
- Xudong Han
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Donghua Wang
- Department of General Surgery, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Ping Zhao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Chonghui Liu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Yue Hao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Lulu Chang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Jiarui Zhao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Wei Zhao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Lili Mu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Jinghua Wang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Keshet R, Lee JS, Adler L, Iraqi M, Ariav Y, Lim LQJ, Lerner S, Rabinovich S, Oren R, Katzir R, Weiss Tishler H, Stettner N, Goldman O, Landesman H, Galai S, Kuperman Y, Kuznetsov Y, Brandis A, Mehlman T, Malitsky S, Itkin M, Koehler SE, Zhao Y, Talsania K, Shen TW, Peled N, Ulitsky I, Porgador A, Ruppin E, Erez A. Targeting purine synthesis in ASS1-expressing tumors enhances the response to immune checkpoint inhibitors. NATURE CANCER 2020; 1:894-908. [PMID: 35121952 DOI: 10.1038/s43018-020-0106-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 07/21/2020] [Indexed: 06/14/2023]
Abstract
Argininosuccinate synthase (ASS1) downregulation in different tumors has been shown to support cell proliferation and yet, in several common cancer subsets ASS1 expression associates with poor patient prognosis. Here we demonstrate that ASS1 expression under glucose deprivation is induced by c-MYC, providing survival benefit by increasing nitric oxide synthesis and activating the gluconeogenic enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase by S-nitrosylation. The resulting increased flux through gluconeogenesis enhances serine, glycine and subsequently purine synthesis. Notably, high ASS1-expressing breast cancer mice do not respond to immune checkpoint inhibitors and patients with breast cancer with high ASS1 have more metastases. We further find that inhibiting purine synthesis increases pyrimidine to purine ratio, elevates expression of the immunoproteasome and significantly enhances the response of autologous primary CD8+ T cells to anti-PD-1. These results suggest that treating patients with high-ASS1 cancers with purine synthesis inhibition is beneficial and may also sensitize them to immune checkpoint inhibition therapy.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Joo Sang Lee
- Cancer Data Science Lab, National Cancer Institutes of Health, Bethesda, MD, USA
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Lital Adler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Muhammed Iraqi
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yarden Ariav
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Lisha Qiu Jin Lim
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shaul Lerner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shiran Rabinovich
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Katzir
- Cancer Data Science Lab, National Cancer Institutes of Health, Bethesda, MD, USA
| | - Hila Weiss Tishler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Stettner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Omer Goldman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Landesman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Galai
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tevi Mehlman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - S Eleonore Koehler
- Department Anatomy & Embryology, Maastricht University, Maastricht, the Netherlands
| | - Yongmei Zhao
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Keyur Talsania
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tsai-Wei Shen
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nir Peled
- The Legacy Heritage Oncology Center and Dr. Larry Norton Institute, Soroka Medical Center and Ben-Gurion University, Beer-Sheva, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Angel Porgador
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institutes of Health, Bethesda, MD, USA.
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Architecture of The Human Ape1 Interactome Defines Novel Cancers Signatures. Sci Rep 2020; 10:28. [PMID: 31913336 PMCID: PMC6949240 DOI: 10.1038/s41598-019-56981-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
APE1 is essential in cancer cells due to its central role in the Base Excision Repair pathway of DNA lesions and in the transcriptional regulation of genes involved in tumor progression/chemoresistance. Indeed, APE1 overexpression correlates with chemoresistance in more aggressive cancers, and APE1 protein-protein interactions (PPIs) specifically modulate different protein functions in cancer cells. Although important, a detailed investigation on the nature and function of protein interactors regulating APE1 role in tumor progression and chemoresistance is still lacking. The present work was aimed at analyzing the APE1-PPI network with the goal of defining bad prognosis signatures through systematic bioinformatics analysis. By using a well-characterized HeLa cell model stably expressing a flagged APE1 form, which was subjected to extensive proteomics analyses for immunocaptured complexes from different subcellular compartments, we here demonstrate that APE1 is a central hub connecting different subnetworks largely composed of proteins belonging to cancer-associated communities and/or involved in RNA- and DNA-metabolism. When we performed survival analysis in real cancer datasets, we observed that more than 80% of these APE1-PPI network elements is associated with bad prognosis. Our findings, which are hypothesis generating, strongly support the possibility to infer APE1-interactomic signatures associated with bad prognosis of different cancers; they will be of general interest for the future definition of novel predictive disease biomarkers. Future studies will be needed to assess the function of APE1 in the protein complexes we discovered. Data are available via ProteomeXchange with identifier PXD013368.
Collapse
|
22
|
Kishor PBK, Suravajhala R, Rajasheker G, Marka N, Shridhar KK, Dhulala D, Scinthia KP, Divya K, Doma M, Edupuganti S, Suravajhala P, Polavarapu R. Lysine, Lysine-Rich, Serine, and Serine-Rich Proteins: Link Between Metabolism, Development, and Abiotic Stress Tolerance and the Role of ncRNAs in Their Regulation. FRONTIERS IN PLANT SCIENCE 2020; 11:546213. [PMID: 33343588 PMCID: PMC7744598 DOI: 10.3389/fpls.2020.546213] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
Lysine (Lys) is indispensable nutritionally, and its levels in plants are modulated by both transcriptional and post-transcriptional control during plant ontogeny. Animal glutamate receptor homologs have been detected in plants, which may participate in several plant processes through the Lys catabolic products. Interestingly, a connection between Lys and serotonin metabolism has been established recently in rice. 2-Aminoadipate, a catabolic product of Lys appears to play a critical role between serotonin accumulation and the color of rice endosperm/grain. It has also been shown that expression of some lysine-methylated proteins and genes encoding lysine-methyltransferases (KMTs) are regulated by cadmium even as it is known that Lys biosynthesis and its degradation are modulated by novel mechanisms. Three complex pathways co-exist in plants for serine (Ser) biosynthesis, and the relative preponderance of each pathway in relation to plant development or abiotic stress tolerance are being unfolded slowly. But the phosphorylated pathway of L-Ser biosynthesis (PPSB) appears to play critical roles and is essential in plant metabolism and development. Ser, which participates indirectly in purine and pyrimidine biosynthesis and plays a pivotal role in plant metabolism and signaling. Also, L-Ser has been implicated in plant responses to both biotic and abiotic stresses. A large body of information implicates Lys-rich and serine/arginine-rich (SR) proteins in a very wide array of abiotic stresses. Interestingly, a link exists between Lys-rich K-segment and stress tolerance levels. It is of interest to note that abiotic stresses largely influence the expression patterns of SR proteins and also the alternative splicing (AS) patterns. We have checked if any lncRNAs form a cohort of differentially expressed genes from the publicly available PPSB, sequence read archives of NCBI GenBank. Finally, we discuss the link between Lys and Ser synthesis, catabolism, Lys-proteins, and SR proteins during plant development and their myriad roles in response to abiotic stresses.
Collapse
Affiliation(s)
- P. B. Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research (Deemed to be University), Guntur, India
- *Correspondence: P. B. Kavi Kishor,
| | | | | | - Nagaraju Marka
- Biochemistry Division, National Institute of Nutrition-ICMR, Hyderabad, India
| | | | - Divya Dhulala
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Kummari Divya
- Department of Genetics, Osmania University, Hyderabad, India
| | - Madhavi Doma
- Department of Genetics, Osmania University, Hyderabad, India
| | | | - Prashanth Suravajhala
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | | |
Collapse
|
23
|
Brearley MC, Li C, Daniel ZC, Loughna PT, Parr T, Brameld JM. Changes in expression of serine biosynthesis and integrated stress response genes during myogenic differentiation of C2C12 cells. Biochem Biophys Rep 2019; 20:100694. [PMID: 31681859 PMCID: PMC6818154 DOI: 10.1016/j.bbrep.2019.100694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/05/2019] [Accepted: 10/02/2019] [Indexed: 01/13/2023] Open
Abstract
Skeletal muscle is a highly metabolic and dynamic tissue that is formed through the complex and well-organised process of myogenesis. Although there is a good understanding about the role of the Muscle Regulatory Factors during myogenesis, little is known about the potential interplay of other metabolic proteins. The aim of this study was to determine the endogenous mRNA expression profile for a novel group of genes, recently associated with β2-adrenergic agonist (BA) induced muscle hypertrophy in pigs [1], during myogenic differentiation in C2C12 cells and their response to dibutyryl cyclic-AMP (dbcAMP). These genes included mitochondrial phosphoenolpyruvate carboxykinase (PCK2/PEPCK-M), genes involved in serine biosynthesis (Phosphoglycerate dehydrogenase, PHGDH; Phosphoserine aminotransferase-1, PSAT1; Phosphoserine phosphatase, PSPH) and those involved in an integrated stress response (Asparagine synthetase, ASNS; Sestrin-2, SESN2; and Activating transcription factor-5, ATF5). A coordinated peak in endogenous PCK2, PHGDH, PSAT1, PSPH, ASNS, ATF5 and SESN2 mRNA expression was observed at day 2 of differentiation (P < 0.001) in C2C12 cells, which coincided with the peak in myogenin mRNA. Myotube hypertrophy was induced with dbcAMP (1 mM) treatment from day 0, thereby mimicking the in vivo BA response. Although dbcAMP treatment from day 0 induced larger myotubes and increased both myosin heavy chain-IIB (MyHC-IIB) and pyruvate carboxylase (PC) mRNA, the expression of PCK2, PHGDH, PSAT1 and ASNS mRNA were all unaffected. Treatment with dbcAMP from day 4 increased MyHC-IIB mRNA, however this was less dramatic compared to the response observed following treatment from day 0, but there was no effect on PC mRNA. There was also no effect of dbcAMP treatment from day 4 on PCK2, PHGDH, PSAT1 and ASNS mRNA. To conclude, the coordinated day 2 peak in endogenous expression of PCK2, PHGDH, PSAT1, PSPH, ASNS, ATF5 and SESN2 mRNA may relate to a shift in biosynthetic demand required to initiate myogenic differentiation. However, dbcAMP had no effect on the expression of these genes in vitro suggesting that the effects observed in BA-treated pigs might be via other signalling pathways from the activation of the β2-adrenergic receptor, but independent of cAMP, or that there are species differences in the response.
Collapse
Affiliation(s)
- Madelaine C. Brearley
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Congcong Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zoe C.T.R. Daniel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Paul T. Loughna
- School of Veterinary Medicine & Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Tim Parr
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - John M. Brameld
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| |
Collapse
|
24
|
Pang F, Chen Z, Wang C, Zhang M, Zhang Z, Yang X, Zheng Y, Liu A, Cheng Y, Chen J, Li B, Du L, Wang F. Comprehensive analysis of differentially expressed microRNAs and mRNAs in MDBK cells expressing bovine papillomavirus E5 oncogene. PeerJ 2019; 7:e8098. [PMID: 31772843 PMCID: PMC6876490 DOI: 10.7717/peerj.8098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
Delta bovine papillomaviruses (δBPVs) causes fibropapillomas or bladder cancer in cattle. E5 is the major oncogene of δBPVs; however, the influence that E5 oncogene has on host microRNA (miRNA) and mRNA expression profiles remains little elucidated. In the present study, small RNA sequencing and RNA sequencing were used to explore alterations in miRNAs and mRNAs in E5 over-expressing Madin-Darby bovine kidney (MDBK) cells compared with controls. In total, 77 miRNAs (including 30 bovine-derived miRNAs) and 223 genes were differentially expressed (DE) following E5 overexpression. The dysregulated genes were mainly involved in metabolic and biosynthetic processes. We constructed a potential miRNA-gene regulatory network from the differentially expressed genes (DEGs) and DE miRNAs. Finally, 22 DEGs and nine DE miRNAs were selected for RT-qPCR validation. Of these, downregulation of six miRNAs, bta-miR-34c, bta-miR-122, bta-miR-195, bta-miR-449b, bta-miR-2425-5p, and bta-miR-2428-3p were confirmed; In addition, upregulation of 16 genes, ACSS2, DDIT4, INHBE, INSIG1, PNRC1, PSAT1, PSPH, PYCR1, SC4MOL, SLC34A2, SCD, SPARC, IDI1, PCK2, HMGCS1, and SMIM14 and downregulation of two genes, BATF3 and WFDC2 were confirmed. Specially, bta-miR-34c and bta-miR-449b potentially regulated PYCR1 and DDIT4, which were involved in cancer progression and angiogenesis. Our study presented for the first time the comprehensive miRNA and mRNA alterations in MDBK cells expressing the BPV E5 oncogene, providing new insights into the tumorigenesis induced by BPV E5.
Collapse
Affiliation(s)
- Feng Pang
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Zhen Chen
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Chengqiang Wang
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Mengmeng Zhang
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Zhenxing Zhang
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Xiaohong Yang
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Yiying Zheng
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Ang Liu
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Yiwen Cheng
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Jie Chen
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Bin Li
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Li Du
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| | - Fengyang Wang
- College of Animal Science and Technology, Hainan University, Hainan Key Lab of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou, China
| |
Collapse
|
25
|
Downregulating Serine Hydroxymethyltransferase 2 Deteriorates Hepatic Ischemia-Reperfusion Injury through ROS/JNK/P53 Signaling in Mice. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2712185. [PMID: 31828098 PMCID: PMC6885790 DOI: 10.1155/2019/2712185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022]
Abstract
Background Serine hydroxymethyltransferase 2 (SHMT2) activity ensures that cells have a survival advantage in ischemic conditions and regulates redox homeostasis. In this study, we aimed to investigate the role of SHMT2 after hepatic ischemia-reperfusion (IR), which involves hypoxia, ischemic conditions, and cell apoptosis. Methods A 70% IR model was established in C57BL/6J mice with or without SHMT2 knockdown. H&E staining, liver weight/body weight, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels and cell apoptosis were tested to analyze liver damage and function. Then, the related cellular signals were probed. Results The level of SHMT2 protein was significantly increased at 24 h and 48 h after IR (p < 0.001). Mice in the shSHMT2 group showed more necrotic areas and histological damage at 24 h (p < 0.01) after IR and higher levels of serum ALT and AST (p < 0.05) compared with those of mice in the scramble group. After IR for 24 h, the expression of TUNEL in the shSHMT2 group was significantly higher than that in the scramble group, as shown by histological analysis (p < 0.01). Mechanistically, the JNK/P53 signaling pathway was activated by IR, and knockdown of SHMT2 exacerbated hepatocyte apoptosis. Conclusions Knockdown of SHMT2 worsens IR injury through the ROS/JNK/P53 signaling pathway. Our discovery expands the understanding of both molecular and metabolic mechanisms involved in IR. SHMT2 is a possible therapeutic target to improve the prognosis of liver transplantation (LT) and subtotal hepatectomy.
Collapse
|
26
|
Wei L, Lee D, Law CT, Zhang MS, Shen J, Chin DWC, Zhang A, Tsang FHC, Wong CLS, Ng IOL, Wong CCL, Wong CM. Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nat Commun 2019; 10:4681. [PMID: 31615983 PMCID: PMC6794322 DOI: 10.1038/s41467-019-12606-7] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Sorafenib is the standard treatment for advanced hepatocellular carcinoma (HCC). However, the development of drug resistance is common. By using genome-wide CRISPR/Cas9 library screening, we identify phosphoglycerate dehydrogenase (PHGDH), the first committed enzyme in the serine synthesis pathway (SSP), as a critical driver for Sorafenib resistance. Sorafenib treatment activates SSP by inducing PHGDH expression. With RNAi knockdown and CRISPR/Cas9 knockout models, we show that inactivation of PHGDH paralyzes the SSP and reduce the production of αKG, serine, and NADPH. Concomitantly, inactivation of PHGDH elevates ROS level and induces HCC apoptosis upon Sorafenib treatment. More strikingly, treatment of PHGDH inhibitor NCT-503 works synergistically with Sorafenib to abolish HCC growth in vivo. Similar findings are also obtained in other FDA-approved tyrosine kinase inhibitors (TKIs), including Regorafenib or Lenvatinib. In summary, our results demonstrate that targeting PHGDH is an effective approach to overcome TKI drug resistance in HCC. Resistance to the tyrosine kinase inhibitor Sorafenib, which is the standard treatment for advanced hepatocellular carcinoma, is a major clinical challenge. Here, the authors show that phosphoglycerate dehydrogenase, a key enzyme in the serine synthesis pathway, drives sorafenib resistance.
Collapse
Affiliation(s)
- Lai Wei
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Derek Lee
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheuk-Ting Law
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Misty Shuo Zhang
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jialing Shen
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Don Wai-Ching Chin
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Allen Zhang
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Felice Ho-Ching Tsang
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ceci Lok-Sze Wong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Irene Oi-Lin Ng
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Carmen Chak-Lui Wong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Chun-Ming Wong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong. .,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
27
|
Impact of Heat Shock Protein 90 Inhibition on the Proteomic Profile of Lung Adenocarcinoma as Measured by Two-Dimensional Electrophoresis Coupled with Mass Spectrometry. Cells 2019; 8:cells8080806. [PMID: 31370342 PMCID: PMC6721529 DOI: 10.3390/cells8080806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/28/2019] [Accepted: 07/28/2019] [Indexed: 02/06/2023] Open
Abstract
Heat shock protein 90 (HSP90) is an important chaperone in lung adenocarcinoma, with relevant protein drivers such as EGFR (epidermal growth factor receptor) and EML4-ALK (echinoderm microtubule-associated protein-like protein4 fused to anaplastic lymphoma kinase) depending on it for their correct function, therefore HSP90 inhibitors show promise as potential treatments for lung adenocarcinoma. To study responses to its inhibition, HSP90 was pharmacologically interrupted by geldanamycin and resorcinol derivatives or with combined inhibition of HSP90 plus HSP70 in lung adenocarcinoma cell lines. Two-dimensional electrophoresis was performed to identify proteomic profiles associated with inhibition which will help to understand the biological basis for the responses. HSP90 inhibition resulted in altered protein profiles that differed according the treatment condition studied. Results revealed 254 differentially expressed proteins after treatments, among which, eukaryotic translation initiation factor3 subunit I (eIF3i) and citrate synthase demonstrated their potential role as response biomarkers. The differentially expressed proteins also enabled signalling pathways involved in responses to be identified; these included apoptosis, serine-glycine biosynthesis and tricarboxylic acid cycle. The proteomic profiles identified here contribute to an improved understanding of HSP90 inhibition and open possibilities for the detection of potential response biomarkers which will be essential to maximize treatment efficacy in lung adenocarcinoma.
Collapse
|
28
|
Berker Y, Vandergrift LA, Wagner I, Su L, Kurth J, Schuler A, Dinges SS, Habbel P, Nowak J, Mark E, Aryee MJ, Christiani DC, Cheng LL. Magnetic Resonance Spectroscopy-based Metabolomic Biomarkers for Typing, Staging, and Survival Estimation of Early-Stage Human Lung Cancer. Sci Rep 2019; 9:10319. [PMID: 31311965 PMCID: PMC6635503 DOI: 10.1038/s41598-019-46643-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
Low-dose CT has shown promise in detecting early stage lung cancer. However, concerns about the adverse health effects of radiation and high cost prevent its use as a population-wide screening tool. Effective and feasible screening methods to triage suspicious patients to CT are needed. We investigated human lung cancer metabolomics from 93 paired tissue-serum samples with magnetic resonance spectroscopy and identified tissue and serum metabolomic markers that can differentiate cancer types and stages. Most interestingly, we identified serum metabolomic profiles that can predict patient overall survival for all cases (p = 0.0076), and more importantly for Stage I cases alone (n = 58, p = 0.0100), a prediction which is significant for treatment strategies but currently cannot be achieved by any clinical method. Prolonged survival is associated with relative overexpression of glutamine, valine, and glycine, and relative suppression of glutamate and lipids in serum.
Collapse
Affiliation(s)
- Yannick Berker
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA.,Division of X-Ray Imaging and Computed Tomography, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Lindsey A Vandergrift
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Isabel Wagner
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA.,Department of Urology, CCM, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health and Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Johannes Kurth
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA.,Department of Haematology and Oncology, CCM, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Andreas Schuler
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Sarah S Dinges
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA.,Department of Haematology and Oncology, CCM, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Piet Habbel
- Department of Haematology and Oncology, CCM, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Johannes Nowak
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, 97080, Würzburg, Germany
| | - Eugene Mark
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Martin J Aryee
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health and Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 02115, USA.
| | - Leo L Cheng
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA. .,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114, USA.
| |
Collapse
|
29
|
Curcumin and its Potential for Systemic Targeting of Inflamm-Aging and Metabolic Reprogramming in Cancer. Int J Mol Sci 2019; 20:ijms20051180. [PMID: 30857125 PMCID: PMC6429141 DOI: 10.3390/ijms20051180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/24/2022] Open
Abstract
Pleiotropic effects of curcumin have been the subject of intensive research. The interest in this molecule for preventive medicine may further increase because of its potential to modulate inflamm-aging. Although direct data related to its effect on inflamm-aging does not exist, there is a strong possibility that its well-known anti-inflammatory properties may be relevant to this phenomenon. Curcumin's binding to various proteins, which was shown to be dependent on cellular oxidative status, is yet another feature for exploration in depth. Finally, the binding of curcumin to various metabolic enzymes is crucial to curcumin's interference with powerful metabolic machinery, and can also be crucial for metabolic reprogramming of cancer cells. This review offers a synthesis and functional links that may better explain older data, some observational, in light of the most recent findings on curcumin. Our focus is on its modes of action that have the potential to alleviate specific morbidities of the 21st century.
Collapse
|
30
|
Clendinen CS, Gaul DA, Monge ME, Arnold RS, Edison AS, Petros JA, Fernández FM. Preoperative Metabolic Signatures of Prostate Cancer Recurrence Following Radical Prostatectomy. J Proteome Res 2019; 18:1316-1327. [PMID: 30758971 DOI: 10.1021/acs.jproteome.8b00926] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Technological advances in mass spectrometry (MS), liquid chromatography (LC) separations, nuclear magnetic resonance (NMR) spectroscopy, and big data analytics have made possible studying metabolism at an "omics" or systems level. Here, we applied a multiplatform (NMR + LC-MS) metabolomics approach to the study of preoperative metabolic alterations associated with prostate cancer recurrence. Thus far, predicting which patients will recur even after radical prostatectomy has not been possible. Correlation analysis on metabolite abundances detected on serum samples collected prior to surgery from prostate cancer patients ( n = 40 remission vs n = 40 recurrence) showed significant alterations in a number of pathways, including amino acid metabolism, purine and pyrimidine synthesis, tricarboxylic acid cycle, tryptophan catabolism, glucose, and lactate. Lipidomics experiments indicated higher lipid abundances on recurrent patients for a number of classes that included triglycerides, lysophosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, diglycerides, acyl carnitines, and ceramides. Machine learning approaches led to the selection of a 20-metabolite panel from a single preoperative blood sample that enabled prediction of recurrence with 92.6% accuracy, 94.4% sensitivity, and 91.9% specificity under cross-validation conditions.
Collapse
Affiliation(s)
- Chaevien S Clendinen
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - David A Gaul
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390 , C1425FQD, Ciudad de Buenos Aires , Argentina
| | - Rebecca S Arnold
- Department of Urology , Emory University , Atlanta , Georgia 30308 , United States
| | - Arthur S Edison
- Department of Genetics and Biochemistry and Molecular Biology, Complex Carbohydrate Research Center , University of Georgia , Athens , Georgia 30602 , United States
| | - John A Petros
- Department of Urology , Emory University , Atlanta , Georgia 30308 , United States.,Atlanta VA Medical Center , Atlanta , Georgia 30033 , United States
| | - Facundo M Fernández
- School of Chemistry and Biochemistry , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
31
|
Zheng MJ, Li X, Hu YX, Dong H, Gou R, Nie X, Liu Q, Ying-Ying H, Liu JJ, Lin B. Identification of molecular marker associated with ovarian cancer prognosis using bioinformatics analysis and experiments. J Cell Physiol 2019; 234:11023-11036. [PMID: 30633343 DOI: 10.1002/jcp.27926] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Ovarian cancer is one of the three major malignant tumors of the female reproductive system, and the mortality associated with ovarian cancer ranks first among gynecologic malignant tumors. The pathogenesis of ovarian cancer is not yet clearly defined but elucidating this process would be of great significance for clinical diagnosis, prevention, and treatment. For this study, we used bioinformatics to identify the key pathogenic genes and reveal the potential molecular mechanisms of ovarian cancer; we used immunohistochemistry to validate them. METHODS We analyzed and integrated four gene expression profiles (GSE14407, GSE18520, GSE26712, and GSE54388), which were downloaded from the Gene Expression Omnibus (GEO) database, with the aim of obtaining a common differentially expressed gene (DEG). Then, we performed Gene Ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). We then established a protein-protein interaction (PPI) network of the DEGs through the Search Tool for the Retrieval of Interacting Genes (STRING) database and selected hub genes. Finally, survival analysis of the hub genes was performed using a Kmplotter online tool. RESULTS A total of 226 DEGs were detected after the analysis of the four gene expression profiles; of these, 87 were upregulated genes and 139 were downregulated. GO analysis results showed that DEGs were significantly enriched in biological processes including the G2/M transition of the mitotic cell cycle, the apoptotic process, cell proliferation, blood coagulation, and positive regulation of the canonical Wnt signaling pathway. KEGG analysis results showed that DEGs were particularly enriched in the cell cycle, the p53 signaling pathway, the Wnt signaling pathway, the Ras signaling pathway, the Rap1 signaling pathway, and tyrosine metabolism. We selected 50 hub genes from the PPI network, which had 147 nodes and 655 edges, and 30 of them were associated with the prognosis of ovarian cancer. We performed immunohistochemistry on phosphoserine aminotransferase 1 (PSAT1). PSAT1 was highly expressed in cancer tissues, and its expression level was related to clinical stage and tissue differentiation in ovarian cancer. A Cox proportional risk model suggested that high expression of PSAT1 and late clinical stage were independent risk factors for survival and prognosis of ovarian cancer patients. CONCLUSION The detection of DEGs using bioinformatics analysis might be crucial to understanding the pathogenesis of ovarian cancer, especially the molecular mechanisms of its development. The association between PSAT1 expression and the occurrence, development, and prognosis of ovarian cancer was further verified by immunohistochemistry. The PSAT1 expression can be used as a prognostic marker to provide a potential target for the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ming-Jun Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Yue-Xin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Hui Dong
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Xin Nie
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Qing Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Hao Ying-Ying
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Juan-Juan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| |
Collapse
|
32
|
Abstract
l-Serine is the immediate precursor of d-serine, a major agonist of the N-methyl-d-aspartate (NMDA) receptor. l-Serine is a pivotal amino acid since it serves as a precursor to a large number of essential metabolites besides d-serine. In all non-photosynthetic organisms, including mammals, a major source of l-serine is the phosphorylated pathway of l-serine biosynthesis. The pathway consists of three enzymes, d-3-phosphoglycerate dehydrogenase (PGDH), phosphoserine amino transferase (PSAT), and l-phosphoserine phosphatase (PSP). PGDH catalyzes the first step in the pathway by converting d-3-phosphoglycerate (PGA), an intermediate in glycolysis, to phosphohydroxypyruvate (PHP) concomitant with the reduction of NAD+. In some, but not all organisms, the catalytic activity of PGDH can be regulated by feedback inhibition by l-serine. Three types of PGDH can be distinguished based on their domain structure. Type III PGDHs contain only a nucleotide binding and substrate binding domain. Type II PGDHs contain an additional regulatory domain (ACT domain), and Type I PGDHs contain a fourth domain, termed the ASB domain. There is no consistent pattern of domain content that correlates with organism type, and even when additional domains are present, they are not always functional. PGDH deficiency results in metabolic defects of the nervous system whose systems range from microcephaly at birth, seizures, and psychomotor retardation. Although deficiency of any of the pathway enzymes have similar outcomes, PGDH deficiency is predominant. Dietary or intravenous supplementation with l-serine is effective in controlling seizures but has little effect on psychomotor development. An increase in PGDH levels, due to overexpression, is also associated with a wide array of cancers. In culture, PGDH is required for tumor cell proliferation, but extracellular l-serine is not able to support cell proliferation. This has led to the hypothesis that the pathway is performing some function related to tumor growth other than supplying l-serine. The most well-studied PGDHs are bacterial, primarily from Escherichia coli and Mycobacterium tuberculosis, perhaps because they have been of most interest mechanistically. However, the relatively recent association of PGDH with neuronal defects and human cancers has provoked renewed interest in human PGDH.
Collapse
Affiliation(s)
- Gregory A Grant
- Departments of Developmental Biology and Medicine, Washington University School of Medicine, St. Louis, MO, United States.,Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
33
|
Carbone M, Amelio I, Affar EB, Brugarolas J, Cannon-Albright LA, Cantley LC, Cavenee WK, Chen Z, Croce CM, Andrea AD, Gandara D, Giorgi C, Jia W, Lan Q, Mak TW, Manley JL, Mikoshiba K, Onuchic JN, Pass HI, Pinton P, Prives C, Rothman N, Sebti SM, Turkson J, Wu X, Yang H, Yu H, Melino G. Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death Differ 2018; 25:1885-1904. [PMID: 30323273 PMCID: PMC6219489 DOI: 10.1038/s41418-018-0213-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The relative contribution of intrinsic genetic factors and extrinsic environmental ones to cancer aetiology and natural history is a lengthy and debated issue. Gene-environment interactions (G x E) arise when the combined presence of both a germline genetic variant and a known environmental factor modulates the risk of disease more than either one alone. A panel of experts discussed our current understanding of cancer aetiology, known examples of G × E interactions in cancer, and the expanded concept of G × E interactions to include somatic cancer mutations and iatrogenic environmental factors such as anti-cancer treatment. Specific genetic polymorphisms and genetic mutations increase susceptibility to certain carcinogens and may be targeted in the near future for prevention and treatment of cancer patients with novel molecularly based therapies. There was general consensus that a better understanding of the complexity and numerosity of G × E interactions, supported by adequate technological, epidemiological, modelling and statistical resources, will further promote our understanding of cancer and lead to novel preventive and therapeutic approaches.
Collapse
Affiliation(s)
| | | | - El Bachir Affar
- Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, Quebec, H1T 2M4, Canada
| | - James Brugarolas
- Department of Internal Medicine, Hematology-Oncology Division, Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lisa A Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, 413 E. 69(th) Street, New York, NY, 10021, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhijian Chen
- Department of Molecular Biology and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alan D' Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - David Gandara
- Thoracic Oncology, UC Davis, Sacramento, CA, 96817, USA
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Wei Jia
- Hawaii Cancer Center, Honolulu, HI, USA
| | - Qing Lan
- Occupational & Environmental Epidemiology Branch Division of Cancer Epidemiology & Genetics National Cancer Institute NIH, Bethesda, MD, USA
| | - Tak Wah Mak
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Centre, Toronto, ON, M5G 2M9, Canada
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | - Jose N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA
| | - Harvey I Pass
- Division of General Thoracic Surgery, Department of Cardiothoracic Surgery, NYU Langone Medical Center, New York, NY, USA
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York, 10027, USA
| | - Nathaniel Rothman
- Occupational & Environmental Epidemiology Branch Division of Cancer Epidemiology & Genetics National Cancer Institute NIH, Bethesda, MD, USA
| | - Said M Sebti
- Drug Discovery Department, Moffitt Cancer Center, and Department of Oncologic Sciences, University of South Florida, Tampa, FL, 33612, USA
| | | | - Xifeng Wu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Gerry Melino
- MRC Toxicology Unit, Leicester, UK.
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
34
|
Okabe K, Usui I, Yaku K, Hirabayashi Y, Tobe K, Nakagawa T. Deletion of PHGDH in adipocytes improves glucose intolerance in diet-induced obese mice. Biochem Biophys Res Commun 2018; 504:309-314. [PMID: 30180949 DOI: 10.1016/j.bbrc.2018.08.180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 01/28/2023]
Abstract
Serine is a nonessential amino acid and plays an important role in cellular metabolism. In mammalian serine biosynthesis, 3-phosphoglycerate dehydrogenase (PHGDH) is considered a rate-limiting enzyme and is required for normal development. Although the biological functions of PHGHD in the nervous system have been intensively studied, its function in adipose tissue is unknown. In this study, we found that PHGDH is abundantly expressed in mature adipocytes of white adipose tissue. We generated an adipocyte-specific PHGDH knockout mouse (PHGDH FKO) and used it to investigate the role of serine biosynthesis in adipose tissues. Although PHGDH FKO mice had no apparent defects in adipose tissue development, these mice ameliorated glucose intolerance upon diet-induced obesity. Additionally, we found that the serine levels increase drastically in the adipose tissues of obese wild type mice, whereas no significant rise was observed in PHGDH FKO mice. Furthermore, wild type mice fed a serine-deficient diet also exhibited better glucose tolerance. These results suggest that PHGDH-mediated serine biosynthesis has important roles in adipose tissue glucose metabolism and could be a therapeutic target for diabetes in humans.
Collapse
Affiliation(s)
- Keisuke Okabe
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, 930-0194, Japan; First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, 930-0194, Japan
| | - Isao Usui
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, 930-0194, Japan; Department of Endocrinology and Metabolism, Dokkyo Medical University, Tochigi, 321-0293, Japan
| | - Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, 930-0194, Japan
| | - Yoshio Hirabayashi
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, 930-0194, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, 930-0194, Japan; Institute of Natural Medicine, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
35
|
SHMT2 Overexpression Predicts Poor Prognosis in Intrahepatic Cholangiocarcinoma. Gastroenterol Res Pract 2018; 2018:4369253. [PMID: 30228815 PMCID: PMC6136477 DOI: 10.1155/2018/4369253] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/11/2018] [Indexed: 12/23/2022] Open
Abstract
Background and Objective Serine hydroxymethyltransferase 2 (SHMT2) functions as a key enzyme in serine/glycine biosynthesis and one-carbon metabolism. Recent studies have shown that SHMT2 participated in tumor growth and progression in a variety of cancer types. The objective of the present study is to explore the expression of SHMT2 and evaluate its prognostic value in patients with intrahepatic cholangiocarcinoma (iCCA). Patients and Methods We retrospectively investigated the expression of SHMT2 in 100 primary iCCA samples through immunohistochemical (IHC) staining on a tissue array. Results High SHMT2 expression was found in 52 of the 100 specimens. The results indicated that SHMT2 level was upregulated compared to adjacent nontumor intrahepatic bile duct tissue. Furthermore, SHMT2 level was closely associated with tumor T stage (P = 0.017) and tumor TNM stage (P = 0.041) in patients with iCCA, but not with age, gender, tumor size, tumor number, pathological grade, vascular invasion, or N stage. Moreover, Kaplan-Meier analysis suggested that patients with lower SHMT2 level have longer survival rate than those with high expression (45.8 vs 23.1%, P = 0.030). Additionally, the multivariate analysis model indicated SHMT2 is an independent adverse prognosticator in iCCA. Conclusion High SHMT2 level was correlated with poorer overall survival in patients with iCCA. SHMT2 was proved to be a powerful and independent prognostic factor and a potential therapeutic target for patients with iCCA.
Collapse
|
36
|
Ruszkowski M, Sekula B, Ruszkowska A, Dauter Z. Chloroplastic Serine Hydroxymethyltransferase From Medicago truncatula: A Structural Characterization. FRONTIERS IN PLANT SCIENCE 2018; 9:584. [PMID: 29868052 PMCID: PMC5958214 DOI: 10.3389/fpls.2018.00584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/13/2018] [Indexed: 05/25/2023]
Abstract
Serine hydroxymethyltransferase (SHMT, EC 2.1.2.1) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme which catalyzes the reversible serine-to-glycine conversion in either a tetrahydrofolate-dependent or -independent manner. The enzyme is also responsible for the tetrahydrofolate-independent cleavage of other β-hydroxy amino acids. In addition to being an essential player in the serine homeostasis, SHMT action is the main source of activated one-carbon units, which links SHMT activity with the control of cell proliferation. In plants, studies of SHMT enzymes are more complicated than of those of, e.g., bacterial or mammalian origins because plant genomes encode multiple SHMT isozymes that are targeted to different subcellular compartments: cytosol, mitochondria, plastids, and nucleus. Here we report crystal structures of chloroplast-targeted SHMT from Medicago truncatula (MtSHMT3). MtSHMT3 is a tetramer in solution, composed of two tight and obligate dimers. Our complexes with PLP internal aldimine, PLP-serine and PLP-glycine external aldimines, and PLP internal aldimine with a free glycine reveal structural details of the MtSHMT3-catalyzed reaction. Capturing the enzyme in different stages along the course of the slow tetrahydrofolate-independent serine-to-glycine conversion allowed to observe a unique conformation of the PLP-serine γ-hydroxyl group, and a concerted movement of two tyrosine residues in the active site.
Collapse
Affiliation(s)
- Milosz Ruszkowski
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, United States
| | - Bartosz Sekula
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, United States
| | - Agnieszka Ruszkowska
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section of MCL, National Cancer Institute, Argonne, IL, United States
| |
Collapse
|
37
|
Young and Especially Senescent Endothelial Microvesicles Produce NADPH: The Fuel for Their Antioxidant Machinery. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3183794. [PMID: 29849879 PMCID: PMC5907394 DOI: 10.1155/2018/3183794] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/14/2018] [Accepted: 02/25/2018] [Indexed: 01/15/2023]
Abstract
In a previous study, we demonstrated that endothelial microvesicles (eMVs) have a well-developed enzymatic team involved in reactive oxygen species detoxification. In the present paper, we demonstrate that eMVs can synthesize the reducing power (NAD(P)H) that nourishes this enzymatic team, especially those eMVs derived from senescent human umbilical vein endothelial cells. Moreover, we have demonstrated that the molecules that nourish the enzymatic machinery involved in NAD(P)H synthesis are blood plasma metabolites: lactate, pyruvate, glucose, glycerol, and branched-chain amino acids. Drastic biochemical changes are observed in senescent eMVs to optimize the synthesis of reducing power. Mitochondrial activity is diminished and the glycolytic pathway is modified to increase the activity of the pentose phosphate pathway. Different dehydrogenases involved in NADPH synthesis are also increased. Functional experiments have demonstrated that eMVs can synthesize NADPH. In addition, the existence of NADPH in eMVs was confirmed by mass spectrometry. Multiphoton confocal microscopy images corroborate the synthesis of reducing power in eMVs. In conclusion, our present and previous results demonstrate that eMVs can act as autonomous reactive oxygen species scavengers: they use blood metabolites to synthesize the NADPH that fuels their antioxidant machinery. Moreover, senescent eMVs have a stronger reactive oxygen species scavenging capacity than young eMVs.
Collapse
|
38
|
Kim HM, Kim ES, Koo JS. Differential expression of serine and glycine metabolism-related proteins between follicular neoplasm and Hürthle cell neoplasm. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2064-2071. [PMID: 31938313 PMCID: PMC6958186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/25/2017] [Indexed: 06/10/2023]
Abstract
The aim of the study was to investigate the expression of serine/glycine-related proteins in Hürthle cell neoplasm (HCN) and follicular neoplasm (FN) and to explore its associated implications. Tissue microarrays were constructed with 265 cases of FN (follicular carcinoma [FC]: 112 and follicular adenoma [FA]: 153) and 107 cases of HCN (Hürthle cell carcinoma [HCC]: 27 and Hürthle cell adenoma [HCA]: 80). The serine/glycine-related proteins PHGDH, PSAT1, SHMT1, and GLDC were evaluated using immunohistochemical staining. The expression of SHMT1 and PHGDH was higher in HCN compared to FN (P<0.001 and P=0.048). SHMT1 expression was highest in HCC, followed by HCA, FA, and FC (P<0.001), and PHGDH expression was highest in HCA, followed by HCC, FC, and FA (P=0.041). In FC, SHMT1 negativity was associated with extrathyroidal extension (P=0.019). In univariate analysis, PSAT1 negativity was associated with shorter overall survival (P<0.001). The expression of serine/glycine-related proteins differed between FN and HCN. The expression of both SHMT1 and PHGDH was higher in HCN compared to FN. The clinical implications of this study are that the serine/glycine metabolism pathway could be a possible therapeutic target in HCC.
Collapse
Affiliation(s)
- Hye Min Kim
- Department of Pathology, Yonsei University College of Medicine Seoul, South Korea
| | - Eun-Sol Kim
- Department of Pathology, Yonsei University College of Medicine Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, Yonsei University College of Medicine Seoul, South Korea
| |
Collapse
|
39
|
Woo CC, Chen WC, Teo XQ, Radda GK, Lee PTH. Downregulating serine hydroxymethyltransferase 2 (SHMT2) suppresses tumorigenesis in human hepatocellular carcinoma. Oncotarget 2018; 7:53005-53017. [PMID: 27391339 PMCID: PMC5288164 DOI: 10.18632/oncotarget.10415] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/29/2016] [Indexed: 12/29/2022] Open
Abstract
Serine-glycine biosynthetic pathway diverts the glycolytic intermediate 3-phosphoglycerate to synthesize serine and glycine, of which the latter was found to correlate with cancer cell proliferation. Increased de novo biosynthesis of glycine by serine hydroxymethyltransferase 2 (SHMT2) is the central mechanism to fuel one-carbon pools supporting tumorigenesis. However, the therapeutic potential in targeting SHMT2 in hepatocellular carcinoma (HCC) is unknown. In this study we showed that SHMT2 inhibition significantly suppressed liver tumorigenesis. In vitro, SHMT2-knockdown was found to reduce cell growth and tumorigenicity in Huh-7 and HepG2 liver cancer cells. Moreover SHMT2-knockdown Huh-7 cells failed to form tumor xenograft after subcutaneous inoculation into nude mice. Similarly, inducible SHMT2 inhibition, via doxycycline-added drinking water, was found to reduce tumor incidence and tumor growth in a human tumor xenograft mouse model. SHMT2-knockdown increased the susceptibility of Huh-7 cells to doxorubicin suggesting its potential in combination chemotherapy. Through isotopomer tracing of [2–13C] glycine metabolism, we demonstrated that SHMT2 activity is associated with cancer phenotype. However, overexpression of SHMT2 was insufficient to transform immortalized hepatic cells to malignancy, suggesting that SHMT2 is one of the building blocks in liver cancer metabolism but does not initiate malignant transformation. Moreover, our results suggest that glycine, but not 5,10-methylenetetrahydrofolate, from the SHMT2-mediated enzymatic reaction is instrumental in tumorigenesis. Indeed, we found that SHMT2-knockdown cells exhibited increased glycine uptake. Taken together, our data suggest that SHMT2 may be a potential target in the treatment of human HCC.
Collapse
|
40
|
Agostini M, Annicchiarico-Petruzzelli M, Melino G, Rufini A. Metabolic pathways regulated by TAp73 in response to oxidative stress. Oncotarget 2017; 7:29881-900. [PMID: 27119504 PMCID: PMC5058650 DOI: 10.18632/oncotarget.8935] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/16/2016] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species are involved in both physiological and pathological processes including neurodegeneration and cancer. Therefore, cells have developed scavenging mechanisms to maintain redox homeostasis under control. Tumor suppressor genes play a critical role in the regulation of antioxidant genes. Here, we investigated whether the tumor suppressor gene TAp73 is involved in the regulation of metabolic adaptations triggered in response to oxidative stress. H2O2 treatment resulted in numerous biochemical changes in both control and TAp73 knockout (TAp73−/−) mouse embryonic fibroblasts, however the extent of these changes was more pronounced in TAp73−/− cells when compared to control cells. In particular, loss of TAp73 led to alterations in glucose, nucleotide and amino acid metabolism. In addition, H2O2 treatment resulted in increased pentose phosphate pathway (PPP) activity in null mouse embryonic fibroblasts. Overall, our results suggest that in the absence of TAp73, H2O2 treatment results in an enhanced oxidative environment, and at the same time in an increased pro-anabolic phenotype. In conclusion, the metabolic profile observed reinforces the role of TAp73 as tumor suppressor and indicates that TAp73 exerts this function, at least partially, by regulation of cellular metabolism.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester, UK.,Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandro Rufini
- Department of Cancer Studies, CRUK Leicester Cancer Centre, University of Leicester, Leicester, UK
| |
Collapse
|
41
|
Vučetić M, Cormerais Y, Parks SK, Pouysségur J. The Central Role of Amino Acids in Cancer Redox Homeostasis: Vulnerability Points of the Cancer Redox Code. Front Oncol 2017; 7:319. [PMID: 29312889 PMCID: PMC5742588 DOI: 10.3389/fonc.2017.00319] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022] Open
Abstract
A fine balance in reactive oxygen species (ROS) production and removal is of utmost importance for homeostasis of all cells and especially in highly proliferating cells that encounter increased ROS production due to enhanced metabolism. Consequently, increased production of these highly reactive molecules requires coupling with increased antioxidant defense production within cells. This coupling is observed in cancer cells that allocate significant energy reserves to maintain their intracellular redox balance. Glutathione (GSH), as a first line of defense, represents the most important, non-enzymatic antioxidant component together with the NADPH/NADP+ couple, which ensures the maintenance of the pool of reduced GSH. In this review, the central role of amino acids (AAs) in the maintenance of redox homeostasis in cancer, through GSH synthesis (cysteine, glutamate, and glycine), and nicotinamide adenine dinucleotide (phosphate) production (serine, and glutamine/glutamate) are illustrated. Special emphasis is placed on the importance of AA transporters known to be upregulated in cancers (such as system xc-light chain and alanine-serine-cysteine transporter 2) in the maintenance of AA homeostasis, and thus indirectly, the redox homeostasis of cancer cells. The role of the ROS varies (often described as a "two-edged sword") during the processes of carcinogenesis, metastasis, and cancer treatment. Therefore, the context-dependent role of specific AAs in the initiation, progression, and dissemination of cancer, as well as in the redox-dependent sensitivity/resistance of the neoplastic cells to chemotherapy are highlighted.
Collapse
Affiliation(s)
- Milica Vučetić
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco
| | - Yann Cormerais
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco
| | - Scott K Parks
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco
| | - Jacques Pouysségur
- Medical Biology Department, Centre Scientifique de Monaco (CSM), Monaco, Monaco.,Institute for Research on Cancer and Aging (IRCAN), CNRS, INSERM, Centre A. Lacassagne, Université Côte d'Azur, Nice, France
| |
Collapse
|
42
|
Sato M, Kawana K, Adachi K, Fujimoto A, Yoshida M, Nakamura H, Nishida H, Inoue T, Taguchi A, Takahashi J, Eguchi S, Yamashita A, Tomio K, Wada-Hiraike O, Oda K, Nagamatsu T, Osuga Y, Fujii T. Spheroid cancer stem cells display reprogrammed metabolism and obtain energy by actively running the tricarboxylic acid (TCA) cycle. Oncotarget 2017; 7:33297-305. [PMID: 27120812 PMCID: PMC5078095 DOI: 10.18632/oncotarget.8947] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
The Warburg effect is a metabolic hallmark of cancer cells; cancer cells, unlike normal cells, exclusively activate glycolysis, even in the presence of enough oxygen. On the other hand, intratumoral heterogeneity is currently of interest in cancer research, including that involving cancer stem cells (CSCs). In the present study, we attempted to gain an understanding of metabolism in CSCs that is distinct from that in non-CSCs. After forming spheroids from the OVTOKO (ovarian clear cell adenocarcinoma) and SiHa (cervical squamous cell carcinoma) cell lines, the metabolites of these cells were compared with the metabolites of cancer cells that were cultured in adherent plates. A principle components analysis clearly divided their metabolic features. Amino acids that participate in tricarboxylic acid (TCA) cycle reactions, such as serine and glutamine, were significantly increased in the spheroids. Indeed, spheroids from each cell line contained more total adenylates than did their corresponding cells in adherent cultures. This study demonstrated that cancer metabolism is not limited to aerobic glycolysis (i.e. the Warburg effect), but is flexible and context-dependent. In addition, activation of TCA cycles was suggested to be a metabolic feature of CSCs that was distinct from non-CSCs. The amino acid metabolic pathways discussed here are already considered as targets for cancer therapy, and they are additionally proposed as potential targets for CSC treatment.
Collapse
Affiliation(s)
- Masakazu Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Katsuyuki Adachi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Asaha Fujimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mitsuyo Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroe Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoko Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Juri Takahashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoko Eguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Aki Yamashita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kensuke Tomio
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
43
|
p73 promotes glioblastoma cell invasion by directly activating POSTN (periostin) expression. Oncotarget 2017; 7:11785-802. [PMID: 26930720 PMCID: PMC4914248 DOI: 10.18632/oncotarget.7600] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma Multiforme is one of the most highly metastatic cancers and constitutes 70% of all gliomas. Despite aggressive treatments these tumours have an exceptionally bad prognosis, mainly due to therapy resistance and tumour recurrence. Here we show that the transcription factor p73 confers an invasive phenotype by directly activating expression of POSTN (periostin, HGNC:16953) in glioblastoma cells. Knock down of endogenous p73 reduces invasiveness and chemo-resistance, and promotes differentiation in vitro. Using chromatin immunoprecipitation and reporter assays we demonstrate that POSTN, an integrin binding protein that has recently been shown to play a major role in metastasis, is a transcriptional target of TAp73. We further show that POSTN overexpression is sufficient to rescue the invasive phenotype of glioblastoma cells after p73 knock down. Additionally, bioinformatics analysis revealed that an intact p73/POSTN axis, where POSTN and p73 expression is correlated, predicts bad prognosis in several cancer types. Taken together, our results support a novel role of TAp73 in controlling glioblastoma cell invasion by regulating the expression of the matricellular protein POSTN.
Collapse
|
44
|
Qian C, Xia Y, Ren Y, Yin Y, Deng A. Identification and validation of PSAT1 as a potential prognostic factor for predicting clinical outcomes in patients with colorectal carcinoma. Oncol Lett 2017; 14:8014-8020. [PMID: 29344244 PMCID: PMC5755227 DOI: 10.3892/ol.2017.7211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 08/23/2017] [Indexed: 01/02/2023] Open
Abstract
The aim of the present study was to explore the existence of known or candidate drug-target genes that are upregulated in colorectal cancer (CRC) and may serve as novel prognostic factors or therapeutic targets for this type of malignancy. An in silico analysis was conducted using the Oncomine tool to compare the expression levels of a list of drug-target genes between cancerous and normal tissues in 6 independent CRC cohorts retrieved from the Oncomine database. Phosphoserine aminotransferase 1 (PSAT1) was identified as the top-ranked upregulated gene in CRC tumors, and was highly expressed in patients with chemoresistant disease. Subsequently, the expression of PSAT1 was further experimentally validated using immunohistochemistry in an independent cohort of CRC specimens. The immunohistochemistry results demonstrated that PSAT1 was overexpressed in the CRC tissues compared with the normal colorectal tissues, which was consistent with the previous in silico analysis. Furthermore, PSAT1 overexpression was associated with response to irinotecan, 5-fluorouracil and leucovorin chemotherapy, and with shorter survival time, and retained significance as an independent prognostic factor for CRC when subjected to the multivariate analysis with a Cox's proportional hazards model. Therefore, the present results implicate PSAT1 as a potential prognostic biomarker and a promising therapeutic target for CRC. Targeted PSAT1 inhibition in the treatment of CRC warrants further investigation.
Collapse
Affiliation(s)
- Cheng Qian
- Department of General Surgery, Huzhou Maternity and Child Care Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Yongsheng Xia
- Department of General Surgery, Huzhou Maternity and Child Care Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Yun Ren
- Department of General Surgery, Huzhou Maternity and Child Care Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Yan Yin
- Department of General Surgery, Huzhou Maternity and Child Care Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Anmei Deng
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
45
|
One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget 2017; 8:23955-23977. [PMID: 28177894 PMCID: PMC5410357 DOI: 10.18632/oncotarget.15053] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/02/2016] [Indexed: 12/29/2022] Open
Abstract
Cancer-related metabolism has recently emerged as one of the “hallmarks of cancer”. It has several important features, including altered metabolism of glucose and glutamine. Importantly, altered cancer metabolism connects different biochemical pathways into the one fine-tuned metabolic network, which stimulates high proliferation rates and plasticity to malignant cells. Among the keystones of cancer metabolism are one-carbon metabolism and nucleotide biosynthesis, which provide building blocks to anabolic reactions. Accordingly, the importance of these metabolic pathways for anticancer therapy has well been documented by more than fifty years of clinical use of specific metabolic inhibitors – methotrexate and nucleotides analogs. In this review we discuss one-carbon metabolism and nucleotide biosynthesis as common and specific features of many, if not all, tumors. The key enzymes involved in these pathways also represent promising anti-cancer therapeutic targets. We review different aspects of these metabolic pathways including their biochemistry, compartmentalization and expression of the key enzymes and their regulation at different levels. We also discuss the effects of known inhibitors of these pathways as well as the recent data on other enzymes of the same pathways as perspective pharmacological targets.
Collapse
|
46
|
Marini A, Lena AM, Panatta E, Ivan C, Han L, Liang H, Annicchiarico-Petruzzelli M, Di Daniele N, Calin GA, Candi E, Melino G. Ultraconserved long non-coding RNA uc.63 in breast cancer. Oncotarget 2017; 8:35669-35680. [PMID: 27447964 PMCID: PMC5482607 DOI: 10.18632/oncotarget.10572] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/13/2016] [Indexed: 12/13/2022] Open
Abstract
Transcribed-ultraconserved regions (T-UCRs) are long non-coding RNAs (lncRNA) encoded by a subset of long ultraconserved stretches in the human genome. Recent studies revealed that the expression of several T-UCRs is altered in cancer and growing evidences underline the importance of T-UCRs in oncogenesis, offering also potential new strategies for diagnosis and prognosis. We found that overexpression of one specific T-UCRs named uc.63 is associated with bad outcome in luminal A subtype of breast cancer patients. uc.63 is localized in the third intron of exportin-1 gene (XPO1) and is transcribed in the same orientation of its host gene. Interestingly, silencing of uc.63 induces apoptosis in vitro. However, silencing of host gene XPO1 does not cause the same effect suggesting that the transcription of uc.63 is independent of XPO1. Our results reveal an important role of uc.63 in promoting breast cancer cells survival and offer the prospect to identify a signature associated with poor prognosis.
Collapse
Affiliation(s)
- Alberto Marini
- Medical Research Council, Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK
| | - Anna Maria Lena
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Emanuele Panatta
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - Cristina Ivan
- Department of Experimental Therapeutics and The Center for RNA interference and non-coding RNA, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | - Nicola Di Daniele
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| | - George A. Calin
- Department of Experimental Therapeutics and The Center for RNA interference and non-coding RNA, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Eleonora Candi
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
- IDI-IRCCS, Biochemistry Laboratory, Rome, Italy
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Hodgkin Building, University of Leicester, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
47
|
Critical role of Myc activation in mouse hepatocarcinogenesis induced by the activation of AKT and RAS pathways. Oncogene 2017; 36:5087-5097. [PMID: 28481866 PMCID: PMC5596209 DOI: 10.1038/onc.2017.114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 02/27/2017] [Accepted: 03/18/2017] [Indexed: 12/13/2022]
Abstract
MYC activation at modest levels has been frequently found in hepatocellular carcinoma. However, its significance in hepatocarcinogenesis has remained obscure. Here we examined the role of Myc activation in mouse liver tumours induced by hepatocytic expression of myristoylated AKT (AKT) and/or mutant HRASV12 (HRAS) via transposon-mediated gene integration. AKT or HRAS alone required 5 months to induce liver tumours, whereas their combination generated hepatocellular carcinoma within 8 weeks. Co-introduction of AKT and HRAS induced lipid-laden preneoplastic cells that grew into nodules composed of tumour cells with or without intracytoplasmic lipid, with the latter being more proliferative and associated with spontaneous Myc expression. AKT/HRAS-induced tumorigenesis was almost completely abolished when MadMyc, a competitive Myc inhibitor, was expressed simultaneously. The Tet-On induction of MadMyc in preneoplastic cells significantly inhibited the progression of AKT/HRAS-induced tumours; its induction in transformed cells suppressed their proliferative activity with alterations in lipid metabolism and protein translation. Transposon-mediated Myc overexpression facilitated tumorigenesis by AKT or HRAS, and when it was co-introduced with AKT and HRAS, diffusely infiltrating tumours without lipid accumulation developed as early as 2 weeks. Examination of the dose-responses of Myc in the enhancement of AKT/HRAS-induced tumorigenesis revealed that a reduction to one-third retained enhancing effect but three-times greater introduction damped the process with increased apoptosis. Myc overexpression suppressed the mRNA expression of proteins involved in the synthesis of fatty acids, and when combined with HRAS introduction, it also suppressed the mRNA expression of proteins involved in their degradation. Finally, the MYC-positive human hepatocellular carcinoma was characterized by the cytoplasm devoid of lipid accumulation, prominent nucleoli and a higher proliferative activity. Our results demonstrate that in hepatocarcinogenesis induced by both activated AKT and HRAS, activation of endogenous Myc is an enhancing factor and adequate levels of Myc deregulation further facilitate the process with alterations in cellular metabolism.
Collapse
|
48
|
OOgenesis_Pred: A sequence-based method for predicting oogenesis proteins by six different modes of Chou's pseudo amino acid composition. J Theor Biol 2017; 414:128-136. [DOI: 10.1016/j.jtbi.2016.11.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
|
49
|
Mitochondrial serine hydroxymethyltransferase 2 is a potential diagnostic and prognostic biomarker for human glioma. Clin Neurol Neurosurg 2017; 154:28-33. [PMID: 28107674 DOI: 10.1016/j.clineuro.2017.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/28/2016] [Accepted: 01/07/2017] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Scholars have gradually come to appreciate the relevance of serine and glycine metabolism. Recently, researchers have discovered that mitochondrial serine hydroxymethyltransferase 2 (SHMT2) is overexpressed in various types of cancer. However, the function of SHMT2 in glioma is not clear. In this study, we sought to examine the expression of SHMT2 in glioma, the association between SHMT2 expression and clinicopathological characteristics, and the association of SHMT2 expression with prognosis in glioma patients. METHODS We evaluated the expression of SHMT2, Ki67, O-6-methylguanine-DNA methyltransferase (MGMT), and Glutathione S Transferase pi (GST-pi) in 150 glioma patients using immunohistochemistry assays. The associations among the expression of SHMT2, clinicopathological parameters, and outcome of glioma patients were statistically analysed. RESULTS The expression of SHMT2 was increased in gliomas compared to normal brain tissue and gradually increased with increasing WHO grade. The SHMT2 expression was positively correlated with Ki67 expression and WHO degree (p<0.01) but was not correlated with other clinicopathological parameters, including sex, age, Karnofsky Performance Status (KPS), tumour diameter, MGMT, and GST-pi (p>0.05). Kaplan-Meier survival curves and Cox regression analyses showed that SHMT2 expression and the WHO grade were independent prognostic indicators for glioma patients. CONCLUSION The expression of SHMT2 in glioma was significantly increased compared to normal brain tissue. SHMT2 promoted tumour proliferation, and there was no association between SHMT2 and drug resistance mechanisms of glioma. SHMT2 may be a novel and valuable biomarker for the diagnosis of glioma and an independent prognostic parameter of glioma.
Collapse
|
50
|
Ducker GS, Rabinowitz JD. One-Carbon Metabolism in Health and Disease. Cell Metab 2017; 25:27-42. [PMID: 27641100 PMCID: PMC5353360 DOI: 10.1016/j.cmet.2016.08.009] [Citation(s) in RCA: 1288] [Impact Index Per Article: 161.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/19/2016] [Accepted: 08/16/2016] [Indexed: 12/31/2022]
Abstract
One-carbon (1C) metabolism, mediated by the folate cofactor, supports multiple physiological processes. These include biosynthesis (purines and thymidine), amino acid homeostasis (glycine, serine, and methionine), epigenetic maintenance, and redox defense. Both within eukaryotic cells and across organs, 1C metabolic reactions are compartmentalized. Here we review the fundamentals of mammalian 1C metabolism, including the pathways active in different compartments, cell types, and biological states. Emphasis is given to recent discoveries enabled by modern genetics, analytical chemistry, and isotope tracing. An emerging theme is the biological importance of mitochondrial 1C reactions, both for producing 1C units that are exported to the cytosol and for making additional products, including glycine and NADPH. Increased clarity regarding differential folate pathway usage in cancer, stem cells, development, and adult physiology is reviewed and highlights new opportunities for selective therapeutic intervention.
Collapse
Affiliation(s)
- Gregory S Ducker
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|