1
|
Tinsley SA, Finati M, Stephens A, Chiarelli G, Cirulli GO, Williams E, Morrison C, Richard C, Hares K, Sood A, Buffi N, Lughezzani G, Bettocchi C, Salonia A, Briganti A, Montorsi F, Carrieri G, Rogers C, Abdollah F. Race has no impact on prostate cancer-specific mortality, when comparing patients with similar risk of other-cause mortality: An analysis of a population-based cohort. Cancer 2024; 130:3157-3169. [PMID: 38804713 DOI: 10.1002/cncr.35386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Other-cause mortality (OCM) can serve as a surrogate for access-to-care. The authors sought to compare prostate cancer-specific mortality (PCSM) in Black versus White men matched based on their calculated OCM risk. METHODS The Surveillance, Epidemiology, and End Results (SEER) database was queried for Black and White men diagnosed with prostate cancer between 2004 to 2009, to collect long-term follow-up. A Cox regression was used to calculate the OCM risk using all available covariates. This calculated OCM risk was used to construct a 1:1 propensity score matched (PSM) cohort. Then, a competing-risks multivariable tested the impact of race on PCSM. RESULTS A total of 94,363 patients were identified, with 19,398 Black men and 74,965 White men. The median (IQR) follow-up was 11.3 years (9.8-12.8). In the unmatched-cohort at 10-years, PCSM and OCM were 5.5% versus 3.5% and 13.8% versus 8.4% in non-Hispanic Black (NHB) versus non-Hispanic White (NHW) patients (all p < .0001). The standardized mean difference was <0.15 for all covariates, indicating a good match. In the matched cohort at 10-years, OCM was 13.6% and 10.0% in NHB versus NHW (p < .0001), whereas the PCSM was 5.3% versus 4.7% (p < .01). On competing-risks multivariable analysis on PCSM, Black men had a hazard ratio of 1.08 (95% confidence interval, 0.98-1.20) compared to White men with a p = .13. CONCLUSIONS The results of this study showed similar PCSM in Black and White patients, when matched with their calculated OCM risk. This report is the first to indicate at a population-based level that race has no impact on PCSM. PLAIN LANGUAGE SUMMARY Prostate cancer is a very common cancer among men and it is associated with health disparities that disproportionately impact Black men compared to White men. There is an on-going discussion of whether disparities between these two groups stem from genetic or environmental factors. This study sought to examine if matching based on overall health status, a proxy for the impact of social determinants of health, mitigated significant differences in outcomes. When matched using risk of death from any cause other than prostate cancer, Black and White men had no significant differences in prostate cancer death.
Collapse
Affiliation(s)
- Shane A Tinsley
- VUI Center for Outcomes Research, Analysis, and Evaluation, Henry Ford Health, Detroit, Michigan, USA
| | - Marco Finati
- VUI Center for Outcomes Research, Analysis, and Evaluation, Henry Ford Health, Detroit, Michigan, USA
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | - Alex Stephens
- Public Health Sciences, Henry Ford Health, Detroit, Michigan, USA
| | - Giuseppe Chiarelli
- VUI Center for Outcomes Research, Analysis, and Evaluation, Henry Ford Health, Detroit, Michigan, USA
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giuseppe Ottone Cirulli
- VUI Center for Outcomes Research, Analysis, and Evaluation, Henry Ford Health, Detroit, Michigan, USA
- Unit of Urology, Division of Oncology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Eric Williams
- VUI Center for Outcomes Research, Analysis, and Evaluation, Henry Ford Health, Detroit, Michigan, USA
| | - Chase Morrison
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Caleb Richard
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Keinnan Hares
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Akshay Sood
- The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Nicolòs Buffi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Carlo Bettocchi
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | - Andrea Salonia
- Unit of Urology, Division of Oncology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Alberto Briganti
- Unit of Urology, Division of Oncology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Montorsi
- Unit of Urology, Division of Oncology, IRCCS Ospedale San Raffaele, Vita-Salute San Raffaele University, Milan, Italy
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | - Craig Rogers
- VUI Center for Outcomes Research, Analysis, and Evaluation, Henry Ford Health, Detroit, Michigan, USA
| | - Firas Abdollah
- VUI Center for Outcomes Research, Analysis, and Evaluation, Henry Ford Health, Detroit, Michigan, USA
| |
Collapse
|
2
|
Pomella S, Melaiu O, Cifaldi L, Bei R, Gargari M, Campanella V, Barillari G. Biomarkers Identification in the Microenvironment of Oral Squamous Cell Carcinoma: A Systematic Review of Proteomic Studies. Int J Mol Sci 2024; 25:8929. [PMID: 39201614 PMCID: PMC11354375 DOI: 10.3390/ijms25168929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
An important determinant for oral squamous cell carcinoma (OSCC) onset and outcome is the composition of the tumor microenvironment (TME). Thus, the study of the interactions occurring among cancer cells, immune cells, and cancer-associated fibroblasts within the TME could facilitate the understanding of the mechanisms underlying OSCC development and progression, as well as of its sensitivity or resistance to the therapy. In this context, it must be highlighted that the characterization of TME proteins is enabled by proteomic methodologies, particularly mass spectrometry (MS). Aiming to identify TME protein markers employable for diagnosing and prognosticating OSCC, we have retrieved a total of 119 articles spanning 2001 to 2023, of which 17 have passed the selection process, satisfying all its criteria. We have found a total of 570 proteins detected by MS-based proteomics in the TME of OSCC; among them, 542 are identified by a single study, while 28 are cited by two or more studies. These 28 proteins participate in extracellular matrix remodeling and/or energy metabolism. Here, we propose them as markers that could be used to characterize the TME of OSCC for diagnostic/prognostic purposes. Noteworthy, most of the 28 individuated proteins share one feature: being modulated by the hypoxia that is present in the proliferating OSCC mass.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (L.C.); (R.B.); (M.G.); (V.C.)
| |
Collapse
|
3
|
Kim M, Tamukong P, Galvan GC, Yang Q, De Hoedt A, Freeman MR, You S, Freedland S. Prostate cancers with distinct transcriptional programs in Black and White men. Genome Med 2024; 16:92. [PMID: 39044302 PMCID: PMC11267822 DOI: 10.1186/s13073-024-01361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Black men are at a higher risk of prostate cancer (PC) diagnosis and present with more high-grade PC than White men in an equal access setting. This study aimed to identify differential transcriptional regulation between Black and White men with PC. METHODS We performed microarray of radical prostatectomy tissue blocks from 305 Black and 238 White men treated at the Durham Veterans Affairs Medical Center. Differential expression, gene set enrichment analysis, master regulator analysis, and network modeling were conducted to compare gene expression by race. Findings were validated using external datasets that are available in the Gene Expression Omnibus (GEO) database. The first was a multi-institutional cohort of 1152 prostate cancer patients (596 Black, 556 White) with microarray data (GEO ID: GSE169038). The second was an Emory cohort of 106 patients (22 Black, 48 White, 36 men of unknown race) with RNA-seq data (GEO ID: GSE54460). Additionally, we analyzed androgen receptor (AR) chromatin binding profiles using paired AR ChIP-Seq datasets from Black and White men (GEO IDs: GSE18440 and GSE18441). RESULTS We identified 871 differentially expressed genes between Black and White men. White men had higher activity of MYC-related pathways, while Black men showed increased activity of inflammation, steroid hormone responses, and cancer progression-related pathways. We further identified the top 10 transcription factors (TFs) in Black patients, which formed a transcriptional regulatory network centered on the AR. The activities of this network and the pathways were significantly different in Black vs. White men across multiple cohorts and PC molecular subtypes. CONCLUSIONS These findings suggest PC in Black and White men have distinct tumor transcriptional profiles. Furthermore, a highly interactive TF network centered on AR drives differential gene expression in Black men. Additional study is needed to understand the degree to which these differences in transcriptional regulatory elements contribute to PC health disparities.
Collapse
Affiliation(s)
- Minhyung Kim
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Patrick Tamukong
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Qian Yang
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Michael R Freeman
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Stephen Freedland
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Veteran Affairs Health Care System, Durham, NC, USA.
| |
Collapse
|
4
|
Sabui S, Anthonymuthu S, Ramamoorthy K, Skupsky J, Jennings TSK, Rahmatpanah F, Fleckenstein JM, Said HM. Effect of knocking out mouse Slc44a4 on colonic uptake of the microbiota-generated thiamine pyrophosphate and colon physiology. Am J Physiol Gastrointest Liver Physiol 2024; 327:G36-G46. [PMID: 38713615 PMCID: PMC11376973 DOI: 10.1152/ajpgi.00065.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Humans and mammals obtain vitamin B1 from dietary and gut microbiota sources. A considerable amount of the microbiota-generated vitamin exists in the form of thiamine pyrophosphate (TPP), and colonocytes are capable of absorbing TPP via a specific carrier-mediated process that involves the colonic TPP transporter (cTPPT encoded by SLC44A4). Little is known about the relative contribution of the SLC44A4 transporter toward total colonic carrier-mediated TPP uptake and its role in colon physiology. To address these issues, we generated an Slc44a4 knockout (KO) mouse model (by Cre-Lox recombination) and found a near-complete inhibition in colonic carrier-mediated [3H]TPP uptake in the Slc44a4 KO compared with wild-type (WT) littermates. We also observed a significant reduction in KO mice's body weight and a shortening of their colon compared with WT. Using RNAseq and Ingenuity pathway analysis (IPA) approaches, we found that knocking out the colonic Slc44a4 led to changes in the level of expression of many genes, including upregulation in those associated with intestinal inflammation and colitis. Finally, we found that the Slc44a4 KO mice were more susceptible to the effect of the colitogenic dextran sodium sulfate (DSS) compared with WT animals, a finding that lends support to the recent prediction by multiple genome-wide association studies (GWAS) that SLC44A4 is a possible colitis susceptibility gene. In summary, the results of these investigations show that Slc44a4 is the predominant or only transporter involved in the colonic uptake of TPP, that the transporter is important for colon physiology, and that its deletion increases susceptibility to inflammation.NEW & NOTEWORTHY This study shows that Slc44a4 is the predominant or only transport system involved in the uptake of the gut microbiota-generated thiamine pyrophosphate (TPP) in the colon and that its deletion affects colon physiology and increases its susceptibility to inflammation.
Collapse
Affiliation(s)
- Subrata Sabui
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
- Veterans Affairs Medical Center, Long Beach, California, United States
| | - Selvaraj Anthonymuthu
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
| | - Kalidas Ramamoorthy
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
| | - Jonathan Skupsky
- Veterans Affairs Medical Center, Long Beach, California, United States
- Department of Medicine, University of California, Irvine, California, United States
| | - Tara Sinta Kartika Jennings
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, United States
| | - Farah Rahmatpanah
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, United States
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Veterans Affairs Medical Center, St. Louis, Missouri, United States
| | - Hamid M Said
- Department of Physiology and Biophysics, University of California, Irvine, California, United States
- Veterans Affairs Medical Center, Long Beach, California, United States
- Department of Medicine, University of California, Irvine, California, United States
| |
Collapse
|
5
|
Agrawal S, Tran MT, Jennings TSK, Soliman MMH, Heo S, Sasson B, Rahmatpanah F, Agrawal A. Changes in the innate immune response to SARS-CoV-2 with advancing age in humans. Immun Ageing 2024; 21:21. [PMID: 38515147 PMCID: PMC10956333 DOI: 10.1186/s12979-024-00426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Advancing age is a major risk factor for respiratory viral infections. The infections are often prolonged and difficult to resolve resulting hospitalizations and mortality. The recent COVID-19 pandemic has highlighted this as elderly subjects have emerged as vulnerable populations that display increased susceptibility and severity to SARS-CoV-2. There is an urgent need to identify the probable mechanisms underlying this to protect against future outbreaks of such nature. Innate immunity is the first line of defense against viruses and its decline impacts downstream immune responses. This is because dendritic cells (DCs) and macrophages are key cellular elements of the innate immune system that can sense and respond to viruses by producing inflammatory mediators and priming CD4 and CD8 T-cell responses. RESULTS We investigated the changes in innate immune responses to SARS-CoV-2 as a function of age. Our results using human PBMCs from aged, middle-aged, and young subjects indicate that the activation of DCs and monocytes in response to SARS-CoV-2 is compromised with age. The impairment is most apparent in pDCs where both aged and middle-aged display reduced responses. The secretion of IL-29 that confers protection against respiratory viruses is also decreased in both aged and middle-aged subjects. In contrast, inflammatory mediators associated with severe COVID-19 including CXCL-8, TREM-1 are increased with age. This is also apparent in the gene expression data where pathways related host defense display an age dependent decrease with a concomitant increase in inflammatory pathways. Not only are the inflammatory pathways and mediators increased after stimulation with SARS-CoV-2 but also at homeostasis. In keeping with reduced DC activation, the induction of cytotoxic CD8 T cells is also impaired in aged subjects. However, the CD8 T cells from aged subjects display increased baseline activation in accordance with the enhanced baseline inflammation. CONCLUSIONS Our results demonstrate a decline in protective anti-viral immune responses and increase in damaging inflammatory responses with age indicating that dysregulated innate immune responses play a significant role in the increased susceptibility of aged subjects to COVID-19. Furthermore, the dysregulation in immune responses develops early on as middle-aged demonstrate several of these changes.
Collapse
Affiliation(s)
- Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Michelle Thu Tran
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | | | - Marlaine Maged Hosny Soliman
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Sally Heo
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Bobby Sasson
- Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Farah Rahmatpanah
- Department of Pathology, University of California Irvine, Irvine, CA, 92697, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
6
|
Stevens C, Hightower A, Buxbaum SG, Falzarano SM, Rhie SK. Genomic, epigenomic, and transcriptomic signatures of prostate cancer between African American and European American patients. Front Oncol 2023; 13:1079037. [PMID: 36937425 PMCID: PMC10018228 DOI: 10.3389/fonc.2023.1079037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Prostate cancer is the second most common cancer in men in the United States, and racial disparities are greatly observed in the disease. Specifically, African American (AA) patients have 60% higher incidence and mortality rates, in addition to higher grade and stage prostate tumors, than European American (EA) patients. In order to narrow the gap between clinical outcomes for these two populations, genetic and molecular signatures contributing to this disparity have been characterized. Over the past decade, profiles of prostate tumor samples from different ethnic groups have been developed using molecular and functional assays coupled with next generation sequencing or microarrays. Comparative genome-wide analyses of genomic, epigenomic, and transcriptomic profiles from prostate tumor samples have uncovered potential race-specific mutations, copy number alterations, DNA methylation, and gene expression patterns. In this study, we reviewed over 20 published studies that examined the aforementioned molecular contributions to racial disparities in AA and EA prostate cancer patients. The reviewed genomic studies revealed mutations, deletions, amplifications, duplications, or fusion genes differentially enriched in AA patients relative to EA patients. Commonly reported genomic alterations included mutations or copy number alterations of FOXA1, KMT2D, SPOP, MYC, PTEN, TP53, ZFHX3, and the TMPRSS2-ERG fusion. The reviewed epigenomic studies identified that CpG sites near the promoters of PMEPA1, RARB, SNRPN, and TIMP3 genes were differentially methylated between AA and EA patients. Lastly, the reviewed transcriptomic studies identified genes (e.g. CCL4, CHRM3, CRYBB2, CXCR4, GALR1, GSTM3, SPINK1) and signaling pathways dysregulated between AA and EA patients. The most frequently found dysregulated pathways were involved in immune and inflammatory responses and neuroactive ligand signaling. Overall, we observed that the genomic, epigenomic, and transcriptomic alterations evaluated between AA and EA prostate cancer patients varied between studies, highlighting the impact of using different methods and sample sizes. The reported genomic, epigenomic, and transcriptomic alterations do not only uncover molecular mechanisms of tumorigenesis but also provide researchers and clinicians valuable resources to identify novel biomarkers and treatment modalities to improve the disparity of clinical outcomes between AA and EA patients.
Collapse
Affiliation(s)
- Claire Stevens
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, United States
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
| | - Alexandria Hightower
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, United States
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
| | - Sarah G. Buxbaum
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
- Department of Epidemiology and Biostatistics, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, United States
| | - Sara M. Falzarano
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Suhn K. Rhie
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, United States
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
| |
Collapse
|
7
|
Vidotto T, Imada EL, Faisal F, Murali S, Mendes AA, Kaur H, Zheng S, Xu J, Schaeffer EM, Isaacs WB, Sfanos KS, Marchionni L, Lotan TL. Association of self-identified race and genetic ancestry with the immunogenomic landscape of primary prostate cancer. JCI Insight 2023; 8:e162409. [PMID: 36752203 PMCID: PMC9977441 DOI: 10.1172/jci.insight.162409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/27/2022] [Indexed: 02/09/2023] Open
Abstract
The genomic and immune landscapes of prostate cancer differ by self-identified race. However, few studies have examined the genome-wide copy number landscape and immune content of matched cohorts with genetic ancestry data and clinical outcomes. Here, we assessed prostate cancer somatic copy number alterations (sCNA) and tumor immune content of a grade-matched, surgically treated cohort of 145 self-identified Black (BL) and 145 self-identified White (WH) patients with genetic ancestry estimation. A generalized linear model adjusted with age, preoperative prostate-specific antigen (PSA), and Gleason Grade Group and filtered for germline copy number variations (gCNV) identified 143 loci where copy number varied significantly by percent African ancestry, clustering on chromosomes 6p, 10q, 11p, 12p, and 17p. Multivariable Cox regression models adjusted for age, preoperative PSA levels, and Gleason Grade Group revealed that chromosome 8q gains (including MYC) were significantly associated with biochemical recurrence and metastasis, independent of genetic ancestry. Finally, Treg density in BL and WH patients was significantly correlated with percent genome altered, and these findings were validated in the TCGA cohort. Taken together, our findings identify specific sCNA linked to genetic ancestry and outcome in primary prostate cancer and demonstrate that Treg infiltration varies by global sCNA burden in primary disease.
Collapse
Affiliation(s)
- Thiago Vidotto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eddie L. Imada
- Department of Pathology, Weill-Cornell School of Medicine, New York, New York, USA
| | - Farzana Faisal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjana Murali
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adrianna A. Mendes
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harsimar Kaur
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Siqun Zheng
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University Health System, Evanston, Illinois, USA
| | - Edward M. Schaeffer
- Department of Urology, Northwestern University School of Medicine, Chicago, Illinois, USA
| | | | - Karen S. Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luigi Marchionni
- Department of Pathology, Weill-Cornell School of Medicine, New York, New York, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology and
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Kumar V, Randhawa P, Bilodeau R, Mercola D, McClelland M, Agrawal A, Nguyen J, Castro P, Ittmann MM, Rahmatpanah F. Spatial Profiling of the Prostate Cancer Tumor Microenvironment Reveals Multiple Differences in Gene Expression and Correlation with Recurrence Risk. Cancers (Basel) 2022; 14:cancers14194923. [PMID: 36230846 PMCID: PMC9562240 DOI: 10.3390/cancers14194923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The tumor microenvironment plays a crucial role in both the development and progression of prostate cancer. Furthermore, identifying protein and gene expression differences between different regions is valuable for treatment development. We applied Digital Spatial Profiling multiplex analysis to formalin-fixed paraffin embedded prostatectomy tissue blocks to investigate protein and transcriptome differences between tumor, tumor-adjacent stroma (TAS), CD45+ tumor, and CD45+ TAS tissue. Differential expression of an immunology/oncology protein panel (n = 58) was measured. OX40L and CTLA4 were expressed at higher levels while 22 other proteins, including CD11c, were expressed at lower levels (FDR < 0.2 and p-value < 0.05) in TAS as compared to tumor epithelia. A tissue microarray analysis of 97 patients with 1547 cores found positive correlations between high expression of CD11c and increased time to recurrence in tumor and TAS, and inverse relationships for CTLA4 and OX40L, where higher expression in tumor correlated with lower time to recurrence, but higher time to recurrence in TAS. Spatial transcriptomic analysis using a Cancer Transcriptome Atlas panel (n = 1825 genes) identified 162 genes downregulated and 69 upregulated in TAS versus tumor, 26 downregulated and 6 upregulated in CD45+ TAS versus CD45+ tumor. We utilized CIBERSORTx to estimate the relative immune cell fractions using CD45+ gene expression and found higher average fractions for memory B, naïve B, and T cells in TAS. In summary, the combination of protein expression differences, immune cell fractions, and correlations of protein expression with time to recurrence suggest that closely examining the tumor microenvironment provides valuable data that can improve prognostication and treatment techniques.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Pavneet Randhawa
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Robert Bilodeau
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Dan Mercola
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Michael McClelland
- Department of Molecular and Microbiology, University of California, Irvine, CA 92697, USA
| | - Anshu Agrawal
- Department of Medicine, University of California, Irvine, CA 92697, USA
| | - James Nguyen
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Patricia Castro
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael M. Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farah Rahmatpanah
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
- Correspondence:
| |
Collapse
|
9
|
Berchuck JE, Adib E, Abou Alaiwi S, Dash AK, Shin JN, Lowder D, McColl C, Castro P, Carelli R, Benedetti E, Deng J, Robertson M, Baca SC, Bell C, McClure HM, El Zarif T, Davidsohn MP, Lakshminarayanan G, Rizwan K, Skapura DG, Grimm SL, Davis CM, Ehli EA, Kelleher KM, Seo JH, Mitsiades N, Coarfa C, Pomerantz MM, Loda M, Ittmann M, Freedman ML, Kaochar S. The Prostate Cancer Androgen Receptor Cistrome in African American Men Associates with Upregulation of Lipid Metabolism and Immune Response. Cancer Res 2022; 82:2848-2859. [PMID: 35731919 PMCID: PMC9379363 DOI: 10.1158/0008-5472.can-21-3552] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
African-American (AA) men are more likely to be diagnosed with and die from prostate cancer than European American (EA) men. Despite the central role of the androgen receptor (AR) transcription factor in prostate cancer, little is known about the contribution of epigenetics to observed racial disparities. We performed AR chromatin immunoprecipitation sequencing on primary prostate tumors from AA and EA men, finding that sites with greater AR binding intensity in AA relative to EA prostate cancer are enriched for lipid metabolism and immune response genes. Integration with transcriptomic and metabolomic data demonstrated coinciding upregulation of lipid metabolism gene expression and increased lipid levels in AA prostate cancer. In a metastatic prostate cancer cohort, upregulated lipid metabolism associated with poor prognosis. These findings offer the first insights into ancestry-specific differences in the prostate cancer AR cistrome. The data suggest a model whereby increased androgen signaling may contribute to higher levels of lipid metabolism, immune response, and cytokine signaling in AA prostate tumors. Given the association of upregulated lipogenesis with prostate cancer progression, our study provides a plausible biological explanation for the higher incidence and aggressiveness of prostate cancer observed in AA men. SIGNIFICANCE With immunotherapies and inhibitors of metabolic enzymes in clinical development, the altered lipid metabolism and immune response in African-American men provides potential therapeutic opportunities to attenuate racial disparities in prostate cancer.
Collapse
Affiliation(s)
- Jacob E. Berchuck
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Elio Adib
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sarah Abou Alaiwi
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Amit K. Dash
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jin Na Shin
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Dallin Lowder
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Collin McColl
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Patricia Castro
- Department of Pathology, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Ryan Carelli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota
| | - Elisa Benedetti
- Avera Institute for Human Genetics, Sioux Falls, South Dakota
| | - Jenny Deng
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Matthew Robertson
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Sylvan C. Baca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Connor Bell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Heather M. McClure
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Talal El Zarif
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Matthew P. Davidsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gitanjali Lakshminarayanan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kinza Rizwan
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | | | - Sandra L. Grimm
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Christel M. Davis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Erik A. Ehli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Kaitlin M. Kelleher
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nicholas Mitsiades
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Cristian Coarfa
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Mark M. Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Massimo Loda
- Avera Institute for Human Genetics, Sioux Falls, South Dakota
| | - Michael Ittmann
- Department of Pathology, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Matthew L. Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Salma Kaochar
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
10
|
Goswami S, Sarkar C, Singh S, Singh AP, Chakroborty D. Racial differences in prostate tumor microenvironment: implications for disparate clinical outcomes and potential opportunities. CANCER HEALTH DISPARITIES 2022; 6:214. [PMID: 36777283 PMCID: PMC9910060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Disparities in cancer incidence and outcome are common among the racial and ethnical minorities in the United States and are of significant social and clinical concern. Prostate cancer is the most commonly diagnosed non-cutaneous malignancy in American men and exhibits substantial racial disparities with African American men bearing the highest burden in terms of incidence and mortality. A multitude of factors, including socioeconomic, behavioral, and access to healthcare, have been implicated as the underlying causes of such disparities. More recent data also suggest that there are inherent molecular and biological differences in prostate tumors of patients having distinct racial backgrounds. Tumor microenvironment has tremendous impact on the course of cancer progression and clinical outcome and may also contribute to the racial disparities observed in prostate cancer. Therefore, a better understanding of critical differences in the tumor microenvironment components may provide newer directions to study the biological causes of prostate cancer health disparities and may identify novel therapeutic targets. This review discusses the findings related to the tumor microenvironment differences between African American and Caucasian American prostate cancer patients and makes suggestion regarding their potential significance in prostate cancer disparities.
Collapse
Affiliation(s)
- Sandeep Goswami
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Chandrani Sarkar
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Ajay Pratap Singh
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Debanjan Chakroborty
- Department of Pathology, University of South Alabama, Mobile, Alabama, USA.,Cancer Biology Program, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
11
|
Expression of Endogenous Retroviral RNA in Prostate Tumors has Prognostic Value and Shows Differences among Americans of African Versus European/Middle Eastern Ancestry. Cancers (Basel) 2021; 13:cancers13246347. [PMID: 34944967 PMCID: PMC8699453 DOI: 10.3390/cancers13246347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Endogenous retroviruses (ERVs) are viral sequences that have been incorporated into the human genome over millions of years via integrations in germ-line cells. In this study, we investigated whether the expression of ERVs was associated with two different aspects of prostate cancer (PCa). First, Black American men have a higher incidence and poorer outcome of PCa compared to White men. We identified differences in ERV expression among prostate tumors between men of primarily African versus primarily European or Middle Eastern ancestry, which may be associated with differences in the mechanism of cancer progression in patients of these distinct ancestries. Second, we determined whether ERV expression might be correlated with the progression of disease, regardless of ancestry. We identified the ERV expression signatures that correlated with biochemical relapse among PCa patients of all ancestries, indicating that ERVs may be useful for identifying cancer patients at greatest risk of progression. The utility of ERV expression for studying cancer progression may extend to other cancers. Abstract Endogenous retroviruses (ERVs) are abundant, repetitive elements dispersed across the human genome and are implicated in various diseases. We investigated two potential roles for ERVs in prostate cancer (PCa). First, the PCa of Black Americans (BA) is diagnosed at an earlier median age and at a more advanced stage than the PCa of White Americans (WA). We used publicly available RNA-seq data from tumor-enriched samples of 27 BA and 65 WA PCa patients in order to identify 12 differentially expressed ERVs (padj < 0.1) and used a tissue microarray of the PCa cores from an independent set of BA and WA patients to validate the differential protein expression of one of these ERVs, ERV3-1 (p = 2.829 × 10−7). Second, we used 57 PCa tumors from patients of all ancestries from one hospital as a training set to identify the ERVs associated with time to biochemical relapse. A 29-ERV prognostic panel was then tested and validated on 35 separate PCa tumors from patients obtained in two different hospitals with a dramatic increase in prognostic power relative to clinical parameters alone (p = 7.4 × 10−11). In summary, ERV RNA expression differences in the prostate tumors of patients of different ancestries may be associated with dissimilarities in the mechanism of cancer progression. In addition, the correlation of expression of certain ERVs in prostate tumors with the risk of biochemical relapse indicates a possible role for ERV expression in cancer progression.
Collapse
|
12
|
Xu K, Rahmatpanah F, Jia Z. Editorial: Therapeutic Opportunities and Innovative Biomarkers in Tumor Microenvironment. Front Oncol 2021; 11:803414. [PMID: 34917516 PMCID: PMC8669590 DOI: 10.3389/fonc.2021.803414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- *Correspondence: Kexin Xu,
| | - Farah Rahmatpanah
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|