1
|
Zhu H, Bruck-Haimson R, Zaretsky A, Cohen I, Falk R, Achache H, Tzur YB, Cohen E. A nucleolar mechanism suppresses organismal proteostasis by modulating TGFβ/ERK signalling. Nat Cell Biol 2025; 27:87-102. [PMID: 39753948 DOI: 10.1038/s41556-024-01564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/21/2024] [Indexed: 01/18/2025]
Abstract
The protein homeostasis (proteostasis) network encompasses a myriad of mechanisms that maintain the integrity of the proteome by controlling various biological functions, including protein folding and degradation. Alas, ageing-associated decline in the efficiency of this network enables protein aggregation and consequently the development of late-onset neurodegenerative disorders, such as Alzheimer's disease. Accordingly, the maintenance of proteostasis through late stages of life bears the promise to delay the emergence of these devastating diseases. Yet the identification of proteostasis regulators is needed to assess the feasibility of this approach. Here we report that knocking down the activity of the nucleolar FIB-1-NOL-56 complex protects model nematodes from proteotoxicity of the Alzheimer's disease-causing amyloid-β peptide and of abnormally long poly-glutamine stretches. This mechanism promotes proteostasis across tissues by modulating the activity of TGFβ signalling and by enhancing proteasome activity. Our findings point at research avenues towards the development of proteostasis-promoting therapies for neurodegenerative maladies.
Collapse
Affiliation(s)
- Huadong Zhu
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Bruck-Haimson
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adam Zaretsky
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irit Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roni Falk
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanna Achache
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonatan B Tzur
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada, the Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Zhao W, Zhang R, Zhou L, Zhang Z, Du F, Wu R, Kong J, An S. Construction and optimization of a genetic transformation system for efficient expression of human insulin-GFP fusion gene in flax. BIORESOUR BIOPROCESS 2024; 11:83. [PMID: 39190215 DOI: 10.1186/s40643-024-00799-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
The human insulin gene modified with a C-peptide was synthesized according to the plant-preferred codon, and a fusion gene expression vector of insulin combined with green fluorescent protein (GFP) was constructed. The optimization of the flax callus culturing was undertaken, and a more efficient Agrobacterium-mediated genetic transformation of the flax hypocotyls was achieved. The critical concentration values of hygromycin on the flax hypocotyl development, as well as on its differentiated callus, were explored by the method of antibiotic gradient addition, and the application of antibiotic screening for the verification of positive calluses was assessed. The fusion gene of insulin and GFP was successfully inserted into the flax genome and expressed, as confirmed through polymerase chain reaction and Western blotting. In conclusion, we have established a flax callus culture system suitable for insulin expression. By optimizing the conditions of the flax callus induction, transformation, screening, and verification of a transgenic callus, we have provided an effective way to obtain insulin. Moreover, the herein-employed flax callus culture system could provide a feasible, cheap, and environmentally friendly platform for producing bioactive proteins.
Collapse
Affiliation(s)
- Wei Zhao
- School of Medicine, Hebei University of Engineering, Handan Economic and Technological Development Zone, No. 19 Taiji Road, Handan, Hebei Province, 056038, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei, 050090, China
| | - Rui Zhang
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei, 050090, China
- The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Changan District, Shijiazhuang, Hebei, 050000, China
| | - Luyang Zhou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei, 050090, China
- Shijiazhuang Medical College, No.1 Tongxin Road, Lingshou County, Shijiazhuang, Hebei, 050500, China
| | - Zhongxia Zhang
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei, 050090, China
| | - Fei Du
- Department of Ultrasound Medicine, Hengshui People's Hospital, Hengshui, Hebei, 053000, China
| | - Ruoyu Wu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei, 050090, China.
| | - Jing Kong
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei, 050090, China.
| | - Shengjun An
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Hebei University of Chinese Medicine, No. 326 Xinshi South Road, Qiaoxi District, Shijiazhuang, Hebei, 050090, China.
| |
Collapse
|
3
|
Zheng Z, Chen M, Feng S, Zhao H, Qu T, Zhao X, Ruan Q, Li L, Guo J. VDR and deubiquitination control neuronal oxidative stress and microglial inflammation in Parkinson's disease. Cell Death Discov 2024; 10:150. [PMID: 38514643 PMCID: PMC10957901 DOI: 10.1038/s41420-024-01912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Close correlation between vitamin D (VitD) deficiency and Parkinson's Disease (PD) risk, VitD as an adjuvant treatment promising to improve PD progression. However, VitD excessive intake could induce hypercalcemia and renal damage. Therefore, upregulation of vitD receptor (VDR) is considered a compensatory strategy to overcome VitD insufficiency and alleviate PD symptoms. In this study, we discovered that VDR played antioxidative roles in dopaminergic neurons by decreasing reactive oxygen species (ROS) and maintaining mitochondrial membrane potential. Further, we newly identified VDR downstream events in C. elegans, including glutathione S-transferase (gst) and forkhead box transcription factor class O (daf-16) mediated oxidative stress resistance. VDR upregulation also mitigated microglial activation through inhibition of NLRP3/caspase-1-mediated inflammation and membrane permeabilization. These findings highlight the multifaceted protective effects of VDR in both neurons and microglia against the development of PD. Importantly, we discovered a novel deubiquitinase DUB3, whose N-terminal catalytic domain interacted with the C-terminal ligand-binding domain of VDR to reduce VDR ubiquitination. Identification of DUB3 as an essential player in the deubiquitinating mechanism of VDR provides valuable insights into VDR regulation and its potential as a therapeutic target for PD.
Collapse
Affiliation(s)
- Zihui Zheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Miao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Shengliang Feng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Huanhuan Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Tiange Qu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| | - Xudong Zhao
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Xuzhou, 221002, Jiangsu, P. R. China
| | - Qinli Ruan
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China.
| | - Lei Li
- Department of General Practice, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Xuzhou, 221002, Jiangsu, P. R. China.
| | - Jun Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P. R. China
| |
Collapse
|
4
|
da Silva LPD, da Cruz Guedes E, Fernandes ICO, Pedroza LAL, da Silva Pereira GJ, Gubert P. Exploring Caenorhabditis elegans as Parkinson's Disease Model: Neurotoxins and Genetic Implications. Neurotox Res 2024; 42:11. [PMID: 38319410 DOI: 10.1007/s12640-024-00686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, the first being Alzheimer's disease. Patients with PD have a loss of dopaminergic neurons in the substantia nigra of the basal ganglia, which controls voluntary movements, causing a motor impairment as a result of dopaminergic signaling impairment. Studies have shown that mutations in several genes, such as SNCA, PARK2, PINK1, DJ-1, ATP13A2, and LRRK2, and the exposure to neurotoxic agents can potentially increase the chances of PD development. The nematode Caenorhabditis elegans (C. elegans) plays an important role in studying the risk factors, such as genetic factors, aging, exposure to chemicals, disease progression, and drug treatments for PD. C. elegans has a conserved neurotransmission system during evolution; it produces dopamine, through the eight dopaminergic neurons; it can be used to study the effect of neurotoxins and also has strains that express human α-synuclein. Furthermore, the human PD-related genes, LRK-1, PINK-1, PDR-1, DJR-1.1, and CATP-6, are present and functional in this model. Therefore, this review focuses on highlighting and discussing the use of C. elegans an in vivo model in PD-related studies. Here, we identified that nematodes exposed to the neurotoxins, such as 6-OHDA, MPTP, paraquat, and rotenone, had a progressive loss of dopaminergic neurons, dopamine deficits, and decreased survival rate. Several studies have reported that expression of human LRRK2 (G2019S) caused neurodegeneration and pink-1, pdr-1, and djr-1.1 deletion caused several effects PD-related in C. elegans, including mitochondrial dysfunctions. Of note, the deletion of catp-6 in nematodes caused behavioral dysfunction, mitochondrial damage, and reduced survival. In addition, nematodes expressing α-synuclein had neurodegeneration and dopamine-dependent deficits. Therefore, C. elegans can be considered an accurate animal model of PD that can be used to elucidate to assess the underlying mechanisms implicated in PD to find novel therapeutic targets.
Collapse
Affiliation(s)
- Larissa Pereira Dantas da Silva
- Keizo Asami Institute, iLIKA, Universidade Federal de Pernambuco, Moraes Rego Avenue, 1235, Recife, Pernambuco, 50670-901, Brazil
| | - Erika da Cruz Guedes
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Isabel Cristina Oliveira Fernandes
- Keizo Asami Institute, iLIKA, Universidade Federal de Pernambuco, Moraes Rego Avenue, 1235, Recife, Pernambuco, 50670-901, Brazil
- Postgraduate Program in Biological Science, Universidade Federal de Pernambuco, Pernambuco, Recife, Brazil
| | - Lucas Aleixo Leal Pedroza
- Keizo Asami Institute, iLIKA, Universidade Federal de Pernambuco, Moraes Rego Avenue, 1235, Recife, Pernambuco, 50670-901, Brazil
| | | | - Priscila Gubert
- Keizo Asami Institute, iLIKA, Universidade Federal de Pernambuco, Moraes Rego Avenue, 1235, Recife, Pernambuco, 50670-901, Brazil.
- Postgraduate Program in Biological Science, Universidade Federal de Pernambuco, Pernambuco, Recife, Brazil.
- Postgraduate Program in Pure and Applied Chemistry, Universidade Federal do Oeste da Bahia, Bahia, Brazil.
| |
Collapse
|
5
|
Kanakalatha RS, Thekkuveettil A. Insulin signaling in dopaminergic neurons regulates extended memory formation in Caenorhabditis elegans. J Neurosci Res 2024; 102:e25260. [PMID: 38284856 DOI: 10.1002/jnr.25260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 01/30/2024]
Abstract
Insulin alters several brain functions, and perturbations in insulin levels could be a precipitating factor for Parkinson's disease, a disease associated with the degeneration of dopaminergic neurons. It is unclear whether insulin alters the dopamine signaling pathway and modulates learning and memory. In Caenorhabditis elegans, daf-2 insulin receptor mutants have extended memory when trained for olfactory adaptation. In this study, we show that the absence of daf-2 receptors in dopamine neurons results in this unusual learning behavior. Our results show that insulin function in memory is dopamine-dependent. In the absence of the daf-2 receptor, the calcium influx in dopamine neurons shows an altered pattern resulting in memory recall for an extended period. These results indicate that learning and memory involve insulin-dopamine crosstalk. Imbalances in this pathway result in changes in memory recall.
Collapse
Affiliation(s)
- Rasitha Santhosh Kanakalatha
- Division of Molecular Medicine, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Anoopkumar Thekkuveettil
- Division of Molecular Medicine, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| |
Collapse
|
6
|
Rani N, Alam MM, Jamal A, Bin Ghaffar U, Parvez S. Caenorhabditis elegans: A transgenic model for studying age-associated neurodegenerative diseases. Ageing Res Rev 2023; 91:102036. [PMID: 37598759 DOI: 10.1016/j.arr.2023.102036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Neurodegenerative diseases (NDs) are a heterogeneous group of aging-associated ailments characterized by interrupting cellular proteostasic machinery and the misfolding of distinct proteins to form toxic aggregates in neurons. Neurodegenerative diseases, which include Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and others, are becoming an increasing threat to human health worldwide. The degeneration and death of certain specific groups of neurons are the hallmarks of these diseases. Over the past decades, Caenorhabditis eleganshas beenwidely used as a transgenic model to investigate biological processes related to health and disease. The nematode Caenorhabditis elegans (C. elegans) has developed as a powerful tool for studying disease mechanisms due to its ease of genetic handling and instant cultivation while providing a whole-animal system amendable to several molecular and biochemical techniques. In this review, we elucidate the potential of C. elegans as a versatile platform for systematic dissection of the molecular basis of human disease, focusing on neurodegenerative disorders, and may help better our understanding of the disease mechanisms and search for new therapeutics for these devastating diseases.
Collapse
Affiliation(s)
- Nisha Rani
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Usama Bin Ghaffar
- Department of Basic Science, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
7
|
Sanguanphun T, Sornkaew N, Malaiwong N, Chalorak P, Jattujan P, Niamnont N, Sobhon P, Meemon K. Neuroprotective effects of a medium chain fatty acid, decanoic acid, isolated from H. leucospilota against Parkinsonism in C. elegans PD model. Front Pharmacol 2022; 13:1004568. [PMID: 36582526 PMCID: PMC9792845 DOI: 10.3389/fphar.2022.1004568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Sea cucumbers are marine organism that have long been used for food and traditional medicine in Asian countries. Recently, we have shown that ethyl acetate fraction (HLEA) of the crude extract of the black sea cucumber, Holothuria leucospilota, could alleviate Parkinsonism in Caenorhabditis elegans PD models. In this study, we found that the effective neuroprotective activity is attributed to HLEA-P1 compound chemically isolated and identified in H. leucospilota ethyl acetate. We reported here that HLEA-P1 could attenuate DAergic neurodegeneration, improve DAergic-dependent behaviors, reduce oxidative stress in 6-OHDA-induced C. elegans. In addition, HLEA-P1 reduced α-synuclein aggregation, improved behavior deficit and recovered lipid deposition in transgenic C. elegans overexpressing α-synuclein. We also found that HLEA-P1 activates nuclear localization of DAF-16 transcription factor of insulin/IGF-1 signaling (IIS) pathway. Treatment with 25 μg/ml of HLEA-P1 upregulated transcriptional activity of DAF-16 target genes including anti-oxidant genes (such as sod-3) and small heat shock proteins (such as hsp16.1, hsp16.2, and hsp12.6) in 6-OHDA-induced worms. In α-synuclein-overexpressed C. elegans strain, treatment with 5 μg/ml of HLEA-P1 significantly activated mRNA expression of sod-3 and hsp16.2. Chemical analysis demonstrated that HLEA-P1 compound is decanoic acid/capric acid. Taken together, our findings revealed that decanoic acid isolated from H. leucospilota exerts anti-Parkinson effect in C. elegans PD models by partly modulating IIS/DAF-16 pathway.
Collapse
Affiliation(s)
- Tanatcha Sanguanphun
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nilubon Sornkaew
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Nawaphat Malaiwong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pawanrat Chalorak
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand,Department of Radiological Technology and Medical Physics, Chulalongkorn University, Bangkok, Thailand
| | - Prapaporn Jattujan
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand,Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nakorn Niamnont
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krai Meemon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand,Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, Thailand,*Correspondence: Krai Meemon,
| |
Collapse
|
8
|
Kitisin T, Muangkaew W, Sukphopetch P. Infections of Cryptococcus species induce degeneration of dopaminergic neurons and accumulation of α-Synuclein in Caenorhabditis elegans. Front Cell Infect Microbiol 2022; 12:1039336. [PMID: 36389163 PMCID: PMC9643722 DOI: 10.3389/fcimb.2022.1039336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Cryptococcosis in the central nervous system (CNS) can present with motor declines described as Parkinsonism. Although several lines of evidence indicate that dopaminergic (DA) neuron degeneration and α-synuclein accumulation contribute to the hallmark of Parkinsonism and Parkinson’s disease (PD), little is known about cryptococcal infections associated with neuronal degeneration. In this study, the effects of Cryptococcus neoformans and C. gattii infections on dopaminergic neuron degeneration, α-synuclein accumulation, and lifespan in Caenorhabditis elegans were investigated. The results showed that cryptococcal infections significantly (P<0.05) induced DA neuron degeneration similar to a selective cathecholamine neurotoxin 6-hydroxydopamine (6-OHDA) in C. elegans (BZ555 strain) when compared to mock infected controls. Cryptococcal infections also significantly (P< 0.05) induced α-synuclein aggregation in C. elegans (NL5901 strain). Moreover, lifespan of the infected worms was significantly decreased (P<0.0001). In conclusion, DA neurodegeneration and α-synuclein accumulation are associated with lifespan reduction during cryptococcal infection in C elegans.
Collapse
|
9
|
Hodge F, Bajuszova V, van Oosten-Hawle P. The Intestine as a Lifespan- and Proteostasis-Promoting Signaling Tissue. FRONTIERS IN AGING 2022; 3:897741. [PMID: 35821863 PMCID: PMC9261303 DOI: 10.3389/fragi.2022.897741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022]
Abstract
In multicellular organisms such as Caenorhabditis elegans, cellular stress stimuli and responses are communicated between tissues to promote organismal health- and lifespan. The nervous system is the predominant regulator of cell nonautonomous proteostasis that orchestrates systemic stress responses to integrate both internal and external stimuli. This review highlights the role of the intestine in mediating cell nonautonomous stress responses and explores recent findings that suggest a central role for the intestine to regulate organismal proteostasis. As a tissue that receives and further transduces signals from the nervous system in response to dietary restriction, heat- and oxidative stress, and hypoxia, we explore evidence suggesting the intestine is a key regulatory organ itself. From the perspective of naturally occurring stressors such as dietary restriction and pathogen infection we highlight how the intestine can function as a key regulator of organismal proteostasis by integrating insulin/IGF-like signaling, miRNA-, neuropeptide- and metabolic signaling to alter distal tissue functions in promoting survival, health- and lifespan.
Collapse
Affiliation(s)
| | | | - Patricija van Oosten-Hawle
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
10
|
Sarkar A, Hameed R, Mishra A, Bhatta RS, Nazir A. Genetic modulators associated with regulatory surveillance of mitochondrial quality control, play a key role in regulating stress pathways and longevity in C. elegans. Life Sci 2021; 290:120226. [PMID: 34953889 DOI: 10.1016/j.lfs.2021.120226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022]
Abstract
The multi-factorial Parkinson's disease (PD) is known to be associated with mitochondrial dysfunction, endoplasmic reticulum stress, alpha synuclein aggregation and dopaminergic neuronal death, with oxidative stress being a common denominator to these underlying processes. The perception of mitochondria being 'just ATP producing compartments' have been counterpoised as studies, particularly related to PD, have underlined their strong role in cause and progression of the disease. During PD pathogenesis, neurons encounter chronic stress conditions mainly due to failure of Mitochondrial Quality Control (MQC) machinery. To dissect the regulatory understanding of mitochondrial dysfunction during neurological disease progression, we endeavored to identify key regulatory endpoints that control multiple facets of MQC machinery. Our studies, employing transgenic C. elegans strain expressing human α-synuclein, led us to identification of mitochondrial genes nuo-5 (involved in oxidative phosphorylation), F25B4.7 (exhibits ATP transmembrane transporter activity) and C05D11.9 (having ribonuclease activity), which form predicted downstream targets of most elevated and down-regulated mi-RNA molecules. RNAi mediated silencing, gene ontology and functional genomics analysis studies demonstrated their role in modulating major MQC pathways. The attenuated MQC pathways mainly affected clearance of misfolded and aggregated proteins, redox homeostasis and longevity with compromised dopaminergic functions. Overexpression of the mitochondrial genes by 3 beta-hydroxyl steroid, Tomatidine, was found to curtail the redox imbalance thus leading to amelioration of effects associated with PD and an increase in the lifespan of treated nematodes. Therefore, this study unveils the regulatory role of mitochondrial genes as critical modulators of stress control involved in effects associated with PD pathogenesis.
Collapse
Affiliation(s)
- Arunabh Sarkar
- Division of Neuroscience and Aging Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Rohil Hameed
- Division of Neuroscience and Aging Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Anjali Mishra
- Division of Neuroscience and Aging Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Rabi Sankar Bhatta
- Division of Neuroscience and Aging Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Aamir Nazir
- Division of Neuroscience and Aging Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, UP, India.
| |
Collapse
|