1
|
Smolle MA, Seidel MG, Kashofer K, Liegl-Atzwanger B, Sadoghi P, Müller DA, Leithner A. Precision medicine in diagnosis, prognosis, and disease monitoring of bone and soft tissue sarcomas using liquid biopsy: a systematic review. Arch Orthop Trauma Surg 2025; 145:121. [PMID: 39797974 PMCID: PMC11724793 DOI: 10.1007/s00402-024-05711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/27/2024] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Liquid biopsy as a non-invasive method to investigate cancer biology and monitor residual disease has gained significance in clinical practice over the years. Whilst its applicability in carcinomas is well established, the low incidence and heterogeneity of bone and soft tissue sarcomas explains the less well-established knowledge considering liquid biopsy in these highly malignant mesenchymal neoplasms. MATERIALS AND METHODS A systematic literature review adhering to the PRISMA guidelines initially identified 920 studies, of whom 68 original articles could be finally included, all dealing with clinical applicability of liquid biopsy in sarcoma. Studies were discussed within two main chapters, i.e. translocation-associated and complex-karyotype sarcomas. RESULTS Overall, data on clinical applicability of liquid biopsy in 2636 patients with > 10 different entities of bone and soft tissue sarcomas could be summarised. The five most frequent tumour entities included osteosarcoma (n = 602), Ewing sarcoma (n = 384), gastrointestinal stromal tumour (GIST; n = 203), rhabdomyosarcoma (n = 193), and leiomyosarcoma (n = 145). Of 11 liquid biopsy analytes, largest evidence was present for ctDNA and cfDNA, investigated in 26 and 18 studies, respectively. CONCLUSIONS This systematic literature review provides an extensive up-to-date overview about the current and potential future uses of different liquid biopsy modalities as diagnostic, prognostic, and disease monitoring markers in sarcoma.
Collapse
Affiliation(s)
- Maria Anna Smolle
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Markus G Seidel
- Research Unit for Cancer and Inborn Errors of the Blood and Immunity in Children, Division of Paediatric and Adolescent Haematology/Oncology, Department of Paediatric and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Karl Kashofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Bernadette Liegl-Atzwanger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Patrick Sadoghi
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Daniel A Müller
- Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria.
| |
Collapse
|
2
|
Janssen FW, Lak NSM, Janda CY, Kester LA, Meister MT, Merks JHM, van den Heuvel-Eibrink MM, van Noesel MM, Zsiros J, Tytgat GAM, Looijenga LHJ. A comprehensive overview of liquid biopsy applications in pediatric solid tumors. NPJ Precis Oncol 2024; 8:172. [PMID: 39097671 PMCID: PMC11297996 DOI: 10.1038/s41698-024-00657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024] Open
Abstract
Liquid biopsies are emerging as an alternative source for pediatric cancer biomarkers with potential applications during all stages of patient care, from diagnosis to long-term follow-up. While developments within this field are reported, these mainly focus on dedicated items such as a specific liquid biopsy matrix, analyte, and/or single tumor type. To the best of our knowledge, a comprehensive overview is lacking. Here, we review the current state of liquid biopsy research for the most common non-central nervous system pediatric solid tumors. These include neuroblastoma, renal tumors, germ cell tumors, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and other soft tissue sarcomas, and liver tumors. Within this selection, we discuss the most important or recent studies involving liquid biopsy-based biomarkers, anticipated clinical applications, and the current challenges for success. Furthermore, we provide an overview of liquid biopsy-based biomarker publication output for each tumor type based on a comprehensive literature search between 1989 and 2023. Per study identified, we list the relevant liquid biopsy-based biomarkers, matrices (e.g., peripheral blood, bone marrow, or cerebrospinal fluid), analytes (e.g., circulating cell-free and tumor DNA, microRNAs, and circulating tumor cells), methods (e.g., digital droplet PCR and next-generation sequencing), the involved pediatric patient cohort, and proposed applications. As such, we identified 344 unique publications. Taken together, while the liquid biopsy field in pediatric oncology is still behind adult oncology, potentially relevant publications have increased over the last decade. Importantly, steps towards clinical implementation are rapidly gaining ground, notably through validation of liquid biopsy-based biomarkers in pediatric clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Michael T Meister
- Princess Máxima Center, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Johannes H M Merks
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center, Utrecht, the Netherlands
- Wilhelmina Children's Hospital-Division of CHILDHEALTH, University Medical Center Utrech, University of Utrecht, Utrecht, the Netherlands
| | - Max M van Noesel
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | | | - Godelieve A M Tytgat
- Princess Máxima Center, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Leendert H J Looijenga
- Princess Máxima Center, Utrecht, the Netherlands.
- Department of Pathology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Ewongwo A, Hui C, Moding EJ. Opportunity in Complexity: Harnessing Molecular Biomarkers and Liquid Biopsies for Personalized Sarcoma Care. Semin Radiat Oncol 2024; 34:195-206. [PMID: 38508784 DOI: 10.1016/j.semradonc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Due to their rarity and complexity, sarcomas represent a substantial therapeutic challenge. However, the incredible diversity within and across sarcoma subtypes presents an opportunity for personalized care to maximize efficacy and limit toxicity. A deeper understanding of the molecular alterations that drive sarcoma development and treatment response has paved the way for molecular biomarkers to shape sarcoma treatment. Genetic, transcriptomic, and protein biomarkers have become critical tools for diagnosis, prognostication, and treatment selection in patients with sarcomas. In the future, emerging biomarkers like circulating tumor DNA analysis offer the potential to improve early detection, monitoring response to treatment, and identifying mechanisms of resistance to personalize sarcoma treatment. Here, we review the current state of molecular biomarkers for sarcomas and highlight opportunities and challenges for the implementation of new technologies in the future.
Collapse
Affiliation(s)
- Agnes Ewongwo
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Caressa Hui
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Everett J Moding
- Department of Radiation Oncology, Stanford University, Stanford, CA.; Stanford Cancer Institute, Stanford University, Stanford, CA..
| |
Collapse
|
4
|
Mavrogenis AF, Altsitzioglou P, Tsukamoto S, Errani C. Biopsy Techniques for Musculoskeletal Tumors: Basic Principles and Specialized Techniques. Curr Oncol 2024; 31:900-917. [PMID: 38392061 PMCID: PMC10888002 DOI: 10.3390/curroncol31020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Biopsy is a pivotal component in the diagnostic process of bone and soft tissue tumors. The objective is to obtain adequate tissue without compromising local tumor dissemination and the patient's survival. This review explores contemporary principles and practices in musculoskeletal biopsies, emphasizing the critical role of diagnostic accuracy while also delving into the evolving landscape of liquid biopsies as a promising alternative in the field. A thorough literature search was done in PubMed and Google Scholar as well as in physical books in libraries to summarize the available biopsy techniques for musculoskeletal tumors, discuss the available methods, risk factors, and complications, and to emphasize the challenges related to biopsies in oncology. Research articles that studied the basic principles and specialized techniques of biopsy techniques in tumor patients were deemed eligible. Their advantages and disadvantages, technical and pathophysiological mechanisms, and possible risks and complications were reviewed, summarized, and discussed. An inadequately executed biopsy may hinder diagnosis and subsequently impact treatment outcomes. All lesions should be approached with a presumption of malignancy until proven otherwise. Liquid biopsies have emerged as a potent non-invasive tool for analyzing tumor phenotype, progression, and drug resistance and guiding treatment decisions in bone sarcomas and metastases. Despite advancements, several barriers remain in biopsies, including challenges related to costs, scalability, reproducibility, and isolation methods. It is paramount that orthopedic oncologists work together with radiologists and pathologists to enhance diagnosis, patient outcomes, and healthcare costs.
Collapse
Affiliation(s)
- Andreas F. Mavrogenis
- First Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, 1 Rimini, 157 72 Athens, Greece;
| | - Pavlos Altsitzioglou
- First Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, 1 Rimini, 157 72 Athens, Greece;
| | - Shinji Tsukamoto
- Department of Orthopaedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan;
| | - Costantino Errani
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy;
| |
Collapse
|
5
|
De Feo A, Manfredi M, Mancarella C, Maqueda JJ, De Giorgis V, Pignochino Y, Sciandra M, Cristalli C, Donadelli M, Scotlandi K. CD99 Modulates the Proteomic Landscape of Ewing Sarcoma Cells and Related Extracellular Vesicles. Int J Mol Sci 2024; 25:1588. [PMID: 38338867 PMCID: PMC10855178 DOI: 10.3390/ijms25031588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Ewing sarcoma (EWS) is an aggressive pediatric bone tumor characterized by unmet clinical needs and an incompletely understood epigenetic heterogeneity. Here, we considered CD99, a major surface molecule hallmark of EWS malignancy. Fluctuations in CD99 expression strongly impair cell dissemination, differentiation, and death. CD99 is also loaded within extracellular vesicles (EVs), and the delivery of CD99-positive or CD99-negative EVs dynamically exerts oncogenic or oncosuppressive functions to recipient cells, respectively. We undertook mass spectrometry and functional annotation analysis to investigate the consequences of CD99 silencing on the proteomic landscape of EWS cells and related EVs. Our data demonstrate that (i) the decrease in CD99 leads to major changes in the proteomic profile of EWS cells and EVs; (ii) intracellular and extracellular compartments display two distinct signatures of differentially expressed proteins; (iii) proteomic changes converge to the modulation of cell migration and immune-modulation biological processes; and (iv) CD99-silenced cells and related EVs are characterized by a migration-suppressive, pro-immunostimulatory proteomic profile. Overall, our data provide a novel source of CD99-associated protein biomarkers to be considered for further validation as mediators of EWS malignancy and as EWS disease liquid biopsy markers.
Collapse
Affiliation(s)
- Alessandra De Feo
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (C.M.); (J.J.M.); (M.S.); (C.C.)
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (C.M.); (J.J.M.); (M.S.); (C.C.)
| | - Joaquín J. Maqueda
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (C.M.); (J.J.M.); (M.S.); (C.C.)
| | - Veronica De Giorgis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy;
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060 Turin, Italy
| | - Marika Sciandra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (C.M.); (J.J.M.); (M.S.); (C.C.)
| | - Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (C.M.); (J.J.M.); (M.S.); (C.C.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (C.M.); (J.J.M.); (M.S.); (C.C.)
| |
Collapse
|
6
|
Joshi SK, Piehowski P, Liu T, Gosline SJC, McDermott JE, Druker BJ, Traer E, Tyner JW, Agarwal A, Tognon CE, Rodland KD. Mass Spectrometry-Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine. Annu Rev Pharmacol Toxicol 2024; 64:455-479. [PMID: 37738504 PMCID: PMC10950354 DOI: 10.1146/annurev-pharmtox-022723-113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Proteogenomics refers to the integration of comprehensive genomic, transcriptomic, and proteomic measurements from the same samples with the goal of fully understanding the regulatory processes converting genotypes to phenotypes, often with an emphasis on gaining a deeper understanding of disease processes. Although specific genetic mutations have long been known to drive the development of multiple cancers, gene mutations alone do not always predict prognosis or response to targeted therapy. The benefit of proteogenomics research is that information obtained from proteins and their corresponding pathways provides insight into therapeutic targets that can complement genomic information by providing an additional dimension regarding the underlying mechanisms and pathophysiology of tumors. This review describes the novel insights into tumor biology and drug resistance derived from proteogenomic analysis while highlighting the clinical potential of proteogenomic observations and advances in technique and analysis tools.
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sara J C Gosline
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason E McDermott
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Karin D Rodland
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
7
|
Rayamajhi S, Sipes J, Tetlow AL, Saha S, Bansal A, Godwin AK. Extracellular Vesicles as Liquid Biopsy Biomarkers across the Cancer Journey: From Early Detection to Recurrence. Clin Chem 2024; 70:206-219. [PMID: 38175602 DOI: 10.1093/clinchem/hvad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/26/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Cancer is a dynamic process and thus requires highly informative and reliable biomarkers to help guide patient care. Liquid-based biopsies have emerged as a clinical tool for tracking cancer dynamics. Extracellular vesicles (EVs), lipid bilayer delimited particles secreted by cells, are a new class of liquid-based biomarkers. EVs are rich in selectively sorted biomolecule cargos, which provide a spatiotemporal fingerprint of the cell of origin, including cancer cells. CONTENT This review summarizes the performance characteristics of EV-based biomarkers at different stages of cancer progression, from early malignancy to recurrence, while emphasizing their potential as diagnostic, prognostic, and screening biomarkers. We discuss the characteristics of effective biomarkers, consider challenges associated with the EV biomarker field, and report guidelines based on the biomarker discovery pipeline. SUMMARY Basic science and clinical trial studies have shown the potential of EVs as precision-based biomarkers for tracking cancer status, with promising applications for diagnosing disease, predicting response to therapy, and tracking disease burden. The multi-analyte cargos of EVs enhance the performance characteristics of biomarkers. Recent technological advances in ultrasensitive detection of EVs have shown promise with high specificity and sensitivity to differentiate early-cancer cases vs healthy individuals, potentially outperforming current gold-standard imaging-based cancer diagnosis. Ultimately, clinical translation will be dictated by how these new EV biomarker-based platforms perform in larger sample cohorts. Applying ultrasensitive, scalable, and reproducible EV detection platforms with better design considerations based upon the biomarker discovery pipeline should guide the field towards clinically useful liquid biopsy biomarkers.
Collapse
Affiliation(s)
- Sagar Rayamajhi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jared Sipes
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ashley L Tetlow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Souvik Saha
- Division of Gastroenterology and Hepatology, University of Kansas Health System, Kansas City, KS, United States
| | - Ajay Bansal
- Division of Gastroenterology and Hepatology, University of Kansas Health System, Kansas City, KS, United States
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, United States
- Division of Genomic Diagnostics, University of Kansas Health System, Kansas City, KS, United States
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
8
|
Ezzeldin S, Osama A, Anwar AM, Mahgoub S, Ahmed EA, Farid N, Zamzam M, El Ghoneimy A, Magdeldin S. Detection of early prognostic biomarkers for metastasis of Ewing's sarcoma in pediatric patients. Life Sci 2023; 334:122237. [PMID: 37926299 DOI: 10.1016/j.lfs.2023.122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
AIMS Ewing's Sarcoma is an extremely aggressive tumor in children. The disease is associated with highly metastatic rate, especially at the time of diagnosis, contributing to a lower survival rate and poor prognosis. The study aimed to identify predictive biomarkers for metastatic Ewing's sarcoma through in-depth analysis of the plasma proteome profile of pediatric Ewing's sarcoma patients. MAIN METHODS Plasma samples from Ewing's sarcoma patients and control individuals were profiled using both shotgun and dimethyl-labeled proteomics analysis. Subsequently, Ewing's sarcoma patients were further stratified according to their metastatic state and chemotherapy response. Western blot was used for validation. Univariate and multivariate analyses were performed to determine proteome metastasis predictors. Receiver operating characteristic (ROC) analysis was done to assess the diagnostic significance of the potential plasma Ewing's sarcoma biomarkers. KEY FINDINGS Our results revealed a set of proteins significantly associated with the metastatic Ewing's sarcoma disease profile. These proteins include ceruloplasmin and several immunoglobulins. Additionally, our study disclosed significant differentially expressed proteins in pediatric Ewing's sarcoma, including CD5 antigen-like, clusterin, and dermcidin. Stable isotope dimethyl labeling and western blot further confirmed our results, strengthening the impact of such proteins in disease development. Furthermore, an unbiased ROC curve evaluated and confirmed the predictive power of these biomarker candidates. SIGNIFICANCE This study presented potential empirical predictive circulating biomarkers for determining the disease status of pediatric Ewing's sarcoma, which is vital for early prediction.
Collapse
Affiliation(s)
- Shahd Ezzeldin
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Aya Osama
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Ali Mostafa Anwar
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Sebaey Mahgoub
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Eman A Ahmed
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt; Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Nesma Farid
- Clinical Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Manal Zamzam
- Department of Pediatric Oncology, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt
| | - Ahmed El Ghoneimy
- Musculoskeletal Tumor Surgery Unit, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt; Department of Orthopedic Surgery, Faculty of Medicine, Cairo University, 12613 Giza, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children's Cancer Hospital 57357 Egypt, 11617 Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| |
Collapse
|
9
|
Turaga SM, Vishwakarma V, Hembruff SL, Gibbs BK, Sabu P, Puri RV, Pathak HB, Samuel G, Godwin AK. Inducing Mitotic Catastrophe as a Therapeutic Approach to Improve Outcomes in Ewing Sarcoma. Cancers (Basel) 2023; 15:4911. [PMID: 37894278 PMCID: PMC10605681 DOI: 10.3390/cancers15204911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Ewing sarcoma (EWS) is an aggressive pediatric malignancy of the bone and soft tissues in need of novel therapeutic options. To identify potential therapeutic targets, we focused on essential biological pathways that are upregulated by EWS-FLI1, the primary oncogenic driver of EWS, including mitotic proteins such as Aurora kinase A (AURKA) and kinesin family member 15 (KIF15) and its binding partner, targeting protein for Xklp2 (TPX2). KIF15/TPX2 cooperates with KIF11, a key mitotic kinesin essential for mitotic spindle orientation. Given the lack of clinical-grade KIF15/TPX2 inhibitors, we chose to target KIF11 (using SB-743921) in combination with AURKA (using VIC-1911) given that phosphorylation of KIF15S1169 by Aurora A is required for its targeting to the spindle. In vitro, the drug combination demonstrated strong synergy (Bliss score ≥ 10) at nanomolar doses. Colony formation assay revealed significant reduction in plating efficiency (1-3%) and increased percentage accumulation of cells in the G2/M phase with the combination treatment (45-52%) upon cell cycle analysis, indicating mitotic arrest. In vivo studies in EWS xenograft mouse models showed significant tumor reduction and overall effectiveness: drug combination vs. vehicle control (p ≤ 0.01), SB-743921 (p ≤ 0.01) and VIC-1911 (p ≤ 0.05). Kaplan-Meier curves demonstrated superior overall survival with the combination compared to vehicle or monotherapy arms (p ≤ 0.0001).
Collapse
Affiliation(s)
- Soumya M. Turaga
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
| | - Vikalp Vishwakarma
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
| | - Stacey L. Hembruff
- University of Kansas Cancer Center, Kansas City, KS 66160, USA; (S.L.H.); (P.S.)
| | - Benjamin K. Gibbs
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
| | - Priya Sabu
- University of Kansas Cancer Center, Kansas City, KS 66160, USA; (S.L.H.); (P.S.)
- Division of Gynecologic Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Rajni V. Puri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
| | - Harsh B. Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Glenson Samuel
- Division of Pediatric Hematology Oncology and Bone Marrow Transplantation, Children’s Mercy Hospital, Kansas City, MO 64108, USA;
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (S.M.T.); (V.V.); (B.K.G.); (R.V.P.); (H.B.P.)
- University of Kansas Cancer Center, Kansas City, KS 66160, USA; (S.L.H.); (P.S.)
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3040, Kansas City, KS 66160, USA
| |
Collapse
|
10
|
Joo HS, Suh JH, So CM, Jeon HJ, Yoon SH, Lee JM. Emerging Roles of Using Small Extracellular Vesicles as an Anti-Cancer Drug. Int J Mol Sci 2023; 24:14063. [PMID: 37762393 PMCID: PMC10531913 DOI: 10.3390/ijms241814063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Small extracellular vesicles (sEVs) are emerging as a novel therapeutic strategy for cancer therapy. Tumor-cell-derived sEVs contain biomolecules that can be utilized for cancer diagnosis. sEVs can directly exert tumor-killing effects or modulate the tumor microenvironment, leading to anti-cancer effects. In this review, the application of sEVs as a diagnostic tool, drug delivery system, and active pharmaceutical ingredient for cancer therapy will be highlighted. The therapeutic efficacies of sEVs will be compared to conventional immune checkpoint inhibitors. Additionally, this review will provide strategies for sEV engineering to enhance the therapeutic efficacies of sEVs. As a bench-to-bedside application, we will discuss approaches to encourage good-manufacturing-practice-compliant industrial-scale manufacturing and purification of sEVs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jung Min Lee
- School of Life Science, Handong Global University, 558 Handong-ro, Buk-gu, Pohang 37554, Republic of Korea
| |
Collapse
|
11
|
Kjær EKR, Vase CB, Rossing M, Ahlborn LB, Hjalgrim LL. Detection of circulating tumor-derived material in peripheral blood of pediatric sarcoma patients: A systematic review. Transl Oncol 2023; 34:101690. [PMID: 37201250 DOI: 10.1016/j.tranon.2023.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Detection of circulating tumor-derived material (cTM) in the peripheral blood (PB) of cancer patients has been shown to be useful in early diagnosis, prediction of prognosis, and disease monitoring. However, it has not yet been thoroughly evaluated for pediatric sarcoma patients. METHODS We searched the PubMed and EMBASE databases for studies reporting the detection of circulating tumor cells, circulating tumor DNA, and circulating RNA in PB of pediatric sarcoma patients. Data on performance in identifying cTM and its applicability in diagnosis, and evaluation of tumor characteristics, prognostic factors, and treatment response was extracted from publications. RESULTS A total of 79 studies were assigned for the present systematic review, including detection of circulating tumor cells (116 patients), circulating tumor DNA (716 patients), and circulating RNA (2887 patients). Circulating tumor cells were detected in 76% of patients. Circulating DNA was detected in 63% by targeted NGS, 66% by shallow WGS, and 79% by digital droplet PCR. Circulating RNA was detected in 37% of patients. CONCLUSION Of the cTM from Ewing's sarcoma and rhabdomyosarcoma ctDNA proved to be the best target for clinical application including diagnosis, tumor characterization, prognosis, and monitoring of disease progression and treatment response. For osteosarcoma the most promising targets are copy number alterations or patient specific micro RNAs, however, further investigations are needed to obtain consensus on clinical utility.
Collapse
Affiliation(s)
- Eva Kristine Ruud Kjær
- Department of Paediatrics and Adolescent Medicine, Paediatric Oncology Research Laboratory (Bonkolab), Copenhagen University Hospital Rigshospitalet, 5704, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Christian Bach Vase
- Department of Paediatrics and Adolescent Medicine, Paediatric Oncology Research Laboratory (Bonkolab), Copenhagen University Hospital Rigshospitalet, 5704, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Maria Rossing
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Center for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lise Barlebo Ahlborn
- Center for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lisa Lyngsie Hjalgrim
- Department of Paediatrics and Adolescent Medicine, Paediatric Oncology Research Laboratory (Bonkolab), Copenhagen University Hospital Rigshospitalet, 5704, Blegdamsvej 9, Copenhagen DK-2100, Denmark.
| |
Collapse
|
12
|
Turaga SM, Sardiu ME, Vishwakarma V, Mitra A, Bantis LE, Madan R, Merchant ML, Klein JB, Samuel G, Godwin AK. Identification of small extracellular vesicle protein biomarkers for pediatric Ewing Sarcoma. Front Mol Biosci 2023; 10:1138594. [PMID: 37122563 PMCID: PMC10140755 DOI: 10.3389/fmolb.2023.1138594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Ewing Sarcoma (EWS) is the second most common osseous malignancy in children and young adults after osteosarcoma, while it is the fifth common osseous malignancy within adult age population. The clinical presentation of EWS is quite often non-specific, with the most common symptoms at presentation consisting of pain, swelling or general discomfort. The dearth of clinically relevant diagnostic or predictive biomarkers continues to remain a pressing clinical challenge. Identification of tumor specific biomarkers can lend towards an early diagnosis, expedited initiation of therapy, monitoring of therapeutic response, and early detection of recurrence of disease. We carried-out a complex analysis of cell lines and cell line derived small extracellular vesicles (sEVs) using label-free-based Quantitative Proteomic Profiling with an intent to determine shared and distinct features of these tumor cells and their respective sEVs. We analyzed EWS cells with different EWS-ETS fusions (EWS-FLI1 type I, II, and III and EWS-ERG) and their corresponding sEVs. Non-EWS controls included osteosarcoma, rhabdomyosarcoma, and benign cells, i.e., osteoid osteoma and mesenchymal stem cells. Proteomic profiling identified new shared markers between cells and their corresponding cell-derived sEVs and markers which were exclusively enriched in EWS-derived sEVs. These exo-biomarkers identified were validated by in silico approaches of publicly available protein databases and by capillary electrophoresis based western analysis (Wes). Here, we identified a protein biomarker named UGT3A2 and found its expression highly specific to EWS cells and their sEVs compared to control samples. Clinical validation of UGT3A2 expression in patient tumor tissues and plasma derived sEV samples demonstrated its specificity to EWS, indicating its potential as a EWS biomarker.
Collapse
Affiliation(s)
- Soumya M. Turaga
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Mihaela E. Sardiu
- Department of Biostatistics and Data Science, The University of Kansas Medical Center, Kansas City, KS, United States
- Kansas Institute for Precision Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Vikalp Vishwakarma
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Amrita Mitra
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Leonidas E. Bantis
- Department of Biostatistics and Data Science, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rashna Madan
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael L. Merchant
- Clinical Proteomics Laboratory, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Jon B. Klein
- Robley Rex Veterans Administration Medical Center, Louisville, KY, United States
| | - Glenson Samuel
- University of Kansas Cancer Center, Kansas City, KS, United States
- Division of Pediatric Hematology Oncology and Bone Marrow Transplantation, Children’s Mercy-Kansas City, Kansas City, MO, United States
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
- Kansas Institute for Precision Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| |
Collapse
|
13
|
Agnoletto C, Pignochino Y, Caruso C, Garofalo C. Exosome-Based Liquid Biopsy Approaches in Bone and Soft Tissue Sarcomas: Review of the Literature, Prospectives, and Hopes for Clinical Application. Int J Mol Sci 2023; 24:ijms24065159. [PMID: 36982236 PMCID: PMC10048895 DOI: 10.3390/ijms24065159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The knowledge of exosome impact on sarcoma development and progression has been implemented in preclinical studies thanks to technological advances in exosome isolation. Moreover, the clinical relevance of liquid biopsy is well established in early diagnosis, prognosis prediction, tumor burden assessment, therapeutic responsiveness, and recurrence monitoring of tumors. In this review, we aimed to comprehensively summarize the existing literature pointing out the clinical relevance of detecting exosomes in liquid biopsy from sarcoma patients. Presently, the clinical utility of liquid biopsy based on exosomes in patients affected by sarcoma is under debate. The present manuscript collects evidence on the clinical impact of exosome detection in circulation of sarcoma patients. The majority of these data are not conclusive and the relevance of liquid biopsy-based approaches in some types of sarcoma is still insufficient. Nevertheless, the utility of circulating exosomes in precision medicine clearly emerged and further validation in larger and homogeneous cohorts of sarcoma patients is clearly needed, requiring collaborative projects between clinicians and translational researchers for these rare cancers.
Collapse
Affiliation(s)
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy
- Candiolo Cancer Instute, FPO-IRCCS, 10060 Torino, Italy
| | - Chiara Caruso
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Cecilia Garofalo
- Advanced Translational Research Laboratory, Immunology and Molecular Oncology Diagnostic Unit, Veneto Institute of Oncology IOV-IRCCS, 35127 Padua, Italy
| |
Collapse
|
14
|
Ye H, Tan L, Tu C, Min L. Exosomes in sarcoma: Prospects for clinical applications. Crit Rev Oncol Hematol 2023; 181:103895. [PMID: 36481305 DOI: 10.1016/j.critrevonc.2022.103895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Sarcoma is a group of rare and heterogeneous mesenchymal tumors, prone to late diagnosis and poor prognosis. Exosomes are cell-derived small extracellular vesicles found in most body fluids and contain nucleic acids, proteins, lipids, and other molecules. Qualitative and quantitative changes of exosomes and the contents are associated with sarcoma progression, exhibiting their potential as biomarkers. Exosomes possess the capacity of evading immune responses, bioactivity for trafficking, tumor tropism, and lesion residence. Thus, exosomes could be engineered as tumor-specific vehicles in drugs and RNA delivery systems. Exosomes might also serve as therapeutic targets in targeted therapy and immunotherapy and be involved in chemotherapy resistance. Here, we provide a comprehensive summary of exosome applications in liquid biopsy-based diagnosis and explore their implications in the delivery system, targeted therapy, and chemotherapy resistance of sarcoma. Moreover, challenges in exosome clinical applications are raised and some future research directions are proposed.
Collapse
Affiliation(s)
- Huali Ye
- West China Hospital, West China School of Medicine, Sichuan University, Guoxue Xiang No. 37, Chengdu 610041, Sichuan, People's Republic of China
| | - Linyun Tan
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu 610041, Sichuan, People's Republic of China
| | - Chongqi Tu
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu 610041, Sichuan, People's Republic of China
| | - Li Min
- Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu 610041, Sichuan, People's Republic of China.
| |
Collapse
|
15
|
Crow J, Samuel G, Farrow E, Gibson M, Johnston J, Guest E, Miller N, Pei D, Koestler D, Pathak H, Liang X, Mangels C, Godwin AK. MicroRNA Content of Ewing Sarcoma Derived Extracellular Vesicles Leads to Biomarker Potential and Identification of a Previously Undocumented EWS-FLI1 Translocation. Biomark Insights 2022; 17:11772719221132693. [PMID: 36341281 PMCID: PMC9629554 DOI: 10.1177/11772719221132693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Objective: Ewing Sarcoma Family of Tumors (ESFT) are a highly aggressive pediatric bone and soft tissue malignancy with poor outcomes in the refractory and recurrent setting. Over 90% of Ewing Sarcoma (ES) tumors are driven by the pathognomonic EWS-ETS chimeric transcripts and their corresponding oncoproteins. It has been suggested that the EWS-ETS oncogenic action can mediate microRNA (miRNA) processing. Importantly, small extracellular vesicles (sEVs), including those frequently referred to as exosomes have been shown to be highly enriched with tumor-derived small RNAs such as miRNAs. We hypothesized that ESFT-specific sEVs are enriched with certain miRNAs which could be utilized toward an exo-miRNA biomarker signature specific to this disease. Methods: We performed miRNAseq to compare both the exo-derived and cell-derived miRNA content from 8 ESFT, 2 osteosarcoma, 2 non-cancerous cell lines, and pediatric plasma samples. Results: We found that sEVs derived from ESFT cells contained nearly 2-fold more number of unique individual miRNAs as compared to non-ESFT samples. Quantitative analysis of the differential enrichment of sEV miRNAs resulted in the identification of 62 sEV-miRNAs (exo-miRNAs) with significant (P < .05) enrichment variation between ESFT and non-ESFT sEV samples. To determine if we could utilize this miRNA signature to diagnose ESFT patients via a liquid biopsy, we analyzed the RNA content of total circulating sEVs isolated from 500 µL plasma from 5 pediatric ESFT patients, 2 pediatric osteosarcoma patients, 2 pediatric rhabdomyosarcoma patients, and 4 non-cancer pediatric controls. Pearson's clustering of 60 of the 62 candidate exo-miRNAs correctly identified 80% (4 of 5) of pathology confirmed ESFT patients. Importantly, RNAseq analysis of tumor tissue from the 1 outlier, revealed a previously uncharacterized EWS-FLI1 translocation.Conclusions: Taken together, these findings support the development and validation of an exo-miRNA-based liquid biopsy to aid in the diagnosis and monitoring of ESFT.
Collapse
Affiliation(s)
- Jennifer Crow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Glenson Samuel
- Children’s Mercy Kansas City, Kansas City, MO, USA
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Emily Farrow
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Margaret Gibson
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Jefferey Johnston
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Erin Guest
- Children’s Mercy Kansas City, Kansas City, MO, USA
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Neil Miller
- The Center for Pediatric Genomic Medicine at Children’s Mercy, Kansas City, MO, USA
| | - Dong Pei
- The Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Devin Koestler
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- The Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xiaobo Liang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Cooper Mangels
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- The University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
16
|
Cancer-Derived Extracellular Vesicles as Biomarkers for Cutaneous Squamous Cell Carcinoma: A Systematic Review. Cancers (Basel) 2022; 14:cancers14205098. [PMID: 36291882 PMCID: PMC9599948 DOI: 10.3390/cancers14205098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Biomarkers including DNA, RNA, and surface-associated proteins in tumor-derived extracellular vesicles promote accurate clinical diagnosis and indicate the prognosis of cancer. In this systematic review, pre-clinical and clinical studies on extracellular vesicles derived from cutaneous squamous cell carcinoma (cSCC-derived EVs) were summarized, for which studies on the genomics, transcriptomics, and proteomics of cSCC-derived EVs were highlighted. The contents in cSCC-derived EVs may reflect the mutational landscape of the original cancer cells or be selectively enriched in extracellular vesicles, as provided by the significant role of target molecules including desmoglein 2 protein (Dsg2), Ct-SLCO1B3 mRNA, CYP24A1 circular RNA (circRNA), long intergenic non-coding RNA (linc-PICSAR) and DNA Copy Number Alteration (CNA). Evidence of these studies implied the diagnostic and therapeutic potential of cSCC-derived EVs for cutaneous squamous cell carcinoma. Abstract Cutaneous squamous cell carcinoma (cSCC) as one of the most prevalent cancers worldwide is associated with significant morbidity and mortality. Full-body skin exam and biopsy is the gold standard for cSCC diagnosis, but it is not always feasible given constraints on time and costs. Furthermore, biopsy fails to reflect the dynamic changes in tumor genomes, which challenges long-term medical treatment in patients with advanced diseases. Extracellular vesicle (EV) is an emerging biological entity in oncology with versatile clinical applications from screening to treatment. In this systematic review, pre-clinical and clinical studies on cSCC-derived EVs were summarized. Seven studies on the genomics, transcriptomics, and proteomics of cSCC-derived EVs were identified. The contents in cSCC-derived EVs may reflect the mutational landscape of the original cancer cells or be selectively enriched in EVs. Desmoglein 2 protein (Dsg2) is an important molecule in the biogenesis of cSCC-derived EVs. Ct-SLCO1B3 mRNA, and CYP24A1 circular RNA (circRNA) are enriched in cSCC-derived EVs, suggesting potentials in cSCC screening and diagnosis. p38 inhibited cSCC-associated long intergenic non-coding RNA (linc-PICSAR) and Dsg2 involved in EV-mediated tumor invasion and drug resistance served as prognostic and therapeutic predictors. We also proposed future directions to devise EV-based cSCC treatment based on these molecules and preliminary studies in other cancers.
Collapse
|
17
|
Ye H, Hu X, Wen Y, Tu C, Hornicek F, Duan Z, Min L. Exosomes in the tumor microenvironment of sarcoma: from biological functions to clinical applications. J Nanobiotechnology 2022; 20:403. [PMID: 36064358 PMCID: PMC9446729 DOI: 10.1186/s12951-022-01609-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
The current diagnosis and treatment of sarcoma continue to show limited timeliness and efficacy. In order to enable the early detection and management of sarcoma, increasing attentions have been given to the tumor microenvironment (TME). TME is a dynamic network composed of multiple cells, extracellular matrix, vasculature, and exosomes. Exosomes are nano-sized extracellular vesicles derived from various cells in the TME. The major function of exosomes is to promote cancer progress and metastasis through mediating bidirectional cellular communications between sarcoma cells and TME cells. Due to the content specificity, cell tropism, and bioavailability, exosomes have been regarded as promising diagnostic and prognostic biomarkers, and therapeutic vehicles for sarcoma. This review summarizes recent studies on the roles of exosomes in TME of sarcoma, and explores the emerging clinical applications.
Collapse
Affiliation(s)
- Huali Ye
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xin Hu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Chongqi Tu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Li Min
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Lak NSM, van der Kooi EJ, Enciso-Martinez A, Lozano-Andrés E, Otto C, Wauben MHM, Tytgat GAM. Extracellular Vesicles: A New Source of Biomarkers in Pediatric Solid Tumors? A Systematic Review. Front Oncol 2022; 12:887210. [PMID: 35686092 PMCID: PMC9173703 DOI: 10.3389/fonc.2022.887210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Virtually every cell in the body releases extracellular vesicles (EVs), the contents of which can provide a "fingerprint" of their cellular origin. EVs are present in all bodily fluids and can be obtained using minimally invasive techniques. Thus, EVs can provide a promising source of diagnostic, prognostic, and predictive biomarkers, particularly in the context of cancer. Despite advances using EVs as biomarkers in adult cancers, little is known regarding their use in pediatric cancers. In this review, we provide an overview of published clinical and in vitro studies in order to assess the potential of using EV-derived biomarkers in pediatric solid tumors. We performed a systematic literature search, which yielded studies regarding desmoplastic small round cell tumor, hepatoblastoma, neuroblastoma, osteosarcoma, and rhabdomyosarcoma. We then determined the extent to which the in vivo findings are supported by in vitro data, and vice versa. We also critically evaluated the clinical studies using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) system, and we evaluated the purification and characterization of EVs in both the in vivo and in vitro studies in accordance with MISEV guidelines, yielding EV-TRACK and PedEV scores. We found that several studies identified similar miRNAs in overlapping and distinct tumor entities, indicating the potential for EV-derived biomarkers. However, most studies regarding EV-based biomarkers in pediatric solid tumors lack a standardized system of reporting their EV purification and characterization methods, as well as validation in an independent cohort, which are needed in order to bring EV-based biomarkers to the clinic.
Collapse
Affiliation(s)
- Nathalie S M Lak
- Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Elvera J van der Kooi
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | | | - Estefanía Lozano-Andrés
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Cees Otto
- Medical Cell Biophysics Group, University of Twente, Enschede, Netherlands
| | - Marca H M Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Godelieve A M Tytgat
- Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| |
Collapse
|
19
|
Hadjimichael AC, Pergaris A, Kaspiris A, Foukas AF, Theocharis SE. Liquid Biopsy: A New Translational Diagnostic and Monitoring Tool for Musculoskeletal Tumors. Int J Mol Sci 2021; 22:11526. [PMID: 34768955 PMCID: PMC8583711 DOI: 10.3390/ijms222111526] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Soft tissue and bone sarcomas represent a group of aggressive neoplasms often accompanied by dismal patient prognosis, especially when distant metastases are present. Moreover, effective treatment can pose a challenge, as recurrences are frequent and almost half of patients present with advanced disease. Researchers have unveiled the molecular abnormalities implicated in sarcomas' carcinogenesis, paving the way for novel treatment strategies based on each individual tumor's characteristics. Therefore, the development of new techniques aiding in early disease detection and tumor molecular profiling is imperative. Liquid biopsy refers to the sampling and analysis of patients' fluids, such as blood, to identify tumor biomarkers, through a variety of methods, including qRT-PCR, qPCR, droplet digital PCR, magnetic microbeads and digital PCR. Assessment of circulating tumor cells (CTCs), circulating free DNA (ctDNA), micro RNAs (miRs), long non-coding RNAs (lncRNAs), exosomes and exosome-associated proteins can yield a plethora of information on tumor molecular signature, histologic type and disease stage. In addition, the minimal invasiveness of the procedure renders possible its wide application in the clinical setting, and, therefore, the early detection of the presence of tumors. In this review of the literature, we gathered information on biomarkers assessed through liquid biopsy in soft tissue and bone sarcoma patients and we present the information they can yield for each individual tumor type.
Collapse
Affiliation(s)
- Argyris C. Hadjimichael
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.C.H.); (A.P.)
- Third Department of Orthopaedic Surgery, “KAT” General Hospital of Athens, Nikis 2, 14561 Kifissia, Greece;
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.C.H.); (A.P.)
| | - Angelos Kaspiris
- Division for Orthopaedic Research, Laboratory of Molecular Pharmacology, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Athanasios F. Foukas
- Third Department of Orthopaedic Surgery, “KAT” General Hospital of Athens, Nikis 2, 14561 Kifissia, Greece;
| | - Stamatios E. Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece; (A.C.H.); (A.P.)
| |
Collapse
|
20
|
Pachva MC, Lai H, Jia A, Rouleau M, Sorensen PH. Extracellular Vesicles in Reprogramming of the Ewing Sarcoma Tumor Microenvironment. Front Cell Dev Biol 2021; 9:726205. [PMID: 34604225 PMCID: PMC8484747 DOI: 10.3389/fcell.2021.726205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Ewing sarcoma (EwS) is a highly aggressive cancer and the second most common malignant bone tumor of children and young adults. Although patients with localized disease have a survival rate of approximately 75%, the prognosis for patients with metastatic disease remains dismal (<30%) and has not improved in decades. Standard-of-care treatments include local therapies such as surgery and radiotherapy, in addition to poly-agent adjuvant chemotherapy, and are often associated with long-term disability and reduced quality of life. Novel targeted therapeutic strategies that are more efficacious and less toxic are therefore desperately needed, particularly for metastatic disease, given that the presence of metastasis remains the most powerful predictor of poor outcome in EwS. Intercellular communication within the tumor microenvironment is emerging as a crucial mechanism for cancer cells to establish immunosuppressive and cancer-permissive environments, potentially leading to metastasis. Altering this communication within the tumor microenvironment, thereby preventing the transfer of oncogenic signals and molecules, represents a highly promising therapeutic strategy. To achieve this, extracellular vesicles (EVs) offer a candidate mechanism as they are actively released by tumor cells and enriched with proteins and RNAs. EVs are membrane-bound particles released by normal and tumor cells, that play pivotal roles in intercellular communication, including cross-talk between tumor, stromal fibroblast, and immune cells in the local tumor microenvironment and systemic circulation. EwS EVs, including the smaller exosomes and larger microvesicles, have the potential to reprogram a diversity of cells in the tumor microenvironment, by transferring various biomolecules in a cell-specific manner. Insights into the various biomolecules packed in EwS EVs as cargos and the molecular changes they trigger in recipient cells of the tumor microenvironment will shed light on various potential targets for therapeutic intervention in EwS. This review details EwS EVs composition, their potential role in metastasis and in the reprogramming of various cells of the tumor microenvironment, and the potential for clinical intervention.
Collapse
Affiliation(s)
- Manideep C Pachva
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Horton Lai
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Andy Jia
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Melanie Rouleau
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Li S. The basic characteristics of extracellular vesicles and their potential application in bone sarcomas. J Nanobiotechnology 2021; 19:277. [PMID: 34535153 PMCID: PMC8447529 DOI: 10.1186/s12951-021-01028-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Bone sarcomas are rare cancers accompanied by metastatic disease, mainly including osteosarcoma, Ewing sarcoma and chondrosarcoma. Extracellular vesicles (EVs) are membrane vesicles released by cells in the extracellular matrix, which carry important signal molecules, can stably and widely present in various body fluids, such as plasma, saliva and scalp fluid, spinal cord, breast milk, and urine liquid. EVs can transport almost all types of biologically active molecules (DNA, mRNA, microRNA (miRNA), proteins, metabolites, and even pharmacological compounds). In this review, we summarized the basic biological characteristics of EVs and focused on their application in bone sarcomas. EVs can be use as biomarker vehicles for diagnosis and prognosis in bone sarcomas. The role of EVs in bone sarcoma has been analyzed point-by-point. In the microenvironment of bone sarcoma, bone sarcoma cells, mesenchymal stem cells, immune cells, fibroblasts, osteoclasts, osteoblasts, and endothelial cells coexist and interact with each other. EVs play an important role in the communication between cells. Based on multiple functions in bone sarcoma, this review provides new ideas for the discovery of new therapeutic targets and new diagnostic analysis.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China.
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
22
|
Ewing Sarcoma-Derived Extracellular Vesicles Impair Dendritic Cell Maturation and Function. Cells 2021; 10:cells10082081. [PMID: 34440851 PMCID: PMC8391167 DOI: 10.3390/cells10082081] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 01/08/2023] Open
Abstract
Ewing sarcoma (EwS) is an aggressive pediatric cancer of bone and soft tissues characterized by scant T cell infiltration and predominance of immunosuppressive myeloid cells. Given the important roles of extracellular vesicles (EVs) in cancer-host crosstalk, we hypothesized that EVs secreted by EwS tumors target myeloid cells and promote immunosuppressive phenotypes. Here, EVs were purified from EwS and fibroblast cell lines and exhibited characteristics of small EVs, including size (100–170 nm) and exosome markers CD63, CD81, and TSG101. Treatment of healthy donor-derived CD33+ and CD14+ myeloid cells with EwS EVs but not with fibroblast EVs induced pro-inflammatory cytokine release, including IL-6, IL-8, and TNF. Furthermore, EwS EVs impaired differentiation of these cells towards monocytic-derived dendritic cells (moDCs), as evidenced by reduced expression of co-stimulatory molecules CD80, CD86 and HLA-DR. Whole transcriptome analysis revealed activation of gene expression programs associated with immunosuppressive phenotypes and pro-inflammatory responses. Functionally, moDCs differentiated in the presence of EwS EVs inhibited CD4+ and CD8+ T cell proliferation as well as IFNγ release, while inducing secretion of IL-10 and IL-6. Therefore, EwS EVs may promote a local and systemic pro-inflammatory environment and weaken adaptive immunity by impairing the differentiation and function of antigen-presenting cells.
Collapse
|
23
|
Ji L, Fu J, Hao J, Ji Y, Wang H, Wang Z, Wang P, Xiao H. Proteomics analysis of tissue small extracellular vesicles reveals protein panels for the reoccurrence prediction of colorectal cancer. J Proteomics 2021; 249:104347. [PMID: 34384913 DOI: 10.1016/j.jprot.2021.104347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
Many stage II/III colorectal cancer (CRC) patients might relapse after routine treatment and there is a great need of reliable biomarkers for predicting its reoccurrence risk. Small extracellular vesicles (sEVs) could regulate many pathophysiological processes of diseases, which are promising source for biomarker discovery. In this study, we implemented a MS-based workflow that utilizes data-dependent acquisition (DDA) for discovery and parallel reaction monitoring (PRM) for validation of high relapse risk related biomarkers. We compared the protein profiling of sEVs from CRC tissues and paired adjacent tissues in relapsed group (n = 5) and non-relapsed group (n = 5). 417 and 1140 proteins were differentially expressed between the tumor tissues and adjacent tissues in relapsed group and non-relapsed group, respectively. Bioinformatics analysis showed that immunity of the relapsed patients (Z-score - 0.69) was relatively poorer than the non-relapsed patients (Z-score 2.59), while chronic inflammatory response was activated (Z-score 3.0), which might enhance the reoccurrence risk. Four proteins (HLA-DPA1, S100P, NUP205, PCNA) showed significant expressions in the adjacent tissues of the relapsed group by PRM validation. ROC analysis of HLA-DPA1 (AUC = 0.96) achieved the best classification accuracy in separating the relapsed group and the non-relapsed group. Our data demonstrate that tissue-derived sEVs harbor prognostic proteomic signatures of CRC. SIGNIFICANCE: In this research, our proteomics analysis of tissue sEVs revealed that poor immunity as well as chronic inflammatory of the CRC relapsed patient likely lead to poor prognosis and high risk of reoccurrence. The significant expression levels of four proteins (HLA-DPA1, S100P, NUP205, PCNA) in the adjacent tissues of the relapsed group might be used to predict the risk of relapse in postoperative follow-ups.
Collapse
Affiliation(s)
- Liyun Ji
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jihong Fu
- Department of Colorectal Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Jie Hao
- Shanghai Centre for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Ji
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd, Nanjing 210042, China
| | - Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peng Wang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd, Nanjing 210042, China.
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
24
|
Ricciardi BF. CORRInsights®: How Can We Differentiate Local Recurrence From Heterotopic Ossification After Resection and Implantation of an Oncologic Knee Prosthesis in Patients with a Bone Sarcoma? Clin Orthop Relat Res 2021; 479:1144-1146. [PMID: 33337603 PMCID: PMC8052090 DOI: 10.1097/corr.0000000000001613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/25/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Benjamin F Ricciardi
- B. F. Ricciardi, University of Rochester School of Medicine, Department of Orthopedic Surgery, Rochester, NY, USA
| |
Collapse
|
25
|
Zöllner SK, Amatruda JF, Bauer S, Collaud S, de Álava E, DuBois SG, Hardes J, Hartmann W, Kovar H, Metzler M, Shulman DS, Streitbürger A, Timmermann B, Toretsky JA, Uhlenbruch Y, Vieth V, Grünewald TGP, Dirksen U. Ewing Sarcoma-Diagnosis, Treatment, Clinical Challenges and Future Perspectives. J Clin Med 2021; 10:1685. [PMID: 33919988 PMCID: PMC8071040 DOI: 10.3390/jcm10081685] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
Ewing sarcoma, a highly aggressive bone and soft-tissue cancer, is considered a prime example of the paradigms of a translocation-positive sarcoma: a genetically rather simple disease with a specific and neomorphic-potential therapeutic target, whose oncogenic role was irrefutably defined decades ago. This is a disease that by definition has micrometastatic disease at diagnosis and a dismal prognosis for patients with macrometastatic or recurrent disease. International collaborations have defined the current standard of care in prospective studies, delivering multiple cycles of systemic therapy combined with local treatment; both are associated with significant morbidity that may result in strong psychological and physical burden for survivors. Nevertheless, the combination of non-directed chemotherapeutics and ever-evolving local modalities nowadays achieve a realistic chance of cure for the majority of patients with Ewing sarcoma. In this review, we focus on the current standard of diagnosis and treatment while attempting to answer some of the most pressing questions in clinical practice. In addition, this review provides scientific answers to clinical phenomena and occasionally defines the resulting translational studies needed to overcome the hurdle of treatment-associated morbidities and, most importantly, non-survival.
Collapse
Affiliation(s)
- Stefan K. Zöllner
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany;
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
| | - James F. Amatruda
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA;
| | - Sebastian Bauer
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, Sarcoma Center, University Hospital Essen, 45147 Essen, Germany
| | - Stéphane Collaud
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Thoracic Surgery, Ruhrlandklinik, University of Essen-Duisburg, 45239 Essen, Germany
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IbiS), Virgen del Rocio University Hospital, CSIC, University of Sevilla, CIBERONC, 41013 Seville, Spain;
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Steven G. DuBois
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA; (S.G.D.); (D.S.S.)
| | - Jendrik Hardes
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Musculoskeletal Oncology, Sarcoma Center, 45147 Essen, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk Institute of Pathology, University Hospital Münster, 48149 Münster, Germany;
- West German Cancer Center (WTZ), Network Partner Site, University Hospital Münster, 48149 Münster, Germany
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute and Medical University Vienna, 1090 Vienna, Austria;
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - David S. Shulman
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA; (S.G.D.); (D.S.S.)
| | - Arne Streitbürger
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Musculoskeletal Oncology, Sarcoma Center, 45147 Essen, Germany
| | - Beate Timmermann
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre, 45147 Essen, Germany
| | - Jeffrey A. Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA;
| | - Yasmin Uhlenbruch
- St. Josefs Hospital Bochum, University Hospital, 44791 Bochum, Germany;
| | - Volker Vieth
- Department of Radiology, Klinikum Ibbenbüren, 49477 Ibbenbühren, Germany;
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, Hopp-Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center, 69120 Heidelberg, Germany
| | - Uta Dirksen
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany;
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|