1
|
McGrath CB, Shreves AH, Shanahan MR, Guard HE, Nhliziyo MV, Pernar CH, Penney KL, Lotan TL, Fiorentino M, Mucci LA, Stopsack KH. Etiology of prostate cancer with the TMPRSS2:ERG fusion: A systematic review of risk factors. Int J Cancer 2024. [PMID: 39663641 DOI: 10.1002/ijc.35279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
The most common somatic alteration in primary prostate cancer is the TMPRSS2:ERG gene fusion, which may be caused or promoted by distinct etiologic factors. The objective of this systematic review was to assess epidemiologic evidence on etiologic factors for prostate cancer by tumor TMPRSS2:ERG fusion status in human populations. Of 3071 publications identified, 19 cohort or case-control studies from six distinct study populations were included in this systematic review. Etiologic factors included germline genetic variants, circulating hormones, and dietary and lifestyle factors. Taller height, higher total and free testosterone levels, and fewer trinucleotide repeats in AR were possibly associated with higher risk of TMPRSS2:ERG-positive prostate cancer. Excess body weight, greater vigorous physical activity, higher lycopene intake, and the use of calcium channel blockers were associated with lower risk of TMPRSS2:ERG-positive prostate cancer. Diabetes and family history of prostate cancer were associated with both TMPRSS2:ERG-positive and TMPRSS2:ERG-negative prostate cancer. Prostate cancer germline variants had suggestive differential associations with TMPRSS2:ERG-positive or TMPRSS2:ERG-negative prostate cancer. However, results were based on few distinct study populations and generally had low precision, underscoring the need for replication. In conclusion, prostate cancer with TMPRSS2:ERG fusion is an etiologically distinct subtype that may be, in part, preventable by addressing modifiable and hormonally acting etiologic factors that align with the established mechanistic role of TMPRSS2:ERG in androgen, insulin, antioxidant, and growth factor pathways.
Collapse
Affiliation(s)
- Colleen B McGrath
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Alaina H Shreves
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Megan R Shanahan
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Hannah E Guard
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Manelisi V Nhliziyo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Claire H Pernar
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelangelo Fiorentino
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Discovery Sciences, American Cancer Society, Atlanta, GA, USA
| | - Konrad H Stopsack
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology-BIPS and Faculty of Human and Health Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
2
|
O'Malley DE, Raspin K, Melton PE, Burdon KP, Dickinson JL, FitzGerald LM. Acquired copy number variation in prostate tumours: a review of common somatic copy number alterations, how they are formed and their clinical utility. Br J Cancer 2024; 130:347-357. [PMID: 37945750 PMCID: PMC10844642 DOI: 10.1038/s41416-023-02485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and unfortunately, disease will progress in up to a third of patients despite primary treatment. Currently, there is a significant lack of prognostic tests that accurately predict disease course; however, the acquisition of somatic chromosomal variation in the form of DNA copy number variants may help understand disease progression. Notably, studies have found that a higher burden of somatic copy number alterations (SCNA) correlates with more aggressive disease, recurrence after surgery and metastasis. Here we will review the literature surrounding SCNA formation, including the roles of key tumour suppressors and oncogenes (PTEN, BRCA2, NKX3.1, ERG and AR), and their potential to inform diagnostic and prognostic clinical testing to improve predictive value. Ultimately, SCNAs, or inherited germline alterations that predispose to SCNAs, could have significant clinical utility in diagnostic and prognostic tests, in addition to guiding therapeutic selection.
Collapse
Affiliation(s)
- Dannielle E O'Malley
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Phillip E Melton
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- School of Population and Global Health, The University of Western Australia, Crawley, WA, Australia
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
3
|
Cussenot O, Cancel-Tassin G, Rao SR, Woodcock DJ, Lamb AD, Mills IG, Hamdy FC. Aligning germline and somatic mutations in prostate cancer. Are genetics changing practice? BJU Int 2023; 132:472-484. [PMID: 37410655 DOI: 10.1111/bju.16120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
OBJECTIVE To review the current status of germline and somatic (tumour) genetic testing for prostate cancer (PCa), and its relevance for clinical practice. METHODS A narrative synthesis of various molecular profiles related to their clinical context was carried out. Current guidelines for genetic testing and its feasibility in clinical practice were analysed. We report the main identified genetic sequencing results or functional genomic scores for PCa published in the literature or obtained from the French PROGENE study. RESULTS The molecular alterations observed in PCa are mostly linked to disruption of the androgen receptor (AR) pathway or DNA repair deficiency. The main known germline mutations affect the BReast CAncer gene 2 (BRCA2) and homeobox B13 (HOXB13) genes, whereas AR and tumour protein p53 (TP53) are the genes with most frequent somatic alterations in tumours from men with metastatic PCa. Molecular tests are now available for detecting some of these germline or somatic alterations and sometimes recommended by guidelines, but their utilisation must combine rationality and feasibility. They can guide specific therapies, notably for the management of metastatic disease. Indeed, following androgen deprivation, targeted therapies for PCa currently include poly-(ADP-ribose)-polymerase (PARP) inhibitors, immune checkpoint inhibitors, and prostate-specific membrane antigen (PSMA)-guided radiotherapy. The genetic tests currently approved for targeted therapies remain limited to the detection of BRCA1 and BRCA2 mutation and DNA mismatch repair deficiency, while large panels are recommended for germline analyses, not only for inherited cancer predisposing syndrome, but also for metastatic PCa. CONCLUSIONS Further consensus aligning germline with somatic molecular analysis in metastatic PCa is required, including genomics scars, emergent immunohistochemistry, or functional pre-screen imaging. With rapid advances in knowledge and technology in the field, continuous updating of guidelines to help the clinical management of these individuals, and well-conducted studies to evaluate the benefits of genetic testing are needed.
Collapse
Affiliation(s)
- Olivier Cussenot
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques (CeRePP), Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, Paris, France
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Geraldine Cancel-Tassin
- Centre de Recherche sur les Pathologies Prostatiques et Urologiques (CeRePP), Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, Paris, France
| | - Srinivasa R Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Dan J Woodcock
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Chen JY, Wang PY, Liu MZ, Lyu F, Ma MW, Ren XY, Gao XS. Biomarkers for Prostate Cancer: From Diagnosis to Treatment. Diagnostics (Basel) 2023; 13:3350. [PMID: 37958246 PMCID: PMC10649216 DOI: 10.3390/diagnostics13213350] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Prostate cancer (PCa) is a widespread malignancy with global significance, which substantially affects cancer-related mortality. Its spectrum varies widely, from slow-progressing cases to aggressive or even lethal forms. Effective patient stratification into risk groups is crucial to therapeutic decisions and clinical trials. This review examines a wide range of diagnostic and prognostic biomarkers, several of which are integrated into clinical guidelines, such as the PHI, the 4K score, PCA3, Decipher, and Prolaris. It also explores the emergence of novel biomarkers supported by robust preclinical evidence, including urinary miRNAs and isoprostanes. Genetic alterations frequently identified in PCa, including BRCA1/BRCA2, ETS gene fusions, and AR changes, are also discussed, offering insights into risk assessment and precision treatment strategies. By evaluating the latest developments and applications of PCa biomarkers, this review contributes to an enhanced understanding of their role in disease management.
Collapse
Affiliation(s)
- Jia-Yan Chen
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (J.-Y.C.); (F.L.); (M.-W.M.); (X.-Y.R.)
| | - Pei-Yan Wang
- School of Information, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Ming-Zhu Liu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China;
| | - Feng Lyu
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (J.-Y.C.); (F.L.); (M.-W.M.); (X.-Y.R.)
| | - Ming-Wei Ma
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (J.-Y.C.); (F.L.); (M.-W.M.); (X.-Y.R.)
| | - Xue-Ying Ren
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (J.-Y.C.); (F.L.); (M.-W.M.); (X.-Y.R.)
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (J.-Y.C.); (F.L.); (M.-W.M.); (X.-Y.R.)
| |
Collapse
|
5
|
Ma C, Wang X, Dai JY, Turman C, Kraft P, Stopsack KH, Loda M, Pettersson A, Mucci LA, Stanford JL, Penney KL. Germline Genetic Variants Associated with Somatic TMPRSS2:ERG Fusion Status in Prostate Cancer: A Genome-Wide Association Study. Cancer Epidemiol Biomarkers Prev 2023; 32:1436-1443. [PMID: 37555839 PMCID: PMC10592169 DOI: 10.1158/1055-9965.epi-23-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The prostate cancer subtype defined by the presence of TMPRSS2:ERG has been shown to be molecularly and epidemiologically distinct. However, few studies have investigated germline genetic variants associating with TMPRSS2:ERG fusion status. METHODS We performed a genome-wide association study with 396 TMPRSS2:ERG(+) cases, 390 TMPRSS2:ERG(-) cases, and 2,386 cancer-free controls from the Physicians' Health Study (PHS), the Health Professionals Follow-up Study (HPFS), and a Seattle-based Fred Hutchinson (FH) Cancer Center Prostate Cancer Study. We applied logistic regression models to test the associations between ∼5 million SNPs with TMPRSS2:ERG fusion status accounting for population stratification. RESULTS We did not identify genome-wide significant variants comparing the TMPRSS2:ERG(+) to the TMPRSS2:ERG(-) prostate cancer cases in the meta-analysis. When comparing TMPRSS2:ERG(+) prostate cancer cases with controls without prostate cancer, 10 genome-wide significant SNPs on chromosome 17q24.3 were observed in the meta-analysis. When comparing TMPRSS2:ERG(-) prostate cancer cases with controls without prostate cancer, two SNPs on chromosome 8q24.21 in the meta-analysis reached genome-wide significance. CONCLUSIONS We observed SNPs at several known prostate cancer risk loci (17q24.3, 1q32.1, and 8q24.21) that were differentially and exclusively associated with the risk of developing prostate tumors either with or without the gene fusion. IMPACT Our findings suggest that tumors with the TMPRSS2:ERG fusion exhibit a different germline genetic etiology compared with fusion negative cases.
Collapse
Affiliation(s)
- Chaoran Ma
- Department of Nutrition, University of Massachusetts Amherst, Amherst, MA
| | - Xiaoyu Wang
- Division of Public Health Sciences, Fred Hutchison Cancer Center, Seattle, WA
| | - James Y. Dai
- Division of Public Health Sciences, Fred Hutchison Cancer Center, Seattle, WA
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Konrad H. Stopsack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Andreas Pettersson
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchison Cancer Center, Seattle, WA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Duncan A, Nousome D, Ricks R, Kuo HC, Ravindranath L, Dobi A, Cullen J, Srivastava S, Chesnut GT, Petrovics G, Kohaar I. Association of TP53 Single Nucleotide Polymorphisms with Prostate Cancer in a Racially Diverse Cohort of Men. Biomedicines 2023; 11:biomedicines11051404. [PMID: 37239075 DOI: 10.3390/biomedicines11051404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Growing evidence indicates the involvement of a genetic component in prostate cancer (CaP) susceptibility and clinical severity. Studies have reported the role of germline mutations and single nucleotide polymorphisms (SNPs) of TP53 as possible risk factors for cancer development. In this single institutional retrospective study, we identified common SNPs in the TP53 gene in AA and CA men and performed association analyses for functional TP53 SNPs with the clinico-pathological features of CaP. The SNP genotyping analysis of the final cohort of 308 men (212 AA; 95 CA) identified 74 SNPs in the TP53 region, with a minor allele frequency (MAF) of at least 1%. Two SNPs were non-synonymous in the exonic region of TP53: rs1800371 (Pro47Ser) and rs1042522 (Arg72Pro). The Pro47Ser variant had an MAF of 0.01 in AA but was not detected in CA. Arg72Pro was the most common SNP, with an MAF of 0.50 (0.41 in AA; 0.68 in CA). Arg72Pro was associated with a shorter time to biochemical recurrence (BCR) (p = 0.046; HR = 1.52). The study demonstrated ancestral differences in the allele frequencies of the TP53 Arg72Pro and Pro47Ser SNPs, providing a valuable framework for evaluating CaP disparities among AA and CA men.
Collapse
Affiliation(s)
- Allison Duncan
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Darryl Nousome
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Randy Ricks
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Huai-Ching Kuo
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Jennifer Cullen
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Shiv Srivastava
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Gregory T Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Urology Service, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Indu Kohaar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| |
Collapse
|
7
|
Lazzeri M, Fasulo V, Lughezzani G, Benetti A, Soldà G, Asselta R, De Simone I, Paciotti M, Avolio PP, Contieri R, Saitta C, Saita A, Hurle R, Guazzoni G, Buffi NM, Casale P. Prospective evaluation of the role of imaging techniques and TMPRSS2:ERG mutation for the diagnosis of clinically significant prostate cancer. Front Oncol 2022; 12:968384. [PMID: 36147926 PMCID: PMC9487838 DOI: 10.3389/fonc.2022.968384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To test the hypothesis of a relationship between a specific genetic lesion (T2:ERG) and imaging scores, such as PI-RADS and PRI-MUS, and to test the effectiveness of these parameters for the diagnosis of prostate cancer (PCa) and clinically significant PCa (csPCa). Materials and methods This is a prospective study of men with suspected PCa enrolled between 2016 and 2019 at a high-volume tertiary hospital. Patients underwent systematic US-guided biopsy, plus targeted biopsy if they were presenting with >=1 suspicious lesion (PI-RADS>2) at mpMRI or PR-IMUS >2 at micro-ultrasound assessment. For each patient, one core from the highest PI-RADS or PRI-MUS lesion was collected for T2:ERG analysis. Multivariable logistic regression models (LRMs) were fitted for csPCa with a clinical model (age, total PSA, previous biopsy, family history for PCa), a clinical plus PI-RADS, clinical plus T2:ERG, clinical plus PI-RADS plus T2:ERG, and T2:ERG plus PI-RADS alone. Results The cohort consists of 158 patients: 83.5% and 66.2% had respectively a diagnosis of PCa and csPCa after biopsy. A T2:ERG fusion was found in 37 men and 97.3% of these patients harbored PCa, while 81.1% were diagnosed with csPCa. SE of T2:ERG assay for csPCa was 28.8%, SP 87.0%, NPV 38.8%, and PPV 81.1%. Of 105 patients who performed mpMRI 93.% had PIRADS ≥3. SE of mpMRI for csPCa was 98.5%, SP was 12.8%, NPV was 83.3%, and PPV was 65.7%. Among 67 patients who were subjected to micro-US, 90% had a PRI-MUS ≥3. SE of micro-US for csPCa was 89.1%, SP was 9.52%, NPV was 28.6%, and PPV was 68.3%. At univariable LRM T2:ERG was confirmed as independent of mpMRI and micro-US result (OR 1.49, p=0.133 and OR 1.82, p=0.592, respectively). At multivariable LRM the clinical model alone had an AUC for csPCa of 0.74 while the clinical model including PI-RADS and T2:ERG achieved an AUC of 0.83. Conclusions T2:ERG translocation and imaging results are independent of each other, but both are related csPCa. To evaluate the best diagnostic work-up for PCa and csPCa detection, all available tools (T2:ERG detection and imaging techniques) should be employed together as they appear to have a complementary role.
Collapse
Affiliation(s)
- Massimo Lazzeri
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Vittorio Fasulo
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giovanni Lughezzani
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- *Correspondence: Giovanni Lughezzani,
| | - Alessio Benetti
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Giulia Soldà
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Rosanna Asselta
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Ilaria De Simone
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marco Paciotti
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Pier Paolo Avolio
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Roberto Contieri
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Cesare Saitta
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Alberto Saita
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Rodolfo Hurle
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Giorgio Guazzoni
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Nicolò Maria Buffi
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Paolo Casale
- Department of Urology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
8
|
Khosh Kish E, Choudhry M, Gamallat Y, Buharideen SM, D D, Bismar TA. The Expression of Proto-Oncogene ETS-Related Gene ( ERG) Plays a Central Role in the Oncogenic Mechanism Involved in the Development and Progression of Prostate Cancer. Int J Mol Sci 2022; 23:ijms23094772. [PMID: 35563163 PMCID: PMC9105369 DOI: 10.3390/ijms23094772] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The ETS-related gene (ERG) is proto-oncogene that is classified as a member of the ETS transcription factor family, which has been found to be consistently overexpressed in about half of the patients with clinically significant prostate cancer (PCa). The overexpression of ERG can mostly be attributed to the fusion of the ERG and transmembrane serine protease 2 (TMPRSS2) genes, and this fusion is estimated to represent about 85% of all gene fusions observed in prostate cancer. Clinically, individuals with ERG gene fusion are mostly documented to have advanced tumor stages, increased mortality, and higher rates of metastasis in non-surgical cohorts. In the current review, we elucidate ERG’s molecular interaction with downstream genes and the pathways associated with PCa. Studies have documented that ERG plays a central role in PCa progression due to its ability to enhance tumor growth by promoting inflammatory and angiogenic responses. ERG has also been implicated in the epithelial–mesenchymal transition (EMT) in PCa cells, which increases the ability of cancer cells to metastasize. In vivo, research has demonstrated that higher levels of ERG expression are involved with nuclear pleomorphism that prompts hyperplasia and the loss of cell polarity.
Collapse
Affiliation(s)
- Ealia Khosh Kish
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Sabrina Marsha Buharideen
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Dhananjaya D
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Calgary, AB T2V 1P9, Canada
- Tom Baker Cancer Center, Arnie Charbonneau Cancer Institute, Calgary, AB T2V 1P9, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|
9
|
Raspin K, O'Malley DE, Marthick JR, Donovan S, Malley RC, Banks A, Redwig F, Skala M, Dickinson JL, FitzGerald LM. Analysis of a large prostate cancer family identifies novel and recurrent gene fusion events providing evidence for inherited predisposition. Prostate 2022; 82:540-550. [PMID: 34994974 DOI: 10.1002/pros.24300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
There is strong interest in the characterisation of gene fusions and their use to enhance clinical practices in prostate cancer (PrCa). Significantly, ~50% of prostate tumours harbour a gene fusion. Inherited factors are thought to predispose to these events but, to date, only one study has investigated gene fusions in a familial context. Here, we examined the prevalence and diversity of gene fusions in 14 tumours from a single large PrCa family, PcTas9, using the TruSight® RNA Fusion Panel and Sanger sequencing validation. These fusions were then explored in The Cancer Genome Atlas (TCGA) PrCa data set (n = 494). Overall, 64.3% of PcTas9 tumours harboured a gene fusion, including known erythroblast transformation-specific (ETS) fusions involving ERG and ETV1, and two novel gene fusions, C19orf48:ETV4 and RYBP:FOXP1. Although 3' ETS genes were overexpressed in PcTas9 and TCGA tumour samples, 3' fusion of FOXP1 did not appear to alter its expression. In addition, PcTas9 fusion carriers were more likely to have lower-grade disease than noncarriers (p = 0.02). Likewise, TCGA tumours with high-grade disease were less likely to harbour fusions (p = 0.03). Our study further implicates an inherited predisposition to PrCa gene fusion events, which are associated with less aggressive tumours. This knowledge could lead to clinical strategies to predict men at risk for fusion-positive PrCa and, thus, identify patients who are more or less at risk of aggressive disease and/or responsive to particular therapies.
Collapse
Affiliation(s)
- Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Dannielle E O'Malley
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - James R Marthick
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Roslyn C Malley
- Hobart Pathology, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Annette Banks
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Frank Redwig
- Department of Urology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Marketa Skala
- WP Holman Clinic, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
10
|
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther 2021; 228:107932. [PMID: 34174272 DOI: 10.1016/j.pharmthera.2021.107932] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
Collapse
|
11
|
Xu R, Zhang K, Liang J, Gao F, Li J, Guan F. Hyaluronic acid/polyethyleneimine nanoparticles loaded with copper ion and disulfiram for esophageal cancer. Carbohydr Polym 2021; 261:117846. [PMID: 33766342 DOI: 10.1016/j.carbpol.2021.117846] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
In the clinical treatment of cancer, improving the effectiveness and targeting of drugs has always been a bottleneck problem that needs to be solved. In this contribution, inspired by the targeted inhibition on cancer from combination application of disulfiram and divalent copper ion (Cu2+), we optimized the concentration of disulfiram and Cu2+ ion for inhibiting esophageal cancer cells, and loaded them in hyaluronic acid (HA)/polyethyleneimine (PEI) nanoparticles with specific scales, in order to improve the effectiveness and targeting of drugs. The in vitro cell experiments demonstrated that more drug loaded HA/PEI nanoparticles accumulated to the esophageal squamous cell carcinoma (Eca109) and promoted higher apoptosis ratio of Eca109. Both in vitro and in vivo biological assessment verified that the disulfiram/Cu2+ loaded HA/PEI nanoparticles promoted the apoptosis of cancer cells and inhibited the tumor proliferation, but had no toxicity on other normal organs.
Collapse
Affiliation(s)
- Ru Xu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Feng Gao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Jingan Li
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China.
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China.
| |
Collapse
|