1
|
Misme-Aucouturier B, Gagnaire V, LeCorre E, DeCarvalho M, Jan G, Bouchaud G. Propionibacterium freudenreichii Prevents Food Allergy in Mice via the Surface Layer Protein SlpB. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27495-27503. [PMID: 39576212 DOI: 10.1021/acs.jafc.4c09165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The prevalence of food allergies has increased in recent decades in industrialized developed countries. Defects are influenced by environmental factors in early life, including early colonizers of the human gut microbiota. Therapeutic solutions are limited, and the lack of efficient treatments has led to the search for new treatments, including biotherapies. Promising results from this search suggest that immunomodulatory probiotic bacteria, in particular, may yield new biotherapeutic or preventive strategies to address the increasing burden of food allergies. In this context, we investigated the potential impact of Propionibacterium freudenreichii CIRM-BIA129, a recognized immunomodulatory probiotic bacterium, on food allergy development in a murine model. Preventive effects of this probiotic were evaluated in the context of an induced wheat gliadin allergy. Following sensitization using gliadins, clinical and immunological parameters were monitored following an oral challenge with wheat gliadin. When consumed orally, P. freudenreichii CIRM-BIA129 prevented induced wheat gliadin allergy. Probiotic administration favored the differentiation of Treg cells at the expense of Th2 cells in mice. Notably, P. freudenreichii CIRM-BIA129 ΔslpB, which contains a mutation in the slpB gene encoding a key surface protein involved in adhesion and immunomodulation, failed to induce the same phenotype. Accordingly, the wild-type probiotic stimulated IL-10 production by human peripheral blood mononuclear cells, while the mutant did not. Altogether, these results indicate that the P. freudenreichii CIRM-BIA129 strain can mitigate the food allergic response through its immunomodulatory effects mediated by the surface layer protein SlpB. This finding provides new perspectives for biotherapies aimed at managing the increased prevalence of food allergy.
Collapse
Affiliation(s)
| | | | - Elysa LeCorre
- INRAE, Biopolymères Intéractions Assemblages (BIA), 44000 Nantes, France
| | - Marion DeCarvalho
- INRAE, Biopolymères Intéractions Assemblages (BIA), 44000 Nantes, France
| | - Gwénaël Jan
- INRAE, STLO, Institut Agro, 35000 Rennes, France
| | - Grégory Bouchaud
- INRAE, Biopolymères Intéractions Assemblages (BIA), 44000 Nantes, France
| |
Collapse
|
2
|
Subbarayudu S, Namasivayam SKR, Arockiaraj J. Immunomodulation in Non-traditional Therapies for Methicillin-resistant Staphylococcus aureus (MRSA) Management. Curr Microbiol 2024; 81:346. [PMID: 39240286 DOI: 10.1007/s00284-024-03875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
The rise of methicillin-resistant Staphylococcus aureus (MRSA) poses a significant challenge in clinical settings due to its ability to evade conventional antibiotic treatments. This overview explores the potential of immunomodulatory strategies as alternative therapeutic approaches to combat MRSA infections. Traditional antibiotics are becoming less effective, necessitating innovative solutions that harness the body's immune system to enhance pathogen clearance. Recent advancements in immunotherapy, including the use of antimicrobial peptides, phage therapy, and mechanisms of immune cells, demonstrate promise in enhancing the body's ability to clear MRSA infections. However, the exact interactions between these therapies and immunomodulation are not fully understood, underscoring the need for further research. Hence, this review aims to provide a broad overview of the current understanding of non-traditional therapeutics and their impact on immune responses, which could lead to more effective MRSA treatment strategies. Additionally, combining immunomodulatory agents with existing antibiotics may improve outcomes, particularly for immunocompromised patients or those with chronic infections. As the landscape of antibiotic resistance evolves, the development of effective immunotherapeutic strategies could play a vital role in managing MRSA infections and reducing reliance on traditional antibiotics. Future research must focus on optimizing these approaches and validating their efficacy in diverse clinical populations to address the urgent need for effective MRSA management strategies.
Collapse
Affiliation(s)
- Suthi Subbarayudu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
3
|
Bosselaar S, Dhelin L, Dautel E, Titecat M, Duthoy S, Stelmaszczyk M, Delory N, De Sousa Violante M, Machuron F, Ait-Abderrahim H, Desreumaux P, Foligné B, Monnet C. Taxonomic and phenotypic analysis of bifidobacteria isolated from IBD patients as potential probiotic strains. BMC Microbiol 2024; 24:233. [PMID: 38951788 PMCID: PMC11218132 DOI: 10.1186/s12866-024-03368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Inflammatory Bowel Diseases (IBD) are a major public health issue with unclear aetiology. Changes in the composition and functionality of the intestinal microbiota are associated with these pathologies, including the depletion of strict anaerobes such as Feacalibacterium prausnitzii. Less evidence is observed for depletion in other anaerobes, among which bifidobacteria. This study characterized the taxonomic and functional diversity of bifidobacteria isolated from the human intestinal microbiota in active and non-active IBD patients by a culturomics approach and evaluated if these bifidobacteria might be used as probiotics for gut health. RESULTS A total of 341 bifidobacteria were isolated from the intestinal microbiota of IBD patients (52 Crohn's disease and 26 ulcerative colitis patients), with a high proportion of Bifidobacterium dentium strains (28% of isolated bifidobacteria). In ulcerative colitis, the major species identified was B. dentium (39% of isolated bifidobacteria), in active and non-active ulcerative colitis. In Crohn's disease, B. adolescentis was the major species isolated from non-active patients (40%), while similar amounts of B. dentium and B. adolescentis were found in active Crohn's disease patients. The relative abundance of B. dentium was increased with age, both in Crohn's disease and ulcerative colitis and active and non-active IBD patients. Antibacterial capacities of bifidobacteria isolated from non-active ulcerative colitis against Escherichia coli LF82 and Salmonella enterica ATCC 14028 were observed more often compared to strains isolated from active ulcerative colitis. Finally, B. longum were retained as strains with the highest probiotic potential as they were the major strains presenting exopolysaccharide synthesis, antibacterial activity, and anti-inflammatory capacities. Antimicrobial activity and EPS synthesis were further correlated to the presence of antimicrobial and EPS gene clusters by in silico analysis. CONCLUSIONS Different bifidobacterial taxonomic profiles were identified in the microbiota of IBD patients. The most abundant species were B. dentium, mainly associated to the microbiota of ulcerative colitis patients and B. adolescentis, in the intestinal microbiota of Crohn's disease patients. Additionally, the relative abundance of B. dentium significantly increased with age. Furthermore, this study evidenced that bifidobacteria with probiotic potential (antipathogenic activity, exopolysaccharide production and anti-inflammatory activity), especially B. longum strains, can be isolated from the intestinal microbiota of both active and non-active Crohn's disease and ulcerative colitis patients.
Collapse
Affiliation(s)
- Sabine Bosselaar
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France.
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France.
| | - Lucile Dhelin
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Ellena Dautel
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Marie Titecat
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Stéphanie Duthoy
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Marie Stelmaszczyk
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Nathan Delory
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Madeleine De Sousa Violante
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - François Machuron
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Hassina Ait-Abderrahim
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| | - Pierre Desreumaux
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
- Department of Hepato-Gastroenterology, Lille University Hospital, 59037, Lille, France
| | - Benoit Foligné
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Céline Monnet
- Lesaffre International - Lesaffre Institute of Science and Technology, 101 Rue de Menin, 59706, Marcq-en-Barœul, France
| |
Collapse
|
4
|
Laguna JG, Freitas ADS, Barroso FAL, De Jesus LCL, De Vasconcelos OAGG, Quaresma LS, Américo MF, Campos GM, Glória RDA, Dutra JDCF, Da Silva TF, Vital KD, Fernandes SO, Souza RO, Martins FDS, Ferreira E, Santos TM, Birbrair A, De Oliveira MFA, Faria AMC, Carvalho RDDO, Venanzi FM, Le Loir Y, Jan G, Guédon É, Azevedo VADC. Recombinant probiotic Lactococcus lactis delivering P62 mitigates moderate colitis in mice. Front Microbiol 2024; 15:1309160. [PMID: 38680913 PMCID: PMC11047439 DOI: 10.3389/fmicb.2024.1309160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/21/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction and objective p62 is a human multifunctional adaptor protein involved in key cellular processes such as tissue homeostasis, inflammation, and cancer. It acts as a negative regulator of inflammasome complexes. It may thus be considered a good candidate for therapeutic use in inflammatory bowel diseases (IBD), such as colitis. Probiotics, including recombinant probiotic strains producing or delivering therapeutic biomolecules to the host mucosal surfaces, could help prevent and mitigate chronic intestinal inflammation. The objective of the present study was to combine the intrinsic immunomodulatory properties of the probiotic Lactococcus lactis NCDO2118 with its ability to deliver health-promoting molecules to enhance its protective and preventive effects in the context of ulcerative colitis (UC). Material and methods This study was realized in vivo in which mice were supplemented with the recombinant strain. The intestinal barrier function was analyzed by monitoring permeability, secretory IgA total levels, mucin expression, and tight junction genes. Its integrity was evaluated by histological analyses. Regarding inflammation, colonic cytokine levels, myeloperoxidase (MPO), and expression of key genes were monitored. The intestinal microbiota composition was investigated using 16S rRNA Gene Sequencing. Results and discussion No protective effect of L. lactis NCDO2118 pExu:p62 was observed regarding mice clinical parameters compared to the L. lactis NCDO2118 pExu: empty. However, the recombinant strain, expressing p62, increased the goblet cell counts, upregulated Muc2 gene expression in the colon, and downregulated pro-inflammatory cytokines Tnf and Ifng when compared to L. lactis NCDO2118 pExu: empty and inflamed groups. This recombinant strain also decreased colonic MPO activity. No difference in the intestinal microbiota was observed between all treatments. Altogether, our results show that recombinant L. lactis NCDO2118 delivering p62 protein protected the intestinal mucosa and mitigated inflammatory damages caused by dextran sodium sulfate (DSS). We thus suggest that p62 may constitute part of a therapeutic approach targeting inflammation.
Collapse
Affiliation(s)
- Juliana Guimarães Laguna
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria dos Santos Freitas
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Luís Cláudio Lima De Jesus
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Ludmila Silva Quaresma
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Américo
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Munis Campos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael de Assis Glória
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Joyce da Cruz Ferraz Dutra
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tales Fernando Da Silva
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kátia Duarte Vital
- Department of Clinical Analysis and Toxicology, Federal University of Minas Gerais Belo Horizonte, Minas Gerais, Brazil
| | - Simone O. Fernandes
- Department of Clinical Analysis and Toxicology, Federal University of Minas Gerais Belo Horizonte, Minas Gerais, Brazil
| | - Ramon O. Souza
- Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Enio Ferreira
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Túlio Marcos Santos
- Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alexander Birbrair
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Ana Maria Caetano Faria
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Franco Maria Venanzi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | | | | | | | | |
Collapse
|
5
|
Mantel M, Durand T, Bessard A, Pernet S, Beaudeau J, Guimaraes-Laguna J, Maillard MB, Guédon E, Neunlist M, Le Loir Y, Jan G, Rolli-Derkinderen M. Propionibacterium freudenreichii CIRM-BIA 129 mitigates colitis through S layer protein B-dependent epithelial strengthening. Am J Physiol Gastrointest Liver Physiol 2024; 326:G163-G175. [PMID: 37988603 DOI: 10.1152/ajpgi.00198.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
The growing incidence of human diseases involving inflammation and increased gut permeability makes the quest for protective functional foods more crucial than ever. Propionibacterium freudenreichii (P. freudenreichii) is a beneficial bacterium used in the dairy and probiotic industries. Selected strains exert anti-inflammatory effects, and the present work addresses whether the P. freudenreichii CIRM-BIA129, consumed daily in a preventive way, could protect mice from acute colitis induced by dextran sodium sulfate (DSS), and more precisely, whether it could protect from intestinal epithelial breakdown induced by inflammation. P. freudenreichii CIRM-BIA129 mitigated colitis severity and inhibited DSS-induced permeability. It limited crypt length reduction and promoted the expression of zonula occludens-1 (ZO-1), without reducing interleukin-1β mRNA (il-1β) expression. In vitro, P. freudenreichii CIRM-BIA129 prevented the disruption of a Caco-2 monolayer induced by proinflammatory cytokines. It increased transepithelial electrical resistance (TEER) and inhibited permeability induced by inflammation, along with an increased ZO-1 expression. Extracellular vesicles (EVs) from P. freudenreichii CIRM-BIA129, carrying the surface layer protein (SlpB), reproduced the protective effect of P. freudenreichii CIRM-BIA129. A mutant strain deleted for slpB (ΔslpB), or EVs from this mutant strain, had lost their protective effects and worsened both DSS-induced colitis and inflammation in vivo. These results shown that P. freudenreichii CIRM-BIA129 daily consumption has the potential to greatly alleviate colitis symptoms and, particularly, to counter intestinal epithelial permeability induced by inflammation by restoring ZO-1 expression through mechanisms involving S-layer protein B. They open new avenues for the use of probiotic dairy propionibacteria and/or postbiotic fractions thereof, in the context of gut permeability.NEW & NOTEWORTHY Propionibacterium freudenreichii reduces dextran sodium sulfate (DSS)-induced intestinal permeability in vivo. P. freudenreichii does not inhibit inflammation but damages linked to inflammation. P. freudenreichii inhibits intestinal epithelial breakdown through S-layer protein B. The protective effects of P. freudenreichii depend on S-layer protein B. Extracellular vesicles from P. freudenreichii CB 129 mimic the protective effect of the probiotic.
Collapse
Affiliation(s)
- Marine Mantel
- The Enteric Nervous System In Gut And Brain Disorders, IMAD, Institut National de la Santé et de la Recherche Médicale, Nantes Université, Nantes, France
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche, L'Institut Agro, Rennes, France
| | - Tony Durand
- The Enteric Nervous System In Gut And Brain Disorders, IMAD, Institut National de la Santé et de la Recherche Médicale, Nantes Université, Nantes, France
| | - Anne Bessard
- The Enteric Nervous System In Gut And Brain Disorders, IMAD, Institut National de la Santé et de la Recherche Médicale, Nantes Université, Nantes, France
| | - Ségolène Pernet
- The Enteric Nervous System In Gut And Brain Disorders, IMAD, Institut National de la Santé et de la Recherche Médicale, Nantes Université, Nantes, France
| | - Julie Beaudeau
- The Enteric Nervous System In Gut And Brain Disorders, IMAD, Institut National de la Santé et de la Recherche Médicale, Nantes Université, Nantes, France
- Centres de Recherche en Nutrition Humaine-Ouest, Nantes, France
| | - Juliana Guimaraes-Laguna
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche, L'Institut Agro, Rennes, France
| | - Marie-Bernadette Maillard
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche, L'Institut Agro, Rennes, France
| | - Eric Guédon
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche, L'Institut Agro, Rennes, France
| | - Michel Neunlist
- The Enteric Nervous System In Gut And Brain Disorders, IMAD, Institut National de la Santé et de la Recherche Médicale, Nantes Université, Nantes, France
| | - Yves Le Loir
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche, L'Institut Agro, Rennes, France
| | - Gwénaël Jan
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche, L'Institut Agro, Rennes, France
| | - Malvyne Rolli-Derkinderen
- The Enteric Nervous System In Gut And Brain Disorders, IMAD, Institut National de la Santé et de la Recherche Médicale, Nantes Université, Nantes, France
| |
Collapse
|
6
|
López-Gómez L, Alcorta A, Abalo R. Probiotics and Probiotic-like Agents against Chemotherapy-Induced Intestinal Mucositis: A Narrative Review. J Pers Med 2023; 13:1487. [PMID: 37888098 PMCID: PMC10607965 DOI: 10.3390/jpm13101487] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Cancer chemotherapy has allowed many patients to survive, but not without risks derived from its adverse effects. Drugs, such as 5-fluorouracil, irinotecan, oxaliplatin, methotrexate, and others, as well as different drug combinations trigger intestinal mucositis that may cause or contribute to anorexia, pain, diarrhea, weight loss, systemic infections, and even death. Dysbiosis is a hallmark of chemotherapy-induced intestinal mucositis and diarrhea, and, therefore, strategies aimed at modulating intestinal microbiota may be useful to counteract and prevent those dreadful effects. This narrative review offers an overview of the studies performed to test the efficacy of probiotics and probiotic-like agents against chemotherapy-induced intestinal mucositis and its consequences. Microbiota modulation through the oral administration of different probiotics (mainly strains of Lactobacillus and Bifidobacterium), probiotic mixtures, synbiotics, postbiotics, and paraprobiotics has been tested in different animal models and in some clinical trials. Regulation of dysbiosis, modulation of epithelial barrier permeability, anti-inflammatory effects, modulation of host immune response, reduction of oxidative stress, or prevention of apoptosis are the main mechanisms involved in their beneficial effects. However, the findings are limited by the great heterogeneity of the preclinical studies and the relative lack of studies in immunocompromised animals, as well as the scarce availability of results from clinical trials. Despite this, the results accumulated so far are promising. Hopefully, with the aid of these agents, intestinal mucositis will be less impactful to the cancer patient in the near future.
Collapse
Affiliation(s)
- Laura López-Gómez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (A.A.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Alexandra Alcorta
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (A.A.)
| | - Raquel Abalo
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (L.L.-G.); (A.A.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia of the Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids of the Spanish Pain Society, 28046 Madrid, Spain
| |
Collapse
|
7
|
Kamath S, Stringer AM, Prestidge CA, Joyce P. Targeting the gut microbiome to control drug pharmacomicrobiomics: the next frontier in oral drug delivery. Expert Opin Drug Deliv 2023; 20:1315-1331. [PMID: 37405390 DOI: 10.1080/17425247.2023.2233900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION The trillions of microorganisms that comprise the gut microbiome form dynamic bidirectional interactions with orally administered drugs and host health. These relationships can alter all aspects of drug pharmacokinetics and pharmacodynamics (PK/PD); thus, there is a desire to control these interactions to maximize therapeutic efficacy. Attempts to modulate drug-gut microbiome interactions have spurred advancements within the field of 'pharmacomicrobiomics' and are poised to become the next frontier of oral drug delivery. AREAS COVERED This review details the bidirectional interactions that exist between oral drugs and the gut microbiome, with clinically relevant case examples outlining a clear motive for controlling pharmacomicrobiomic interactions. Specific focus is attributed to novel and advanced strategies that have demonstrated success in mediating drug-gut microbiome interactions. EXPERT OPINION Co-administration of gut-active supplements (e.g. pro- and pre-biotics), innovative drug delivery vehicles, and strategic polypharmacy serve as the most promising and clinically viable approaches for controlling pharmacomicrobiomic interactions. Targeting the gut microbiome through these strategies presents new opportunities for improving therapeutic efficacy by precisely mediating PK/PD, while mitigating metabolic disturbances caused by drug-induced gut dysbiosis. However, successfully translating preclinical potential into clinical outcomes relies on overcoming key challenges related to interindividual variability in microbiome composition and study design parameters.
Collapse
Affiliation(s)
- Srinivas Kamath
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Andrea M Stringer
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Clive A Prestidge
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Paul Joyce
- UniSa Clinical & Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Rodovalho VDR, da Luz BSR, Nicolas A, Jardin J, Briard-Bion V, Folador EL, Santos AR, Jan G, Loir YL, Azevedo VADC, Guédon É. Different culture media and purification methods unveil the core proteome of Propionibacterium freudenreichii-derived extracellular vesicles. MICROLIFE 2023; 4:uqad029. [PMID: 37324655 PMCID: PMC10265600 DOI: 10.1093/femsml/uqad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Bacterial extracellular vesicles (EVs) are natural lipidic nanoparticles implicated in intercellular communication. Although EV research focused mainly on pathogens, the interest in probiotic-derived EVs is now rising. One example is Propionibacterium freudenreichii, which produces EVs with anti-inflammatory effects on human epithelial cells. Our previous study with P. freudenreichii showed that EVs purified by size exclusion chromatography (SEC) displayed variations in protein content according to bacterial growth conditions. Considering these content variations, we hypothesized that a comparative proteomic analysis of EVs recovered in different conditions would elucidate whether a representative vesicular proteome existed, possibly providing a robust proteome dataset for further analysis. Therefore, P. freudenreichii was grown in two culture media, and EVs were purified by sucrose density gradient ultracentrifugation (UC). Microscopic and size characterization confirmed EV purification, while shotgun proteomics unveiled that they carried a diverse set of proteins. A comparative analysis of the protein content of UC- and SEC-derived EVs, isolated from cultures either in UF (cow milk ultrafiltrate medium) or YEL (laboratory yeast extract lactate medium), showed that EVs from all these conditions shared 308 proteins. This EV core proteome was notably enriched in proteins related to immunomodulation. Moreover, it showed distinctive features, including highly interacting proteins, compositional biases for some specific amino acids, and other biochemical parameters. Overall, this work broadens the toolset for the purification of P. freudenreichii-derived EVs, identifies a representative vesicular proteome, and enumerates conserved features in vesicular proteins. These results hold the potential for providing candidate biomarkers of purification quality, and insights into the mechanisms of EV biogenesis and cargo sorting.
Collapse
Affiliation(s)
- Vinícius de Rezende Rodovalho
- INRAE, Institut Agro, STLO, 35042, Rennes, France
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Laboratory of Immunoinflammation, Institute of Biology, University of Campinas (UNICAMP), Campinas 13000-000, Brazil
| | - Brenda Silva Rosa da Luz
- INRAE, Institut Agro, STLO, 35042, Rennes, France
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | | | | | | | - Edson Luiz Folador
- Center of Biotechnology, Department of Biotechnology, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Anderson Rodrigues Santos
- Faculty of Computer Science, Department of Computer Science, Federal University of Uberlândia, Uberlândia 38400902, Brazil
| | - Gwénaël Jan
- INRAE, Institut Agro, STLO, 35042, Rennes, France
| | - Yves Le Loir
- INRAE, Institut Agro, STLO, 35042, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Éric Guédon
- Corresponding author. INRAE, Institut Agro, STLO, 35042, Rennes, France. E-mail:
| |
Collapse
|
9
|
Xu X, Li G, Zhang D, Zhu H, Liu G, Zhang Z. Gut Microbiota is Associated with Aging-Related Processes of a Small Mammal Species under High-Density Crowding Stress. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205346. [PMID: 36965140 PMCID: PMC10190659 DOI: 10.1002/advs.202205346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/15/2023] [Indexed: 05/18/2023]
Abstract
Humans and animals frequently encounter high-density crowding stress, which may accelerate their aging processes; however, the roles of gut microbiota in the regulation of aging-related processes under high-density crowding stress remain unclear. In the present study, it is found that high housing density remarkably increases the stress hormone (corticosterone), accelerates aging-related processes as indicated by telomere length (in brain and liver cells) and DNA damage or inflammation (as revealed by tumor necrosis factor-α and interleukin-10 levels), and reduces the lifespan of Brandt's vole (Lasiopodomys brandtii). Fecal microbiota transplantation from donor voles of habitats with different housing densities induces similar changes in aging-related processes in recipient voles. The elimination of high housing density or butyric acid administration delays the appearance of aging-related markers in the brain and liver cells of voles housed at high-density. This study suggests that gut microorganisms may play a significant role in regulating the density-dependent aging-related processes and subsequent population dynamics of animals, and can be used as potential targets for alleviating stress-related aging in humans exposed to high-density crowding stress.
Collapse
Affiliation(s)
- Xiaoming Xu
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| | - Da Zhang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hanyi Zhu
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Guang‐hui Liu
- Institute for Stem cell and RegenerationCASBeijing100049China
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- Beijing Institute for Stem Cell and Regenerative MedicineBeijing100101China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of SciencesBeijing100101China
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
10
|
Assandri MH, Malamud M, Trejo FM, Serradell MDLA. S-layer proteins as immune players: tales from pathogenic and non-pathogenic bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100187. [PMID: 37064268 PMCID: PMC10102220 DOI: 10.1016/j.crmicr.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
In bacteria, as in other microorganisms, surface compounds interact with different pattern recognition receptors expressed by host cells, which usually triggers a variety of cellular responses that result in immunomodulation. The S-layer is a two-dimensional macromolecular crystalline structure formed by (glyco)-protein subunits that covers the surface of many species of Bacteria and almost all Archaea. In Bacteria, the presence of S-layer has been described in both pathogenic and non-pathogenic strains. As surface components, special attention deserves the role that S-layer proteins (SLPs) play in the interaction of bacterial cells with humoral and cellular components of the immune system. In this sense, some differences can be predicted between pathogenic and non-pathogenic bacteria. In the first group, the S-layer constitutes an important virulence factor, which in turn makes it a potential therapeutic target. For the other group, the growing interest to understand the mechanisms of action of commensal microbiota and probiotic strains has prompted the studies of the role of the S-layer in the interaction between the host immune cells and bacteria bearing this surface structure. In this review, we aim to summarize the main latest reports and the perspectives of bacterial SLPs as immune players, focusing on those from pathogenic and commensal/probiotic most studied species.
Collapse
|
11
|
Effect of synbiotic mouthwash on oral mucositis induced by radiotherapy in oral cancer patients: a double-blind randomized clinical trial. Support Care Cancer 2022; 31:31. [PMID: 36517616 DOI: 10.1007/s00520-022-07521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Considering the complex pathobiology of oral mucositis, especially in oral cancer patients, the prevention and treatment of oral mucositis in patients undergoing radiotherapy remains an essential and clinically crucial unmet need. The present study aims to investigate and compare the effects of synbiotic mouthwash with normal saline mouthwash on the prevention and control of radiotherapy-induced oral mucositis in oral cancer patients. METHODS Double-blind, randomized clinical trial (RCT) performed on 64 oral cancer patients who underwent radiotherapy (IRCT20201106049288N1, registration date: 2020-12-23). Patients were divided randomly into the case (32 subjects) and control (32 subjects) groups. All patients underwent intensity-modulated radiotherapy and received 6000 cGY of radiotherapy in 34 fractions. All patients received the usual treatment for mucositis, but in the case group, synbiotic mouthwash was prescribed and in the control group, normal saline mouthwash was prescribed from a day before the start to the end of radiotherapy treatment. Patients were monitored every session for 6 weeks to check the progression, oral involvement severity, and mucositis grade. RESULTS The case group showed a significant reduction in the oral mucositis severity. The mucositis grade in the case group from the 7th session of oral examination was significantly lower than the control (p < 0.05), and this significant difference persisted until the last session of oral examination. Incidence rates of severe oral mucositis (grade 3) during the treatment period were 11.59% in the case and 36.45% in control (p < 0.001). CONCLUSION Synbiotic mouthwash significantly reduces and prevents oral mucositis intensity in oral cancer patients undergoing radiotherapy.
Collapse
|
12
|
Cell Proteins Obtained by Peptic Shaving of Two Phenotypically Different Strains of Streptococcus thermophilus as a Source of Anti-Inflammatory Peptides. Nutrients 2022; 14:nu14224777. [PMID: 36432464 PMCID: PMC9695010 DOI: 10.3390/nu14224777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus thermophilus, a food grade bacterium, is extensively used in the manufacture of fermented products such as yogurt and cheeses. It has been shown that S. thermophilus strains exhibited varying anti-inflammatory activities in vitro. Our previous study displayed that this activity could be partially due to peptide(s) generated by trypsin hydrolysis of the surface proteins of S. thermophilus LMD-9. Surface protease PrtS could be the source of these peptides during gastrointestinal digestion. Therefore, peptide hydrolysates were obtained by shaving two phenotypically distinct strains of S. thermophilus (LMD-9 PrtS+ and CNRZ-21N PrtS-) with pepsin, a gastric protease, followed or not by trypsinolysis. The peptide hydrolysates of both strains exhibited anti-inflammatory action through the modulation of pro-inflammatory mediators in LPS-stimulated THP-1 macrophages (COX-2, Pro-IL-1β, IL-1β, and IL-8) and LPS-stimulated HT-29 cells (IL-8). Therefore, peptides released from either PrtS+ or PrtS- strains in the gastrointestinal tract during digestion of a product containing this bacterium may display anti-inflammatory effects and reduce the risk of inflammation-related chronic diseases.
Collapse
|
13
|
Ren Z, Hong Y, Huo Y, Peng L, Lv H, Chen J, Wu Z, Wan C. Prospects of Probiotic Adjuvant Drugs in Clinical Treatment. Nutrients 2022; 14:4723. [PMID: 36432410 PMCID: PMC9697729 DOI: 10.3390/nu14224723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022] Open
Abstract
In modern society, where new diseases and viruses are constantly emerging, drugs are still the most important means of resistance. However, adverse effects and diminished efficacy remain the leading cause of treatment failure and a major determinant of impaired health-related quality of life for patients. Clinical studies have shown that the disturbance of the gut microbial structure plays a crucial role in the toxic and side effects of drugs. It is well known that probiotics have the ability to maintain the balance of intestinal microecology, which implies their potential as an adjunct to prevent and alleviate the adverse reactions of drugs and to make medicines play a better role. In addition, in the past decade, probiotics have been found to have excellent prevention and alleviation effects in drug toxicity side effects, such as liver injury. In this review, we summarize the development history of probiotics, discuss the impact on drug side effects of probiotics, and propose the underlying mechanisms. Probiotics will be a new star in the world of complementary medicine.
Collapse
Affiliation(s)
- Zhongyue Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yan Hong
- Jiangxi Institution for Drug Control, Nanchang 330024, China
| | - Yalan Huo
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 W Stadium Ave., West Lafayette, IN 47907, USA
| | - Lingling Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Huihui Lv
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiahui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Cuixiang Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
14
|
Illikoud N, Mantel M, Rolli-Derkinderen M, Gagnaire V, Jan G. Dairy starters and fermented dairy products modulate gut mucosal immunity. Immunol Lett 2022; 251-252:91-102. [DOI: 10.1016/j.imlet.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
15
|
Ting NLN, Lau HCH, Yu J. Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes. Gut 2022; 71:1412-1425. [PMID: 35277453 PMCID: PMC9185832 DOI: 10.1136/gutjnl-2021-326264] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/25/2022] [Indexed: 02/06/2023]
Abstract
Despite the promising advances in novel cancer therapy such as immune checkpoint inhibitors (ICIs), limitations including therapeutic resistance and toxicity remain. In recent years, the relationship between gut microbiota and cancer has been extensively studied. Accumulating evidence reveals the role of microbiota in defining cancer therapeutic efficacy and toxicity. Unlike host genetics, microbiota can be easily modified via multiple strategies, including faecal microbiota transplantation (FMT), probiotics and antibiotics. Preclinical studies have identified the mechanisms on how microbes influence cancer treatment outcomes. Clinical trials have also demonstrated the potential of microbiota modulation in cancer treatments. Herein, we review the mechanistic insights of gut microbial interactions with chemotherapy and ICIs, particularly focusing on the interplay between gut bacteria and the pharmacokinetics (eg, metabolism, enzymatic degradation) or pharmacodynamics (eg, immunomodulation) of cancer treatment. The translational potential of basic findings in clinical settings is then explored, including using microbes as predictive biomarkers and microbial modulation by antibiotics, probiotics, prebiotics, dietary modulations and FMT. We further discuss the current limitations of gut microbiota modulation in patients with cancer and suggest essential directions for future study. In the era of personalised medicine, it is crucial to understand the microbiota and its interactions with cancer. Manipulating the gut microbiota to augment cancer therapeutic responses can provide new insights into cancer treatment.
Collapse
Affiliation(s)
- Nick Lung-Ngai Ting
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Guo Q, Qin H, Liu X, Zhang X, Chen Z, Qin T, Chang L, Zhang W. The Emerging Roles of Human Gut Microbiota in Gastrointestinal Cancer. Front Immunol 2022; 13:915047. [PMID: 35784372 PMCID: PMC9240199 DOI: 10.3389/fimmu.2022.915047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota is composed of a large number of microorganisms with a complex structure. It participates in the decomposition, digestion, and absorption of nutrients; promotes the development of the immune system; inhibits the colonization of pathogens; and thus modulates human health. In particular, the relationship between gut microbiota and gastrointestinal tumor progression has attracted widespread concern. It was found that the gut microbiota can influence gastrointestinal tumor progression in independent ways. Here, we focused on the distribution of gut microbiota in gastrointestinal tumors and further elaborated on the impact of gut microbiota metabolites, especially short-chain fatty acids, on colorectal cancer progression. Additionally, the effects of gut microbiota on gastrointestinal tumor therapy are outlined. Finally, we put forward the possible problems in gut microbiota and the gastrointestinal oncology field and the efforts we need to make.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Qianqian Guo, ; Wenzhou Zhang,
| | - Hai Qin
- Department of Clinical Laboratory, Guizhou Provincial Orthopedic Hospital, Guiyang City, China
| | - Xueling Liu
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xinxin Zhang
- The Second Clinical Medical School of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Province Engineering Research Center of Artificial Intelligence and Internet of Things Wise Medical, Zhengzhou, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Linlin Chang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Qianqian Guo, ; Wenzhou Zhang,
| |
Collapse
|
17
|
Allouche R, Hafeez Z, Papier F, Dary-Mourot A, Genay M, Miclo L. In Vitro Anti-Inflammatory Activity of Peptides Obtained by Tryptic Shaving of Surface Proteins of Streptococcus thermophilus LMD-9. Foods 2022; 11:foods11081157. [PMID: 35454744 PMCID: PMC9030335 DOI: 10.3390/foods11081157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
Streptococcus thermophilus, a lactic acid bacterium widely used in the dairy industry, is consumed regularly by a significant proportion of the population. Some strains show in vitro anti-inflammatory activity which is not fully understood. We hypothesized that peptides released from the surface proteins of this bacterium during digestion could be implied in this activity. Consequently, we prepared a peptide hydrolysate by shaving and hydrolysis of surface proteins using trypsin, and the origin of peptides was checked by liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis. Most of the identified peptides originated from bacterial cell surface proteins. The anti-inflammatory activity of peptide hydrolysate was investigated under inflammatory conditions in two cell models. Peptide hydrolysate significantly decreased secretion of pro-inflammatory cytokine IL-8 in lipopolysaccharide (LPS)-stimulated human colon epithelial HT-29 cells. It also reduced the production of pro-inflammatory cytokines IL-8, IL-1β and the protein expression levels of Pro-IL-1β and COX-2 in LPS-stimulated THP-1 macrophages. The results showed that peptides released from bacterial surface proteins by a pancreatic protease could therefore participate in an anti-inflammatory activity of S. thermophilus LMD-9 and could prevent low-grade inflammation.
Collapse
|
18
|
Quintanilha MF, Miranda VC, Souza RO, Gallotti B, Cruz C, Santos EA, Alvarez-Leite JI, Jesus LC, Azevedo V, Trindade LM, Cardoso VN, Ferreira E, Carvalho BA, Soares PM, Vieira AT, Nicoli JR, Martins FS. Bifidobacterium longum subsp. longum 51A attenuates intestinal injury against irinotecan-induced mucositis in mice. Life Sci 2022; 289:120243. [DOI: 10.1016/j.lfs.2021.120243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
|
19
|
Belo GA, Cordeiro BF, Oliveira ER, Braga MP, da Silva SH, Costa BG, Martins FDS, Jan G, Le Loir Y, Gala-García A, Ferreira E, Azevedo V, do Carmo FLR. SlpB Protein Enhances the Probiotic Potential of L. lactis NCDO 2118 in Colitis Mice Model. Front Pharmacol 2021; 12:755825. [PMID: 34987390 PMCID: PMC8721164 DOI: 10.3389/fphar.2021.755825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/29/2021] [Indexed: 01/30/2023] Open
Abstract
Bacteria used in the production of fermented food products have been investigated for their potential role as modulators of inflammation in gastrointestinal tract disorders such as inflammatory bowel diseases (IBD) that cause irreversible changes in the structure and function of gut tissues. Ulcerative colitis (UC) is the most prevalent IBD in the population of Western countries, and it is marked by symptoms such as weight loss, rectal bleeding, diarrhea, shortening of the colon, and destruction of the epithelial layer. The strain Propionibacterium freudenreichii CIRM-BIA 129 recently revealed promising immunomodulatory properties that greatly rely on surface-layer proteins (Slp), notably SlpB. We, thus, cloned the sequence encoding the SlpB protein into the pXIES-SEC expression and secretion vector, and expressed the propionibacterial protein in the lactic acid bacterium Lactococcus lactis NCDO 2118. The probiotic potential of L. lactis NCDO 2118 harboring pXIES-SEC:slpB (L. lactis-SlpB) was evaluated in a UC-mice model induced by Dextran Sulfate Sodium (DSS). During colitis induction, mice receiving L. lactis-SlpB exhibited reduced severity of colitis, with lower weight loss, lower disease activity index, limited shortening of the colon length, and reduced histopathological score, with significant differences, compared with the DSS group and the group treated with L. lactis NCDO 2118 wild-type strain. Moreover, L. lactis-SlpB administration increased the expression of genes encoding tight junction proteins zo-1, cln-1, cln-5, ocln, and muc-2 in the colon, increased IL-10 and TGF-β, and decreased IL-17, TNF-α, and IL-12 cytokines in the colon. Therefore, this work demonstrates that SlpB recombinant protein is able to increase the probiotic potential of the L. lactis strain to alleviate DSS-induced colitis in mice. This opens perspectives for the development of new approaches to enhance the probiotic potential of strains by the addition of SlpB protein.
Collapse
Affiliation(s)
- Giovanna A. Belo
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bárbara F. Cordeiro
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Emiliano R. Oliveira
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marina P. Braga
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sara H. da Silva
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bruno G. Costa
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Flaviano dos S. Martins
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gwénaël Jan
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yves Le Loir
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Alfonso Gala-García
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
- School of Dentistry, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Enio Ferreira
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Fillipe L. R. do Carmo
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
- *Correspondence: Fillipe L. R. do Carmo,
| |
Collapse
|
20
|
Seo H, Seong H, Kim GY, Jo YM, Cheon SW, Song Y, Ryu BH, Kang H, Han NS. Development of Anti-inflammatory Probiotic Limosilactobacillus reuteri EFEL6901 as Kimchi Starter: in vitro and In vivo Evidence. Front Microbiol 2021; 12:760476. [PMID: 34899643 PMCID: PMC8656428 DOI: 10.3389/fmicb.2021.760476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
The use of probiotic starters can improve the sensory and health-promoting properties of fermented foods. In this study, we developed an anti-inflammatory probiotic starter, Limosilactobacillus reuteri EFEL6901, for use in kimchi fermentation. The EFEL6901 strain was safe for use in foods and was stable under human gastrointestinal conditions. In in vitro experiments, EFEL6901 cells adhered well to colonic epithelial cells and decreased nitric oxide production in lipopolysaccharide-induced macrophages. In in vivo experiments, oral administration of EFEL6901 to DSS-induced colitis mice models significantly alleviated the observed colitis symptoms, prevented body weight loss, lowered the disease activity index score, and prevented colon length shortening. Analysis of these results indicated that EFEL6901 played a probiotic role by preventing the overproduction of pro-inflammatory cytokines, improving gut barrier function, and up-regulating the concentrations of short-chain fatty acids. In addition, EFEL6901 made a fast growth in a simulated kimchi juice and it synthesized similar amounts of metabolites in nabak-kimchi comparable to a commercial kimchi. This study demonstrates that EFEL6901 can be used as a suitable kimchi starter to promote gut health and product quality.
Collapse
Affiliation(s)
- Hee Seo
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, South Korea
| | - Hyunbin Seong
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, South Korea
| | - Ga Yun Kim
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, South Korea
| | - Yu Mi Jo
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, South Korea
| | - Seong Won Cheon
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, South Korea
| | - Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Byung Hee Ryu
- Fresh Food Research Division, Food BU, Daesang Corporation Research Institute, Icheon, South Korea
| | - Hee Kang
- Humanitas College, Kyung Hee University, Yongin, South Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Resource Development, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
21
|
Savassi B, Cordeiro BF, Silva SH, Oliveira ER, Belo G, Figueiroa AG, Alves Queiroz MI, Faria AMC, Alves J, da Silva TF, Campos GM, Esmerino EA, Rocha RS, Freitas MQ, Silva MC, Cruz AG, Vital KD, Fernandes SO, Cardoso VN, Acurcio LB, Jan G, Le Loir Y, Gala-Garcia A, do Carmo FLR, Azevedo V. Lyophilized Symbiotic Mitigates Mucositis Induced by 5-Fluorouracil. Front Pharmacol 2021; 12:755871. [PMID: 34955828 PMCID: PMC8703075 DOI: 10.3389/fphar.2021.755871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022] Open
Abstract
Mucositis is an adverse effect of cancer chemotherapies using 5-Fluorouracil (5-FU). It is characterized by mucosal inflammation, pain, diarrhea, and weight loss. Some studies reported promising healing effects of probiotic strains, when associated with prebiotics, as adjuvant treatment of mucositis. We developed a lyophilized symbiotic product, containing skimmed milk, supplemented with whey protein isolate (WPI) and with fructooligosaccharides (FOS), and fermented by Lactobacillus casei BL23, Lactiplantibacillus plantarum B7, and Lacticaseibacillus rhamnosus B1. In a mice 5-FU mucositis model, this symbiotic lyophilized formulation was able to reduce weight loss and intestinal permeability. This last was determined in vivo by quantifying blood radioactivity after oral administration of 99mTc-DTPA. Finally, histological damages caused by 5-FU-induced mucositis were monitored. Consumption of the symbiotic formulation caused a reduced score of inflammation in the duodenum, ileum, and colon. In addition, it decreased levels of pro-inflammatory cytokines IL-1β, IL-6, IL-17, and TNF-α in the mice ileum. The symbiotic product developed in this work thus represents a promising adjuvant treatment of mucositis.
Collapse
Affiliation(s)
- Bruna Savassi
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bárbara F. Cordeiro
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sara H. Silva
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Emiliano R. Oliveira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Giovanna Belo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | - Ana Maria Caetano Faria
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana Alves
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Tales Fernando da Silva
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gabriela Munis Campos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Erick A. Esmerino
- Faculdade de Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Ramon S. Rocha
- Faculdade de Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
- Departamento de Alimentos, Ciência e Tecnologia Do Rio de Janeiro (IFRJ), Instituto Federal de Educação, Rio de Janeiro, Brazil
| | - Monica Q. Freitas
- Faculdade de Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcia C. Silva
- Departamento de Alimentos, Ciência e Tecnologia Do Rio de Janeiro (IFRJ), Instituto Federal de Educação, Rio de Janeiro, Brazil
| | - Adriano G. Cruz
- Departamento de Alimentos, Ciência e Tecnologia Do Rio de Janeiro (IFRJ), Instituto Federal de Educação, Rio de Janeiro, Brazil
| | - Kátia Duarte Vital
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Simone O.A. Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Valbert N. Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Leonardo Borges Acurcio
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gwénaël Jan
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yves Le Loir
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Alfonso Gala-Garcia
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Faculdade de Odontologia, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Fillipe Luiz R. do Carmo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
22
|
Oshvandi K, Vafaei SY, Kamallan SR, Khazaei S, Ranjbar H, Mohammadi F. Effectiveness of zinc chloride mouthwashes on oral mucositis and weight of patients with cancer undergoing chemotherapy. BMC Oral Health 2021; 21:364. [PMID: 34294072 PMCID: PMC8296564 DOI: 10.1186/s12903-021-01706-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oral mucositis is one of the most emerging and debilitating complications of chemotherapy during the treatment period, which strongly affects the nutritional status and physical and mental condition of these patients. Zinc increased protein synthesis and improved cell membrane stability so passible effective in prevent and treat oral mucositis and promote oral health. Therefore, this study aimed to evaluate the effect of zinc chloride mouthwash on the prevention, incidence, and severity of oral mucositis in cancer patients undergoing chemotherapy. METHODS The present study was a randomized control trial study. 96 patients with a cancer diagnosis selected from one oncology clinic in the west of Iran. Then they assigned randomly to the zinc chloride group and placebo group. The patients in each group should rinse their mouths every 8 h two times and each time 2 min with 7.5 ml from mouthwash. The severity of mucositis and weight loss examined blindly at the baseline and 3-week follow-up. RESULTS The incidence and severity of oral mucositis between groups were significant higher at the end of the second (p < 0.002) and third (p < 0.001) week. The mucositis severity decreased well during the third weeks in the zinc chloride group. The difference in the weight loss was significant higher between the zinc chloride and the placebo group (p < 0.01). CONCLUSION Zinc chloride mouthwash was effective in preventing and reducing the severity of oral mucositis and improving weight in patients undergoing chemotherapy. Trial registration We can therefore recommend more studies examine the effects zinc chloride as preventive care at the beginning of chemotherapy to improve oral health and subsequently preventing weight loss in these patients.
Collapse
Affiliation(s)
- Khodayar Oshvandi
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Mother and Child Care Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Yaser Vafaei
- Department of Pharmaceutics & Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Ramesh Kamallan
- Department of Medical Surgical Nursing, Student Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salman Khazaei
- Department of Epidemiology, Health Sciences Research Center, Health Sciences and Technology Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Ranjbar
- Department of Hematology Oncology, Department of Internal Medicine, School of Medicine, Shahid Beheshti Medical Educational Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fateme Mohammadi
- Department of Pediatric Nursing, Chronic Diseases (Home Care) Research Center and Autism Spectrum Disorders Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
23
|
Jeantet R, Jan G. Improving the drying of Propionibacterium freudenreichii starter cultures. Appl Microbiol Biotechnol 2021; 105:3485-3494. [PMID: 33885925 DOI: 10.1007/s00253-021-11273-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 01/15/2023]
Abstract
Propionibacterium freudenreichii is a beneficial food-grade actinobacterium, widely implemented, and thus consumed, in various food products. As the main application, P. freudenreichii is used as a cheese-ripening starter, mostly in hard type cheeses. Indeed, during manufacture of "Swiss-type" cheeses (or opened-body cheeses), the technological process favors propionibacteria growth, as well as the corresponding propionic fermentation. This leads to the characteristic flavor of these cheeses, through the release of short chain fatty acids and through lipolysis, as well as to their specific texture. To fulfil this ripening, massive amounts of propionibacteria are industrially produced, dried and stored, prior to cheese making. Furthermore, P. freudenreichii is commercialized in various probiotic food supplements aiming at preserving intestinal health and comfort, in line with its ability to produce beneficial metabolites (short chain fatty acids, vitamins), as well as immunomodulatory compounds. Other industrial applications of P. freudenreichii include the production of food-grade vitamins of the B group, of trehalose, of conjugated linoleic acid, and of biopreservatives. For these different applications, maintaining survival and activity of propionibacteria during production, drying, storage and finally implementation, is crucial. More widely, maintaining live and active probiotic bacteria represents a challenge as the market for probiotic products increases. Probiotic bacteria are, for a bulk majority, freeze-dried, but spray drying is also more and more considered. Indeed, this process is both continuous and more cost-efficient, as it utilizes less energy compared to freeze-drying; on the other hand, it exposes bacteria to higher heat and oxidative stresses. Apart from process optimization and strain selection, it is possible to enhance the resistance of bacteria by taking advantage of their adaptation capacity. Indeed, P. freudenreichii stress tolerance can be boosted by different pretreatments applied before the drying step, thus considerably increasing its final survival. In particular, adaptation to hyperosmotic conditions improves stress tolerance, while the presence of osmoprotectants may mitigate this improvement. Thermal adaptation also modulates tolerance towards these technological challenges. The composition of the growth medium, including the ratio between the carbohydrates provided and the non-protein nitrogen, plays a key role in driving the accumulation of osmoprotectants. This, in turn, determines P. freudenreichii tolerance towards different stresses, and overall towards both freeze-drying and spray-drying. As an example, the accumulation of trehalose enhances its spray-drying survival, while the accumulation of glycine betaine enhances its freeze-drying survival. Growth of propionibacteria in hyperconcentrated whey was used to trigger multiple stress tolerance acquisition, underpinned by overexpression of key stress protein, accumulation of cytoplasmic storage compounds, and leading to enhanced spray-drying survival. A simplified process, from cultivation to atomization, was developed by using whey as a 2-in-1 medium in which propionibacteria were grown, protected and dried with minimal cell death. This innovative process was then subjected to scaling up at the industrial level. In this aim, a gentle multi-stage drying process offering mild drying conditions by coupling spray drying with belt drying, led to final probiotic survival close to 100% when stress tolerance acquisition was previously implemented. Such innovation opens new avenues for the efficient, cost-effective and sustainable development of new probiotic production technologies, as well as probiotic application in the context of food and feed. KEY POINTS: • Propionibacteria acquire multi-stress tolerance when grown in hyper-concentrated whey. • Spray drying of osmo-adapted probiotic bacteria is possible with limited cell death. • A two-in-one drying method is developed to grow and dry probiotic bacteria in the same matrix.
Collapse
Affiliation(s)
| | - Gwénaël Jan
- STLO, INRAE, Institut Agro, 35042, Rennes, France.
| |
Collapse
|
24
|
de Jesus LCL, Drumond MM, Aburjaile FF, Sousa TDJ, Coelho-Rocha ND, Profeta R, Brenig B, Mancha-Agresti P, Azevedo V. Probiogenomics of Lactobacillus delbrueckii subsp. lactis CIDCA 133: In Silico, In Vitro, and In Vivo Approaches. Microorganisms 2021; 9:microorganisms9040829. [PMID: 33919849 PMCID: PMC8070793 DOI: 10.3390/microorganisms9040829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Lactobacillus delbrueckii subsp. lactis CIDCA 133 (CIDCA 133) has been reported as a potential probiotic strain, presenting immunomodulatory properties. This study investigated the possible genes and molecular mechanism involved with a probiotic profile of CIDCA 133 through a genomic approach associated with in vitro and in vivo analysis. Genomic analysis corroborates the species identification carried out by the classical microbiological method. Phenotypic assays demonstrated that the CIDCA 133 strain could survive acidic, osmotic, and thermic stresses. In addition, this strain shows antibacterial activity against Salmonella Typhimurium and presents immunostimulatory properties capable of upregulating anti-inflammatory cytokines Il10 and Tgfb1 gene expression through inhibition of Nfkb1 gene expression. These reported effects can be associated with secreted, membrane/exposed to the surface and cytoplasmic proteins, and bacteriocins-encoding genes predicted in silico. Furthermore, our results showed the genes and the possible mechanisms used by CIDCA 133 to produce their beneficial host effects and highlight its use as a probiotic microorganism.
Collapse
Affiliation(s)
- Luís Cláudio Lima de Jesus
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Mariana Martins Drumond
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte 31421-169, Brazil;
| | - Flávia Figueira Aburjaile
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Thiago de Jesus Sousa
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Nina Dias Coelho-Rocha
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Rodrigo Profeta
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, D-37077 Göttingen, Germany;
| | | | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
- Correspondence:
| |
Collapse
|
25
|
Cordeiro BF, Alves JL, Belo GA, Oliveira ER, Braga MP, da Silva SH, Lemos L, Guimarães JT, Silva R, Rocha RS, Jan G, Le Loir Y, Silva MC, Freitas MQ, Esmerino EA, Gala-García A, Ferreira E, Faria AMC, Cruz AG, Azevedo V, do Carmo FLR. Therapeutic Effects of Probiotic Minas Frescal Cheese on the Attenuation of Ulcerative Colitis in a Murine Model. Front Microbiol 2021; 12:623920. [PMID: 33737918 PMCID: PMC7960676 DOI: 10.3389/fmicb.2021.623920] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/18/2021] [Indexed: 01/14/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) constitute disturbances of gastrointestinal tract that cause irreversible changes in the structure and function of tissues. Ulcerative colitis (UC), the most frequent IBD in the population, is characterized by prominent inflammation of the human colon. Functional foods containing probiotic bacteria have been studied as adjuvants to the treatment or prevention of IBDs. The selected probiotic strain Lactococcus lactis NCDO 2118 (L. lactis NCDO 2118) exhibits immunomodulatory effects, with promising results in UC mouse model induced by dextran sodium sulfate (DSS). Additionally, cheese is a dairy food that presents high nutritional value, besides being a good delivery system that can be used to improve survival and enhance the therapeutic effects of probiotic bacteria in the host. Therefore, this work investigated the probiotic therapeutic effects of an experimental Minas Frescal cheese containing L. lactis NCDO 2118 in DSS-induced colitis in mice. During colitis induction, mice that consumed the probiotic cheese exhibited reduced in the severity of colitis, with attenuated weight loss, lower disease activity index, limited shortening of the colon length, and reduced histopathological score. Moreover, probiotic cheese administration increased gene expression of tight junctions’ proteins zo-1, zo-2, ocln, and cln-1 in the colon and increase IL-10 release in the spleen and lymph nodes. In this way, this work demonstrates that consumption of probiotic Minas Frescal cheese, containing L. lactis NCDO 2118, prevents the inflammatory process during DSS-induced colitis in mice, opening perspectives for the development of new probiotic functional foods for personalized nutrition in the context of IBD.
Collapse
Affiliation(s)
- Bárbara F Cordeiro
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana L Alves
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Giovanna A Belo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Emiliano R Oliveira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marina P Braga
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sara H da Silva
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Luisa Lemos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Infectious Diseases, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Jonas T Guimarães
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Ramon Silva
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil.,Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Ramon S Rocha
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil.,Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Gwénaël Jan
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yves Le Loir
- INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| | - Marcia Cristina Silva
- Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Mônica Q Freitas
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Erick A Esmerino
- Faculdade de Medicina Veterinária, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Alfonso Gala-García
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Enio Ferreira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Maria C Faria
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Adriano G Cruz
- Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, Brazil
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Fillipe L R do Carmo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,INRAE, STLO, Institut Agro, Agrocampus Ouest, Rennes, France
| |
Collapse
|
26
|
Environmental conditions modulate the protein content and immunomodulatory activity of extracellular vesicles produced by the probiotic Propionibacterium freudenreichii. Appl Environ Microbiol 2021; 87:AEM.02263-20. [PMID: 33310709 PMCID: PMC7851693 DOI: 10.1128/aem.02263-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Propionibacterium freudenreichii is a probiotic Gram-positive bacterium with promising immunomodulatory properties. It modulates regulatory cytokines, mitigates the inflammatory response in vitro and in vivo These properties were initially attributed to specific bacterial surface proteins. Recently, we showed that extracellular vesicles (EVs) produced by P. freudenreichii CIRM-BIA129 mimic the immunomodulatory features of parent cells in vitro (i.e. modulating NF-κB transcription factor activity and IL-8 release) which underlies the role of EVs as mediators of the probiotic effects of the bacterium. The modulation of EV properties, and particularly of those with potential therapeutic applications such as the EVs produced by the probiotic P. freudenreichii, is one of the challenges in the field to achieve efficient yields with the desired optimal functionality. Here we evaluated whether the culture medium in which the bacteria are grown could be used as a lever to modulate the protein content and hence the properties of P. freudenreichii CIRM-BIA129 EVs. The physical, biochemical and functional properties of EVs produced from cells cultivated on laboratory Yeast Extract Lactate (YEL) medium and cow milk ultrafiltrate (UF) medium were compared. UF-derived EVs were more abundant, smaller in diameter and displayed more intense anti-inflammatory activity than YEL-derived EVs. Furthermore, the growth media modulated EV content in terms of both the identities and abundances of their protein cargos, suggesting different patterns of interaction with the host. Proteins involved in amino acid metabolism and central carbon metabolism were modulated, as were the key surface proteins mediating host-propionibacteria interactions.Importance Extracellular vesicles (EVs) are cellular membrane-derived nanosized particles that are produced by most cells in all three kingdoms of life. They play a pivotal role in cell-cell communication through their ability to transport bioactive molecules from donor to recipient cells. Bacterial EVs are important factors in host-microbe interactions. Recently we have shown that EVs produced by the probiotic P. freudenreichii exhibited immunomodulatory properties. We evaluate here the impact of environmental conditions, notably culture media, on P. freudenreichii EV production and function. We show that EVs display considerable differences in protein cargo and immunomodulation depending on the culture medium used. This work offers new perspectives for the development of probiotic EV-based molecular delivery systems, and reinforces the optimization of growth conditions as a tool to modulate the potential therapeutic applications of EVs.
Collapse
|
27
|
An M, Park YH, Lim YH. Antiobesity and antidiabetic effects of the dairy bacterium Propionibacterium freudenreichii MJ2 in high-fat diet-induced obese mice by modulating lipid metabolism. Sci Rep 2021; 11:2481. [PMID: 33510408 PMCID: PMC7844274 DOI: 10.1038/s41598-021-82282-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Obesity can cause chronic metabolic disorders such as type 2 diabetes, hyperlipidemia, and nonalcoholic fatty liver diseases. The aim of this study was to investigate the antiobesity and antidiabetic effects of the dairy bacterium P. freudenreichii MJ2 isolated from raw milk using 3T3-L1 cells and high-fat diet (HFD)-induced obese mice. Lipid accumulation and the expression levels of genes related to lipid metabolism, such as preadipocytic gene (Pref-1), adipogenic genes (PPARγ and C/EBPα), and lipogenic genes (FAS, SCD-1, and ACC), significantly decreased in heat-killed P. freudenreichii MJ2 (hkMJ2)-treated adipocytes. Live P. freudenreichii MJ2 (MJ2), hkMJ2, and Lactobacillus plantarum (LP) decreased body weight gain in HFD-induced obese mice compared with the model group. The liver and epididymal white adipose tissue weights in the MJ2-, hkMJ2- and LP-treated groups were significantly lower than those in the model group. The expression levels of genes and proteins related to adipogenesis and lipogenesis significantly decreased and lipolysis (HSL and ATGL) increased in the MJ2-, hkMJ2-, and LP-treated groups. The expression levels of genes related to fatty acid β-oxidation (CPT-1α and ACOX1) increased in the MJ2-, hkMJ2-, and LP-treated groups. In addition, blood glucose and fasting insulin levels in the MJ2- and hkMJ2-treated groups decreased compared with those in the model group. P. freudenreichii MJ2 ameliorate insulin resistance by obesity. In conclusion, both MJ2 and hkMJ2 alleviate obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Mirae An
- grid.222754.40000 0001 0840 2678Department of Healthcare Sciences, Graduate School, Korea University, Seoul, 02841 Republic of Korea ,grid.222754.40000 0001 0840 2678BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841 Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Public Health Science, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Yeon-Hee Park
- grid.222754.40000 0001 0840 2678Department of Public Health Science, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Young-Hee Lim
- grid.222754.40000 0001 0840 2678BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, 02841 Republic of Korea ,grid.222754.40000 0001 0840 2678Department of Integrated Biomedical and Life Sciences, Graduate School, Korea University, Seoul, 02841 Republic of Korea ,grid.411134.20000 0004 0474 0479Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, 08308 Republic of Korea
| |
Collapse
|
28
|
Tarnaud F, Gaucher F, do Carmo FLR, Illikoud N, Jardin J, Briard-Bion V, Guyomarc'h F, Gagnaire V, Jan G. Differential Adaptation of Propionibacterium freudenreichii CIRM-BIA129 to Cow's Milk Versus Soymilk Environments Modulates Its Stress Tolerance and Proteome. Front Microbiol 2020; 11:549027. [PMID: 33335514 PMCID: PMC7736159 DOI: 10.3389/fmicb.2020.549027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Propionibacterium freudenreichii is a beneficial bacterium that modulates the gut microbiota, motility and inflammation. It is traditionally consumed within various fermented dairy products. Changes to consumer habits in the context of food transition are, however, driving the demand for non-dairy fermented foods, resulting in a considerable development of plant-based fermented products that require greater scientific knowledge. Fermented soymilks, in particular, offer an alternative source of live probiotics. While the adaptation of lactic acid bacteria (LAB) to such vegetable substrates is well documented, little is known about that of propionibacteria. We therefore investigated the adaptation of Propionibacterium freudenreichii to soymilk by comparison to cow's milk. P. freudenreichii grew in cow's milk but not in soymilk, but it did grow in soymilk when co-cultured with the lactic acid bacterium Lactobacillus plantarum. When grown in soymilk ultrafiltrate (SUF, the aqueous phase of soymilk), P. freudenreichii cells appeared thinner and rectangular-shaped, while they were thicker and more rounded in cow's milk utltrafiltrate (MUF, the aqueous phase of cow milk). The amount of extractable surface proteins (SlpA, SlpB, SlpD, SlpE) was furthermore reduced in SUF, when compared to MUF. This included the SlpB protein, previously shown to modulate adhesion and immunomodulation in P. freudenreichii. Tolerance toward an acid and toward a bile salts challenge were enhanced in SUF. By contrast, tolerance toward an oxidative and a thermal challenge were enhanced in MUF. A whole-cell proteomic approach further identified differential expression of 35 proteins involved in amino acid transport and metabolism (including amino acid dehydrogenase, amino acid transporter), 32 proteins involved in carbohydrate transport and metabolism (including glycosyltransferase, PTS), indicating metabolic adaptation to the substrate. The culture medium also modulated the amount of stress proteins involved in stress remediation: GroEL, OpuCA, CysK, DnaJ, GrpE, in line with the modulation of stress tolerance. Changing the fermented substrate may thus significantly affect the fermentative and probiotic properties of dairy propionibacteria. This needs to be considered when developing new fermented functional foods.
Collapse
Affiliation(s)
| | - Floriane Gaucher
- INRAE, Institut Agro, STLO, Rennes, France
- Bioprox, Levallois-Perret, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Rodovalho VDR, da Luz BSR, Rabah H, do Carmo FLR, Folador EL, Nicolas A, Jardin J, Briard-Bion V, Blottière H, Lapaque N, Jan G, Le Loir Y, de Carvalho Azevedo VA, Guédon E. Extracellular Vesicles Produced by the Probiotic Propionibacterium freudenreichii CIRM-BIA 129 Mitigate Inflammation by Modulating the NF-κB Pathway. Front Microbiol 2020; 11:1544. [PMID: 32733422 PMCID: PMC7359729 DOI: 10.3389/fmicb.2020.01544] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) are nanometric spherical structures involved in intercellular communication, whose production is considered to be a widespread phenomenon in living organisms. Bacterial EVs are associated with several processes that include survival, competition, pathogenesis, and immunomodulation. Among probiotic Gram-positive bacteria, some Propionibacterium freudenreichii strains exhibit anti-inflammatory activity, notably via surface proteins such as the surface-layer protein B (SlpB). We have hypothesized that, in addition to surface exposure and secretion of proteins, P. freudenreichii may produce EVs and thus export immunomodulatory proteins to interact with the host. In order to demonstrate their production in this species, EVs were purified from cell-free culture supernatants of the probiotic strain P. freudenreichii CIRM-BIA 129, and their physicochemical characterization, using transmission electron microscopy and nanoparticle tracking analysis (NTA), revealed shapes and sizes typical of EVs. Proteomic characterization showed that EVs contain a broad range of proteins, including immunomodulatory proteins such as SlpB. In silico protein-protein interaction predictions indicated that EV proteins could interact with host proteins, including the immunomodulatory transcription factor NF-κB. This potential interaction has a functional significance because EVs modulate inflammatory responses, as shown by IL-8 release and NF-κB activity, in HT-29 human intestinal epithelial cells. Indeed, EVs displayed an anti-inflammatory effect by modulating the NF-κB pathway; this was dependent on their concentration and on the proinflammatory inducer (LPS-specific). Moreover, while this anti-inflammatory effect partly depended on SlpB, it was not abolished by EV surface proteolysis, suggesting possible intracellular sites of action for EVs. This is the first report on identification of P. freudenreichii-derived EVs, alongside their physicochemical, biochemical and functional characterization. This study has enhanced our understanding of the mechanisms associated with the probiotic activity of P. freudenreichii and identified opportunities to employ bacterial-derived EVs for the development of bioactive products with therapeutic effects.
Collapse
Affiliation(s)
- Vinícius de Rezende Rodovalho
- INRAE, Institut Agro, STLO, Rennes, France.,Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Brenda Silva Rosa da Luz
- INRAE, Institut Agro, STLO, Rennes, France.,Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Fillipe Luiz Rosa do Carmo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Edson Luiz Folador
- Biotechnology Center, Federal University of Paraíba, João Pessoa, Brazil
| | | | | | | | - Hervé Blottière
- INRAE, AgroParisTech, Paris-Saclay University, Micalis Institute, Jouy-en-Josas, France
| | - Nicolas Lapaque
- INRAE, AgroParisTech, Paris-Saclay University, Micalis Institute, Jouy-en-Josas, France
| | | | | | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
30
|
Rabah H, do Carmo FLR, Carvalho RDDO, Cordeiro BF, da Silva SH, Oliveira ER, Lemos L, Cara DC, Faria AMC, Garric G, Harel-Oger M, Le Loir Y, Azevedo V, Bouguen G, Jan G. Beneficial Propionibacteria within a Probiotic Emmental Cheese: Impact on Dextran Sodium Sulphate-Induced Colitis in Mice. Microorganisms 2020; 8:E380. [PMID: 32156075 PMCID: PMC7142753 DOI: 10.3390/microorganisms8030380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUNDS AND AIMS Inflammatory Bowel Diseases (IBD), including Ulcerative Colitis (UC), coincide with alterations in the gut microbiota. Consumption of immunomodulatory strains of probiotic bacteria may induce or prolong remission in UC patients. Fermented foods, including cheeses, constitute major vectors for bacteria consumption. New evidences revealed anti-inflammatory effects in selected strains of Propionibacterium freudenreichii. We thus hypothesized that consumption of a functional cheese, fermented by such a strain, may exert a positive effect on IBD. METHODS We investigated the impact of cheese fermented by P. freudenreichii on gut inflammation. We developed an experimental single-strain cheese solely fermented by a selected immunomodulatory strain of P. freudenreichii, CIRM-BIA 129. We moreover produced, in industrial conditions, an Emmental cheese using the same strain, in combination with Lactobacillus delbrueckii CNRZ327 and Streptococcus thermophilus LMD-9, as starters. Consumption of both cheeses was investigated with respect to prevention of Dextran Sodium Sulphate (DSS)-induced colitis in mice. RESULTS Consumption of the single-strain experimental cheese, or of the industrial Emmental, both fermented by P. freudenreichii CIRM-BIA 129, reduced severity of subsequent DSS-induced colitis, weight loss, disease activity index and histological score. Both treatments, in a preventive way, reduced small bowel Immunoglobulin A (IgA) secretion, restored occludin gene expression and prevented induction of Tumor Necrosis Factor α (TNFα), Interferon γ (IFNγ) and Interleukin-17 (IL-17). CONCLUSIONS A combination of immunomodulatory strains of starter bacteria can be used to manufacture an anti-inflammatory cheese, as revealed in an animal model of colitis. This opens new perspectives for personalised nutrition in the context of IBD.
Collapse
Affiliation(s)
- Houem Rabah
- STLO, INRA, Agrocampus Ouest, 35 000 Rennes, France
- Pôle Agronomique Ouest, Régions Bretagne et Pays de la Loire, F-35 042 Rennes, France
| | - Fillipe Luiz Rosa do Carmo
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | | | - Barbara Fernandes Cordeiro
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Sara Heloisa da Silva
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Emiliano Rosa Oliveira
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Luisa Lemos
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Denise Carmona Cara
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Ana Maria Caetano Faria
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | | | | | - Yves Le Loir
- STLO, INRA, Agrocampus Ouest, 35 000 Rennes, France
| | - Vasco Azevedo
- Departamento de Genética, Ecologia e evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais CP 486 CEP 31270-901, Brazil
| | - Guillaume Bouguen
- CHU Rennes, Univ Rennes, INSERM, CIC1414, Institut NUMECAN (Nutrition Metabolism and Cancer), F-35000 Rennes, France
| | - Gwénaël Jan
- STLO, INRA, Agrocampus Ouest, 35 000 Rennes, France
| |
Collapse
|