1
|
Gutova M, Hibbard JC, Ma E, Natri HM, Adhikarla V, Chimge NO, Qiu R, Nguyen C, Melendez E, Aguilar B, Starr R, Yin H, Rockne RC, Ono M, Banovich NE, Yuan YC, Brown CE, Kahn M. Targeting Wnt signaling for improved glioma immunotherapy. Front Immunol 2024; 15:1342625. [PMID: 38449858 PMCID: PMC10915090 DOI: 10.3389/fimmu.2024.1342625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Despite aggressive standard-of-care therapy, including surgery, radiation, and chemotherapy, glioblastoma recurrence is almost inevitable and uniformly lethal. Activation of glioma-intrinsic Wnt/β-catenin signaling is associated with a poor prognosis and the proliferation of glioma stem-like cells, leading to malignant transformation and tumor progression. Impressive results in a subset of cancers have been obtained using immunotherapies including anti-CTLA4, anti-PD-1, and anti-PD-L1 or chimeric antigen receptor (CAR) T cell therapies. However, the heterogeneity of tumors, low mutational burden, single antigen targeting, and associated antigen escape contribute to non-responsiveness and potential tumor recurrence despite these therapeutic efforts. In the current study, we determined the effects of the small molecule, highly specific Wnt/CBP (CREB Binding Protein)/β-catenin antagonist ICG-001, on glioma tumor cells and the tumor microenvironment (TME)-including its effect on immune cell infiltration, blood vessel decompression, and metabolic changes. Methods Using multiple glioma patient-derived xenografts cell lines and murine tumors (GL261, K-Luc), we demonstrated in vitro cytostatic effects and a switch from proliferation to differentiation after treatment with ICG-001. Results In these glioma cell lines, we further demonstrated that ICG-001 downregulated the CBP/β-catenin target gene Survivin/BIRC5-a hallmark of Wnt/CBP/β-catenin inhibition. We found that in a syngeneic mouse model of glioma (K-luc), ICG-001 treatment enhanced tumor infiltration by CD3+ and CD8+ cells with increased expression of the vascular endothelial marker CD31 (PECAM-1). We also observed differential gene expression and induced immune cell infiltration in tumors pretreated with ICG-001 and then treated with CAR T cells as compared with single treatment groups or when ICG-001 treatment was administered after CAR T cell therapy. Discussion We conclude that specific Wnt/CBP/β-catenin antagonism results in pleotropic changes in the glioma TME, including glioma stem cell differentiation, modulation of the stroma, and immune cell activation and recruitment, thereby suggesting a possible role for enhancing immunotherapy in glioma patients.
Collapse
Affiliation(s)
- Margarita Gutova
- Department of Stem Cell Biology and Regenerative Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Jonathan C. Hibbard
- Department of Hematology & Hematopoietic Cell transplantation (T cell Therapeutic Research Laboratories), City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Eric Ma
- Department of Hematology & Hematopoietic Cell transplantation (T cell Therapeutic Research Laboratories), City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Heini M. Natri
- Translational Genomics Research Institute (TGen), Phoenix, AZ, United States
| | - Vikram Adhikarla
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Nyam-Osor Chimge
- Cancer Biology and Molecular Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Runxiang Qiu
- Department of Stem Cell Biology and Regenerative Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Cu Nguyen
- Cancer Biology and Molecular Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Elizabeth Melendez
- Cancer Biology and Molecular Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Brenda Aguilar
- Department of Hematology & Hematopoietic Cell transplantation (T cell Therapeutic Research Laboratories), City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Renate Starr
- Department of Hematology & Hematopoietic Cell transplantation (T cell Therapeutic Research Laboratories), City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Holly Yin
- Cancer Biology and Molecular Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Russel C. Rockne
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | | | | | - Yate-Ching Yuan
- Department of Computational and Quantitative Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Christine E. Brown
- Department of Hematology & Hematopoietic Cell transplantation (T cell Therapeutic Research Laboratories), City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Michael Kahn
- Cancer Biology and Molecular Medicine, City of Hope Beckman Research Institute, Duarte, CA, United States
| |
Collapse
|
2
|
Augustine T, John P, Friedman T, Jiffry J, Guzik H, Mannan R, Gupta R, Delano C, Mariadason JM, Zang X, Maitra R, Goel S. Potentiating effect of reovirus on immune checkpoint inhibition in microsatellite stable colorectal cancer. Front Oncol 2022; 12:1018767. [PMID: 36387154 PMCID: PMC9642964 DOI: 10.3389/fonc.2022.1018767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/28/2022] [Indexed: 09/27/2023] Open
Abstract
The majority of colorectal cancers (CRCs) are microsatellite stable (MSS) and resistant to immunotherapy. The current study explores the possibility of using oncolytic reovirus to sensitize MSS CRC to immune checkpoint inhibition. While reovirus reduced metabolic activity among KRAS Mut cells, microarray/computational analysis revealed microsatellite status-oriented activation of immune-response pathways. Reovirus plus anti-PD-1 treatment increased cell death among MSS cells ex vivo. Reduced tumorigenicity and proliferative index, and increased apoptosis were evident among CT26 [MSS, KRAS Mut], but not in MC38 [microsatellite unstable/MSI, KRAS Wt] syngeneic mouse models under combinatorial treatment. PD-L1-PD-1 signaling axis were differentially altered among CT26/MC38 models. Combinatorial treatment activated the innate immune system, pattern recognition receptors, and antigen presentation markers. Furthermore, we observed the reduction of immunosuppressive macrophages and expansion of effector T cell subsets, as well as reduction in T cell exhaustion. The current investigation sheds light on the immunological mechanisms of the reovirus-anti-PD-1 combination to reduce the growth of MSS CRC.
Collapse
Affiliation(s)
- Titto Augustine
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Peter John
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tyler Friedman
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Jeeshan Jiffry
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hillary Guzik
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rifat Mannan
- Department of Pathology, City of Hope, Duarte, CA, United States
| | - Riya Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Computer Science, Columbia University, New York, NY, United States
| | - Catherine Delano
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - John M. Mariadason
- Gastrointestinal Cancers Program and Oncogenic Transcription Laboratory, Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Melbourne, VIC, Australia
| | - Xingxing Zang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Radhashree Maitra
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
- Department of Biology, Yeshiva University, New York, NY, United States
| | - Sanjay Goel
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medical Oncology, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
3
|
Lu J, He X, Zhang L, Zhang R, Li W. Acetylation in Tumor Immune Evasion Regulation. Front Pharmacol 2021; 12:771588. [PMID: 34880761 PMCID: PMC8645962 DOI: 10.3389/fphar.2021.771588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
Acetylation is considered as one of the most common types of epigenetic modifications, and aberrant histone acetylation modifications are associated with the pathological process of cancer through the regulation of oncogenes and tumor suppressors. Recent studies have shown that immune system function and tumor immunity can also be affected by acetylation modifications. A comprehensive understanding of the role of acetylation function in cancer is essential, which may help to develop new therapies to improve the prognosis of cancer patients. In this review, we mainly discussed the functions of acetylase and deacetylase in tumor, immune system and tumor immunity, and listed the information of drugs targeting these enzymes in tumor immunotherapy.
Collapse
Affiliation(s)
- Jun Lu
- Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Xiang He
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Lijuan Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ran Zhang
- Hunan Normal University School of Medicine, Changsha, China
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Kahn M. Taking the road less traveled - the therapeutic potential of CBP/β-catenin antagonists. Expert Opin Ther Targets 2021; 25:701-719. [PMID: 34633266 PMCID: PMC8745629 DOI: 10.1080/14728222.2021.1992386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
AREAS COVERED This perspective discusses the challenges of targeting the Wnt signaling cascade, the safety, efficacy, and therapeutic potential of specific CBP/β-catenin antagonists and a rationale for the pleiotropic effects of CBP/β-catenin antagonists beyond Wnt signaling. EXPERT OPINION CBP/β-catenin antagonists can correct lineage infidelity, enhance wound healing, both normal and aberrant (e.g. fibrosis) and force the differentiation and lineage commitment of stem cells and cancer stem cells by regulating enhancer and super-enhancer coactivator occupancy. Small molecule CBP/β-catenin antagonists rebalance the equilibrium between CBP/β-catenin versus p300/β-catenin dependent transcription and may be able to treat or prevent many diseases of aging, via maintenance of our somatic stem cell pool, and regulating mitochondrial function and metabolism involved in differentiation and immune cell function.
Collapse
Affiliation(s)
- Michael Kahn
- Department of Molecular Medicine, City of Hope, Beckman Research Institute, 1500 East Duarte Road Flower Building, Duarte, CA, USA
| |
Collapse
|
5
|
Huang Y, Sheng H, Xiao Y, Hu W, Zhang Z, Chen Y, Zhu Z, Wu D, Cao C, Sun J. Wnt/β-catenin inhibitor ICG-001 enhances the antitumor efficacy of radiotherapy by increasing radiation-induced DNA damage and improving tumor immune microenvironment in hepatocellular carcinoma. Radiother Oncol 2021; 162:34-44. [PMID: 34214613 DOI: 10.1016/j.radonc.2021.06.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND PURPOSE Radiotherapy (RT) has a promising anti-tumor effect depending on its effects on both cancer cells and tumor immune microenvironment (TIME). As one of the most common alterations in hepatocellular carcinoma (HCC), wnt/β-catenin pathway activation, has been reported to induce radioresistance and suppressive TIME. In this study, we aim to explore the effect of wnt/β-catenin inhibitor ICG-001 on radiosensitivity and RT-related TIME of HCC and the underlying mechanism. MATERIALS AND METHODS C57BL/6 and nude mouse tumor models were used to evaluate the efficacy of different treatments on tumor growth, recurrence and mice survival. Flow cytometry was performed to assess tumor infiltrating lymphocytes (TILs). DNA damage response (DDR) and radioresistance was investigated by colony formation assays, γ-H2AX and micronuclei measurements. RESULTS The addition of ICG-001 to RT exhibited better anti-tumor and survival-prolong efficacy in C57BL/6 than nude mice. TILs analysis revealed that ICG-001 plus RT boosted the infiltration and IFN-γ production of TIL CD8+ T cells, meanwhile reduced the number of Tregs. Moreover, mechanistic study demonstrated that ICG-001 increased the radiation-induced DDR of HCC cells by suppressing p53, thus leading to stronger activation of cGAS/STING pathway. Utilization of cGAS/STING pathway inhibitors impaired the therapeutic effect of combination therapy. Furthermore, combination therapy led to stronger immunologic memory and tumor relapse prevention. CONCLUSIONS Our findings showed that ICG-001 displayed both local and systematic effects by increasing radiosensitivity and improving immunity in HCC, which indicated that ICG-001 might be a potential synergetic treatment for radiotherapy and radioimmunotherapy in HCC patients.
Collapse
Affiliation(s)
- Yan Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hailong Sheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yazhi Xiao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Hu
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhihong Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyao Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenru Zhu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Chuanhui Cao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Jingyuan Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Hussain SM, Kansal RG, Alvarez MA, Hollingsworth TJ, Elahi A, Miranda-Carboni G, Hendrick LE, Pingili AK, Albritton LM, Dickson PV, Deneve JL, Yakoub D, Hayes DN, Kurosu M, Shibata D, Makowski L, Glazer ES. Role of TGF-β in pancreatic ductal adenocarcinoma progression and PD-L1 expression. Cell Oncol (Dordr) 2021; 44:673-687. [PMID: 33694102 DOI: 10.1007/s13402-021-00594-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The transforming growth factor-beta (TGF-β) pathway plays a paradoxical, context-dependent role in pancreatic ductal adenocarcinoma (PDAC): a tumor-suppressive role in non-metastatic PDAC and a tumor-promotive role in metastatic PDAC. We hypothesize that non-SMAD-TGF-β signaling induces PDAC progression. METHODS We investigated the expression of non-SMAD-TGF-β signaling proteins (pMAPK14, PD-L1, pAkt and c-Myc) in patient-derived tissues, cell lines and an immunocompetent mouse model. Experimental models were complemented by comparing the signaling proteins in PDAC specimens from patients with various survival intervals. We manipulated models with TGF-β, gemcitabine (DNA synthesis inhibitor), galunisertib (TGF-β receptor inhibitor) and MK-2206 (Akt inhibitor) to investigate their effects on NF-κB, β-catenin, c-Myc and PD-L1 expression. PD-L1 expression was also investigated in cancer cells and tumor associated macrophages (TAMs) in a mouse model. RESULTS We found that tumors from patients with aggressive PDAC had higher levels of the non-SMAD-TGF-β signaling proteins pMAPK14, PD-L1, pAkt and c-Myc. In PDAC cells with high baseline β-catenin expression, TGF-β increased β-catenin expression while gemcitabine increased PD-L1 expression. Gemcitabine plus galunisertib decreased c-Myc and NF-κB expression, but induced PD-L1 expression in some cancer models. In mice, gemcitabine plus galunisertib treatment decreased metastases (p = 0.018), whereas galunisertib increased PD-L1 expression (p < 0.0001). In the mice, liver metastases contained more TAMs compared to the primary pancreatic tumors (p = 0.001), and TGF-β increased TAM PD-L1 expression (p < 0.05). CONCLUSIONS In PDAC, the non-SMAD-TGF-β signaling pathway leads to more aggressive phenotypes, TAM-induced immunosuppression and PD-L1 expression. The divergent effects of TGF-β ligand versus receptor inhibition in tumor cells versus TAMs may explain the TGF-β paradox. Further evaluation of each mechanism is expected to lead to the development of targeted therapies.
Collapse
Affiliation(s)
- S Mazher Hussain
- Department of Surgery, College of Medicine, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA
| | - Rita G Kansal
- Department of Surgery, College of Medicine, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA
| | - Marcus A Alvarez
- Department of Surgery, College of Medicine, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA
| | - T J Hollingsworth
- Department of Surgery, College of Medicine, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA
| | - Abul Elahi
- Department of Surgery, College of Medicine, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA
| | | | - Leah E Hendrick
- Department of Surgery, College of Medicine, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA
| | | | | | - Paxton V Dickson
- Department of Surgery, College of Medicine, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA
| | - Jeremiah L Deneve
- Department of Surgery, College of Medicine, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA
| | - Danny Yakoub
- Department of Surgery, College of Medicine, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA
| | - D Neil Hayes
- Department of Medicine, College of Medicine, Memphis, TN, USA
| | - Michio Kurosu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - David Shibata
- Department of Surgery, College of Medicine, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA
| | - Liza Makowski
- Department of Medicine, College of Medicine, Memphis, TN, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Evan S Glazer
- Department of Surgery, College of Medicine, 910 Madison Ave., Suite 300, Memphis, TN, 38163, USA.
| |
Collapse
|
7
|
Lai KKY, Kahn M. Pharmacologically Targeting the WNT/β-Catenin Signaling Cascade: Avoiding the Sword of Damocles. Handb Exp Pharmacol 2021; 269:383-422. [PMID: 34463849 DOI: 10.1007/164_2021_523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
WNT/β-catenin signaling plays fundamental roles in numerous developmental processes and in adult tissue homeostasis and repair after injury, by controlling cellular self-renewal, activation, division, differentiation, movement, genetic stability, and apoptosis. As such, it comes as no surprise that dysregulation of WNT/β-catenin signaling is associated with various diseases, including cancer, fibrosis, neurodegeneration, etc. Although multiple agents that specifically target the WNT/β-catenin signaling pathway have been studied preclinically and a number have entered clinical trials, none has been approved by the FDA to date. In this chapter, we provide our insights as to the reason(s) it has been so difficult to safely pharmacologically target the WNT/β-catenin signaling pathway and discuss the significant efforts undertaken towards this goal.
Collapse
Affiliation(s)
- Keane K Y Lai
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Michael Kahn
- Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
8
|
Tentler JJ, Lang J, Capasso A, Kim DJ, Benaim E, Lee YB, Eisen A, Bagby SM, Hartman SJ, Yacob BW, Gittleman B, Pitts TM, Pelanda R, Eckhardt SG, Diamond JR. RX-5902, a novel β-catenin modulator, potentiates the efficacy of immune checkpoint inhibitors in preclinical models of triple-negative breast Cancer. BMC Cancer 2020; 20:1063. [PMID: 33148223 PMCID: PMC7641792 DOI: 10.1186/s12885-020-07500-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited systemic treatment options. RX-5902 is a novel anti-cancer agent that inhibits phosphorylated-p68 and thus attenuates nuclear β-catenin signaling. The purpose of this study was to evaluate the ability of β-catenin signaling blockade to enhance the efficacy of anti-CTLA-4 and anti-PD-1 immune checkpoint blockade in immunocompetent, preclinical models of TNBC. METHODS Treatment with RX-5902, anti-PD-1, anti-CTLA-4 or the combination was investigated in BALB/c mice injected with the 4 T1 TNBC cell line. Humanized BALB/c-Rag2nullIl2rγnullSIRPαNOD (hu-CB-BRGS) mice transplanted with a human immune system were implanted with MDA-MB-231 cells. Mice were randomized into treatment groups according to human hematopoietic chimerism and treated with RX-5902, anti-PD-1 or the combination. At sacrifice, bone marrow, lymph nodes, spleen and tumors were harvested for flow cytometry analysis of human immune cells. RESULTS The addition of RX-5902 to CTLA-4 or PD-1 inhibitors resulted in decreased tumor growth in the 4 T1 and human immune system and MDA-MB-231 xenograft models. Immunologic analyses demonstrated a significant increase in the number of activated T cells in tumor infiltrating lymphocytes (TILs) with RX-5902 treatment compared to vehicle (p < 0.05). In the RX-5902/nivolumab combination group, there was a significant increase in the percentage of CD4+ T cells in TILs and increased systemic granzyme B production (p < 0.01). CONCLUSIONS Conclusions: RX-5902 enhanced the efficacy of nivolumab in a humanized, preclinical model of TNBC. Several changes in immunologic profiles were noted in mice treated with RX-5902 and the combination, including an increase in activated TILs and a decrease in human myeloid populations, that are often associated with immunosuppression in a tumor microenvironment. RX-5902 also was shown to potentiate the effects of checkpoint inhibitors of CTLA4 and the PD-1 inhibitor in the 4 T-1 murine TNBC model. These findings indicate that RX-5902 may have important immunomodulatory, as well as anti-tumor activity, in TNBC when combined with a checkpoint inhibitor.
Collapse
Affiliation(s)
- John J Tentler
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA.
- University of Colorado Cancer Center, Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA.
| | - Julie Lang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Anna Capasso
- Dell Medical School, Department of Oncology, University of Texas at Austin, Austin, TX, USA
| | | | - Ely Benaim
- Rexahn Pharmaceuticals Inc., Rockville, MD, USA
| | - Young B Lee
- Rexahn Pharmaceuticals Inc., Rockville, MD, USA
| | | | - Stacey M Bagby
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA
| | - Sarah J Hartman
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA
| | - Betelehem W Yacob
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA
| | - Brian Gittleman
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA
| | - Todd M Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - S Gail Eckhardt
- Dell Medical School, Department of Oncology, University of Texas at Austin, Austin, TX, USA
| | - Jennifer R Diamond
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, 12801 E 17th Ave, MS8117, Aurora, CO, 80045, USA
| |
Collapse
|
9
|
Sferrazza G, Corti M, Brusotti G, Pierimarchi P, Temporini C, Serafino A, Calleri E. Nature-derived compounds modulating Wnt/ β -catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm Sin B 2020; 10:1814-1834. [PMID: 33163337 PMCID: PMC7606110 DOI: 10.1016/j.apsb.2019.12.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
The Wnt/β-catenin signaling is a conserved pathway that has a crucial role in embryonic and adult life. Dysregulation of the Wnt/β-catenin pathway has been associated with diseases including cancer, and components of the signaling have been proposed as innovative therapeutic targets, mainly for cancer therapy. The attention of the worldwide researchers paid to this issue is increasing, also in view of the therapeutic potential of these agents in diseases, such as Parkinson's disease (PD), for which no cure is existing today. Much evidence indicates that abnormal Wnt/β-catenin signaling is involved in tumor immunology and the targeting of Wnt/β-catenin pathway has been also proposed as an attractive strategy to potentiate cancer immunotherapy. During the last decade, several products, including naturally occurring dietary agents as well as a wide variety of products from plant sources, including curcumin, quercetin, berberin, and ginsenosides, have been identified as potent modulators of the Wnt/β-catenin signaling and have gained interest as promising candidates for the development of chemopreventive or therapeutic drugs for cancer. In this review we make an overview of the nature-derived compounds reported to have antitumor activity by modulating the Wnt/β-catenin signaling, also focusing on extraction methods, chemical features, and bio-activity assays used for the screening of these compounds.
Collapse
Affiliation(s)
- Gianluca Sferrazza
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Marco Corti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Gloria Brusotti
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | - Pasquale Pierimarchi
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | | | - Annalucia Serafino
- Institute of Translational Pharmacology, National Research Council of Italy, Rome 03018, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
10
|
He J, Chen XF, Xu MG, Zhao J. Relationship of programmed death ligand-1 expression with clinicopathological features and prognosis in patients with oral squamous cell carcinoma: A meta-analysis. Arch Oral Biol 2020; 114:104717. [PMID: 32344357 DOI: 10.1016/j.archoralbio.2020.104717] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/12/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Programmed death ligand-1 (PD-L1) expression is related to the prognosis of many solid tumors; however, its prognostic value in oral squamous cell carcinoma (OSCC) remains unclear. Here, a meta-analysis was performed to estimate the association of PD-L1 expression with prognosis and clinicopathological features in patients with OSCC. METHODS PubMed, Web of Science, EMBASE, Cochrane Library, and CNKI databases were searched to find relevant studies for identification of the association of PD-L1 expression with clinicopathological features and overall survival (OS) in patients with OSCC. The strength of the association of PD-L1 expression with clinicopathological features and OS in patients with OSCC was assessed according to the relative risk (RR), hazard ratio (HR), and 95% confidence interval CI (CI). RESULT Twenty-three studies (including 3217 patients with OSCC) were evaluated. The meta-analysis showed that positive PD-L1 expression was significantly correlated with OS in patients with OSCC (HR = 1.00, 95% CI = 0.76-1.30, p = 0.284). Positive PD-L1 expression was significantly correlated with sex (RR = 1.22, 95% CI = 1.07-1.38, p = 0.002), histological differentiation (RR = 1.15, 95% CI = 1.02-1.30, p = 0.020), distant metastasis (RR = 0.68, 95% CI = 0.54-0.86, p = 0.011), lymph node metastasis status (RR = 0.83, 95% CI = 0.76-0.91, p < 0.001), TNM stage (RR = 0.81, 95% CI = 0.73-0.89, p < 0.001), and human papilloma virus infection status (RR = 1.30, 95% CI = 1.04-1.62, p = 0.019), but was not correlated with T stage and tumor recurrence. CONCLUSION High PD-L1 expression in OSCC was not related to OS. However, high PD-L1 expression was significantly related to certain clinicopathological features. Thus, positive PD-L1 expression may be a biomarker of poor prognosis in patients with OSCC.
Collapse
Affiliation(s)
- Jing He
- Department of Medical Technology, West Anhui Health Vocational College, Lu'an, Anhui Province, 237009, China
| | - Xiao-Fang Chen
- Department of Pharmacy, West Anhui Health Vocational College, Lu'an, Anhui Province, 237009, China
| | - Ming-Gao Xu
- Department of Medical Technology, West Anhui Health Vocational College, Lu'an, Anhui Province, 237009, China
| | - Jing Zhao
- Department of Fundamental Nursing, West Anhui Health Vocational College, Lu'an, Anhui Province, 237009, China.
| |
Collapse
|
11
|
Immune-resistant mechanisms in cancer immunotherapy. Int J Clin Oncol 2020; 25:810-817. [PMID: 31919690 DOI: 10.1007/s10147-019-01611-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
Immune checkpoint inhibitors (ICI) such as PD-1/PD-L1 antibodies (Abs) and CTLA4 Abs and T cell-based adoptive cell therapies are effective for patients with various cancers. However, response rates of ICI monotherapies are still limited due to lack of immunogenic antigens and various immune-resistant mechanisms. The latter includes adaptive immune resistance that is caused by anti-tumor T cells (e.g. PD-L1 induced by IFN-γ from T cells) and primary immune resistance that is caused by cancer cells (e.g. immunosuppressive cytokines produced by cancer cells). Further understanding of the immune-resistant mechanisms, which may be possible through comparative analyses of responders and non-responders to the immunotherapies, will lead to the identification of new diagnostic biomarkers and therapeutic targets for development of effective cancer immuno therapies.
Collapse
|
12
|
Lin HY, Chen YR, Li ZL, Shih YJ, Davis P, Whang-Peng J, Wang K. Thyroid hormone, PD-L1, and cancer. JOURNAL OF CANCER RESEARCH AND PRACTICE 2019. [DOI: 10.4103/jcrp.jcrp_26_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|