1
|
Baker JR, Gilbert J, O’Brien NS, Russell CC, McCluskey A, Sakoff JA. Next-generation of BBQ analogues that selectively target breast cancer. Front Chem 2024; 12:1396105. [PMID: 38974991 PMCID: PMC11224556 DOI: 10.3389/fchem.2024.1396105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024] Open
Abstract
We previously reported on the interaction of 10-chloro-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one (10-Cl-BBQ) with the Aryl hydrocarbon Receptor (AhR) and selective growth inhibition in breast cancer cell lines. We now report on a library of BBQ analogues with substituents on the phenyl and naphthyl rings for biological screening. Herein, we show that absence of the phenyl Cl of 10-Cl-BBQ to produce the simple BBQ molecule substantially enhanced the growth inhibitory effect with GI50 values of 0.001-2.1 μM in select breast cancer cell lines MCF-7, T47D, ZR-75-1, SKBR3, MDA-MB-468, BT20, BT474 cells, while having modest effects of 2.1-7 μM in other cell lines including HT29, U87, SJ-G2, A2780, DU145, BE2-C, MIA, MDA-MB-231 or normal breast cells, MCF10A (3.2 μM). The most potent growth inhibitory effect of BBQ was observed in the triple negative cell line, MDA-MB-468 with a GI50 value of 0.001 μM, presenting a 3,200-fold greater response than in the normal MCF10A breast cells. Additions of Cl, CH3, CN to the phenyl ring and ring expansion from benzoimidazole to dihydroquinazoline hindered the growth inhibitory potency of the BBQ analogues by blocking potential sites of CYP1 oxidative metabolism, while addition of Cl or NO2 to the naphthyl rings restored potency. In a cell-based reporter assay all analogues induced 1.2 to 10-fold AhR transcription activation. Gene expression analysis confirmed the induction of CYP1 oxygenases by BBQ. The CYP1 inhibitor α-naphthoflavone, and the SULT1A1 inhibitor quercetin significantly reduced the growth inhibitory effect of BBQ, confirming the importance of both phase I and II metabolic activation for growth inhibition. Conventional molecular modelling/docking revealed no significant differences between the binding poses of the most and least active analogues. More detailed DFT analysis at the DSD-PBEP86/Def-TZVPP level of theory could not identify significant geometric or electronic changes which would account for this varied AhR activation. Generation of Fukui functions at the same level of theory showed that CYP1 metabolism will primarily occur at the phenyl head group of the analogues, and substituents within this ring lead to lower cytotoxicity.
Collapse
Affiliation(s)
- Jennifer R. Baker
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Jayne Gilbert
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
| | - Nicholas S. O’Brien
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Cecilia C. Russell
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Jennette A. Sakoff
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
| |
Collapse
|
2
|
Shi L, Shen W, Davis MI, Kong K, Vu P, Saha SK, Adil R, Kreuzer J, Egan R, Lee TD, Greninger P, Shrimp JH, Zhao W, Wei TY, Zhou M, Eccleston J, Sussman J, Manocha U, Weerasekara V, Kondo H, Vijay V, Wu MJ, Kearney SE, Ho J, McClanaghan J, Murchie E, Crowther GS, Patnaik S, Boxer MB, Shen M, Ting DT, Kim WY, Stanger BZ, Deshpande V, Ferrone CR, Benes CH, Haas W, Hall MD, Bardeesy N. SULT1A1-dependent sulfonation of alkylators is a lineage-dependent vulnerability of liver cancers. NATURE CANCER 2023; 4:365-381. [PMID: 36914816 PMCID: PMC11090616 DOI: 10.1038/s43018-023-00523-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/03/2023] [Indexed: 03/14/2023]
Abstract
Adult liver malignancies, including intrahepatic cholangiocarcinoma and hepatocellular carcinoma, are the second leading cause of cancer-related deaths worldwide. Most individuals are treated with either combination chemotherapy or immunotherapy, respectively, without specific biomarkers for selection. Here using high-throughput screens, proteomics and in vitro resistance models, we identify the small molecule YC-1 as selectively active against a defined subset of cell lines derived from both liver cancer types. We demonstrate that selectivity is determined by expression of the liver-resident cytosolic sulfotransferase enzyme SULT1A1, which sulfonates YC-1. Sulfonation stimulates covalent binding of YC-1 to lysine residues in protein targets, enriching for RNA-binding factors. Computational analysis defined a wider group of structurally related SULT1A1-activated small molecules with distinct target profiles, which together constitute an untapped small-molecule class. These studies provide a foundation for preclinical development of these agents and point to the broader potential of exploiting SULT1A1 activity for selective targeting strategies.
Collapse
Affiliation(s)
- Lei Shi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - William Shen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Mindy I Davis
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ke Kong
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Phuong Vu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Supriya K Saha
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ramzi Adil
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Regina Egan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Tobie D Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Patricia Greninger
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Jonathan H Shrimp
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Wei Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Ting-Yu Wei
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Mi Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason Eccleston
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Sussman
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ujjawal Manocha
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vajira Weerasekara
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Hiroshi Kondo
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Vindhya Vijay
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Meng-Ju Wu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Sara E Kearney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jeffrey Ho
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Joseph McClanaghan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ellen Murchie
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Giovanna S Crowther
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Samarjit Patnaik
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Matthew B Boxer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vikram Deshpande
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- The Cancer Program, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
3
|
Yang C, Chen SJ, Chen BW, Zhang KW, Zhang JJ, Xiao R, Li PG. Gene Expression Profile of the Human Colorectal Carcinoma LoVo Cells Treated With Sporamin and Thapsigargin. Front Oncol 2021; 11:621462. [PMID: 34113558 PMCID: PMC8185278 DOI: 10.3389/fonc.2021.621462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Sporamin, a proteinase inhibitor isolated from the sweet potato (Ipomoea batatas), has shown promising anticancer effect against colorectal cancer (CRC) in vitro and in vivo but its mechanisms of action are poorly understood. In the present study, high throughput RNA sequencing (RNA-seq) technology was applied to explore the transcriptomic changes induced by sporamin in the presence of thapsigargin (TG), a non-12-O-tetradecanolphorbol-13-acetate type cancer promoter, in the LoVo human CRC cells. Cellular total RNA was extracted from the cells after they were treated with vehicle (CTL), 1 μM of thapsigargin (TG), or 1 μM of TG plus 30 μM of sporamin (TGSP) for 24 h. The migratory capacity of the cells was determined by wound healing assay. The gene expression profiles of the cells were determined by RNA-seq on an Illumina platform. GO enrichment analysis, KEGG pathway analysis, protein-protein interaction (PPI) network construction, and transcription factors (TF) prediction were all performed based on the differentially expressed genes (DEGs) across groups with a series of bioinformatics tools. Finally, the effect and potential molecular targets of the sporamin at the transcriptome level were evaluated. Sporamin significantly inhibited the migration of cells induced by TG. Among the 17915 genes detected in RNA-seq, 46 DEGs were attributable to the effect of sporamin. RT-PCR experiment validated that the expression of RGPD2, SULT1A3, and BIVM-ERCC5 were up-regulated while NYP4R, FOXN1, PAK6, and CEACAM20 were down-regulated. Sporamin enhanced the mineral absorption pathway, worm longevity regulating pathway, and pyrimidine metabolism pathway. Two TFs (SMIM11A and ATOH8) were down-regulated by sporamin. HMOX1 (up-regulated) and NME1-NME2 (down-regulated) were the main nodes in a PPI network consisting of 16 DEGs that were modulated by sporamin in the presence of TG. Sporamin could favorably alter the gene expression profile of CRC cells, up-regulating the genes that contribute to the homeostasis of intracellular metal ions and the activities of essential enzymes and DNA damage repairment. More studies are warranted to verify its effect on specific genes and delineate the mechanism of action implicated in the process.
Collapse
Affiliation(s)
- Chun Yang
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Si-Jia Chen
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Bo-Wen Chen
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Kai-Wen Zhang
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Jing-Jie Zhang
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China.,National Center for Child Nutriment Quality Supervision and Testing, China National Children's Center, Beijing, China
| | - Rong Xiao
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| | - Peng-Gao Li
- School of Public Health, Capital Medical University (CMU), Beijing, China.,Beijing Key Laboratory of Environmental Toxicology, CMU, Beijing, China.,Beijing Key Laboratory of Clinical Epidemiology, CMU, Beijing, China
| |
Collapse
|
4
|
Singh M, Zhou X, Chen X, Santos GS, Peuget S, Cheng Q, Rihani A, Arnér ESJ, Hartman J, Selivanova G. Identification and targeting of selective vulnerability rendered by tamoxifen resistance. Breast Cancer Res 2020; 22:80. [PMID: 32727562 PMCID: PMC7388523 DOI: 10.1186/s13058-020-01315-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The estrogen receptor (ER)-positive breast cancer represents over 80% of all breast cancer cases. Even though adjuvant hormone therapy with tamoxifen (TMX) is saving lives of patients with ER-positive breast cancer, the acquired resistance to TMX anti-estrogen therapy is the main hurdle for successful TMX therapy. Here we address the mechanism for TMX resistance and explore the ways to eradicate TMX-resistant breast cancer in both in vitro and ex vivo experiments. EXPERIMENTAL DESIGN To identify compounds able to overcome TMX resistance, we used short-term and long-term viability assays in cancer cells in vitro and in patient samples in 3D ex vivo, analysis of gene expression profiles and cell line pharmacology database, shRNA screen, CRISPR-Cas9 genome editing, real-time PCR, immunofluorescent analysis, western blot, measurement of oxidative stress using flow cytometry, and thioredoxin reductase 1 enzymatic activity. RESULTS Here, for the first time, we provide an ample evidence that a high level of the detoxifying enzyme SULT1A1 confers resistance to TMX therapy in both in vitro and ex vivo models and correlates with TMX resistance in metastatic samples in relapsed patients. Based on the data from different approaches, we identified three anticancer compounds, RITA (Reactivation of p53 and Induction of Tumor cell Apoptosis), aminoflavone (AF), and oncrasin-1 (ONC-1), whose tumor cell inhibition activity is dependent on SULT1A1. We discovered thioredoxin reductase 1 (TrxR1, encoded by TXNRD1) as a target of bio-activated RITA, AF, and ONC-1. SULT1A1 depletion prevented the inhibition of TrxR1, induction of oxidative stress, DNA damage signaling, and apoptosis triggered by the compounds. Notably, RITA efficiently suppressed TMX-unresponsive patient-derived breast cancer cells ex vivo. CONCLUSION We have identified a mechanism of resistance to TMX via hyperactivated SULT1A1, which renders selective vulnerability to anticancer compounds RITA, AF, and ONC-1, and provide a rationale for a new combination therapy to overcome TMX resistance in breast cancer patients. Our novel findings may provide a strategy to circumvent TMX resistance and suggest that this approach could be developed further for the benefit of relapsed breast cancer patients.
Collapse
Affiliation(s)
- Madhurendra Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| | - Xiaolei Zhou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology and Pathology, Karolinska Institutet, CCK, 171 76, Stockholm, Sweden
| | - Gema Sanz Santos
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Sylvain Peuget
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Ali Rihani
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, CCK, 171 76, Stockholm, Sweden.
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
5
|
The Multifarious Link between Cytochrome P450s and Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3028387. [PMID: 31998435 PMCID: PMC6964729 DOI: 10.1155/2020/3028387] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/08/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide. Cytochrome P450s (P450s) play an important role in the metabolism of endogenous as well as exogenous substances, especially drugs. Moreover, many P450s can serve as targets for disease therapy. Increasing reports of epidemiological, diagnostic, and clinical research indicate that P450s are enzymes that play a major part in the formation of cancer, prevention, and metastasis. The purposes of this review are to shed light on the current state of knowledge about the cancer molecular mechanism involving P450s and to summarize the link between the cancer effects and the participation of P450s.
Collapse
|
6
|
Dash R, Ali MC, Dash N, Azad MAK, Hosen SMZ, Hannan MA, Moon IS. Structural and Dynamic Characterizations Highlight the Deleterious Role of SULT1A1 R213H Polymorphism in Substrate Binding. Int J Mol Sci 2019; 20:ijms20246256. [PMID: 31835852 PMCID: PMC6969939 DOI: 10.3390/ijms20246256] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Sulfotransferase 1A1 (SULT1A1) is responsible for catalyzing various types of endogenous and exogenous compounds. Accumulating data indicates that the polymorphism rs9282861 (R213H) is responsible for inefficient enzymatic activity and associated with cancer progression. To characterize the detailed functional consequences of this mutation behind the loss-of-function of SULT1A1, the present study deployed molecular dynamics simulation to get insights into changes in the conformation and binding energy. The dynamics scenario of SULT1A1 in both wild and mutated types as well as with and without ligand showed that R213H induced local conformational changes, especially in the substrate-binding loop rather than impairing overall stability of the protein structure. The higher conformational changes were observed in the loop3 (residues, 235-263), turning loop conformation to A-helix and B-bridge, which ultimately disrupted the plasticity of the active site. This alteration reduced the binding site volume and hydrophobicity to decrease the binding affinity of the enzyme to substrates, which was highlighted by the MM-PBSA binding energy analysis. These findings highlight the key insights of structural consequences caused by R213H mutation, which would enrich the understanding regarding the role of SULT1A1 mutation in cancer development and also xenobiotics management to individuals in the different treatment stages.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Nayan Dash
- Department of Computer Science and Engineering, BGC Trust University, Bangladesh, Chittagong 4381, Bangladesh
| | - Md Abul Kalam Azad
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - S M Zahid Hosen
- Pancreatic Research Group, South Western Sydney Clinical School, University of New South Wales, and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| |
Collapse
|
7
|
Huang X, Cao M, Wu S, Wang L, Hu J, Mehran RJ, Roth JA, Swisher SG, Wang RY, Kantarjian HM, Andreeff M, Sun X, Fang B. Anti-leukemia activity of NSC-743380 in SULT1A1-expressing acute myeloid leukemia cells is associated with inhibitions of cFLIP expression and PI3K/AKT/mTOR activities. Oncotarget 2017; 8:102150-102160. [PMID: 29254232 PMCID: PMC5731942 DOI: 10.18632/oncotarget.22235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/30/2017] [Indexed: 11/25/2022] Open
Abstract
Our recent study showed that acute myeloid leukemia (AML) cells expressing SULT1A1 are highly sensitive to NSC-743380, a small molecule that inhibits STAT3 activity and induces SULT1A1-dependent apoptosis of various cancer cell lines. In this study, we characterized the molecular mechanisms of NSC-743380-mediated anti-leukemia activity in AML cell lines and antileukemia activity of NSC-743380 in patient-derived primary leukemia cells from AML patients. Our results showed that treatment with NSC-743380 triggered robust apoptosis in SULT1A1-positive AML cells. Treatment with NSC-743380 did not increase intracellular reactive oxygen species or change of STAT3 activity in AML cells, but did dramatically and rapidly decrease cFLIP expression. Proteomic analysis with reverse phase protein microarray revealed that treatment of U937 and THP-1 AML cells with NSC-743380 led to drastic and time-dependent suppression of phosphorylation of several key nodes in the PI3K/AKT/mTOR pathway, including AKT and mTOR. Moreover, primary AML cells expressed SULT1A1 were highly sensitive to treatment with NSC-743380, which was not affected by co-culture with bone marrow mesenchymal stem cells. Thus, our results provide proof-of-concept evidence that AML cells expressing SULT1A1 can be targeted by small molecules that induce apoptosis through inhibiting the expression or activities of multiple targets.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Mengru Cao
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shuhong Wu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Li Wang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jing Hu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Reza J. Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Stephen G. Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Rui-Yu Wang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hagop M. Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xiaoping Sun
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
8
|
Preliminary SAR on indole-3-carbinol and related fragments reveals a novel anticancer lead compound against resistant glioblastoma cells. Bioorg Med Chem Lett 2017; 27:1561-1565. [DOI: 10.1016/j.bmcl.2017.02.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/17/2022]
|
9
|
Li H, Hu J, Wu S, Wang L, Cao X, Zhang X, Dai B, Cao M, Shao R, Zhang R, Majidi M, Ji L, Heymach JV, Wang M, Pan S, Minna J, Mehran RJ, Swisher SG, Roth JA, Fang B. Auranofin-mediated inhibition of PI3K/AKT/mTOR axis and anticancer activity in non-small cell lung cancer cells. Oncotarget 2016; 7:3548-58. [PMID: 26657290 PMCID: PMC4823126 DOI: 10.18632/oncotarget.6516] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/21/2015] [Indexed: 12/20/2022] Open
Abstract
Auranofin, a gold complex that has been used to treat rheumatoid arthritis in clinics and has documented pharmacokinetic and safety profiles in humans, has recently been investigated for its anticancer activity in leukemia and some solid cancers. However, auranofin's single agent activity in lung cancer is not well characterized. To determine whether auranofin has single agent activity in lung cancer, we evaluated auranofin's activity in a panel of 10 non-small cell lung cancer (NSCLC) cell lines. Cell viability analysis revealed that auranofin induced growth inhibition in a subset of NSCLC cell lines with a half maximal inhibitory concentration (IC50) below 1.0 μM. Treatment with auranofin elicited apoptosis and necroptosis in auranofin-sensitive cell lines. Moreover, the susceptibility of NSCLC cells to auranofin was inversely correlated with TXNRD1 expression in the cells. Transient transfection of the TXNRD1-expressing plasmid in auranofin-sensitive Calu3 cells resulted in partial resistance, indicating that high TXNRD level is one of causal factors for resistance to auranofin. Further mechanistic characterization with proteomic analysis revealed that auranofin inhibits expression and/or phosphorylation of multiple key nodes in the PI3K/AKT/mTOR pathway, including S6, 4EBP1, Rictor, p70S6K, mTOR, TSC2, AKT and GSK3. Ectopic expression of TXNRD1 partially reversed auranofin-mediated PI3K/AKT/mTOR inhibition, suggesting that TXNRD1 may participate in the regulation of PI3K/AKT/mTOR pathway. Administration of auranofin to mice with xenograft tumors derived from NSCLC cells significantly suppressed tumor growth without inducing obvious toxic effects. Our results demonstrated feasibility of repurposing auranofin for treatment of lung cancer.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Jilin Province Cancer Hospital, Changchun, Jilin, China
| | - Jing Hu
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shuhong Wu
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Wang
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaobo Cao
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaoshan Zhang
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bingbing Dai
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mengru Cao
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ruping Shao
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ran Zhang
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mourad Majidi
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lin Ji
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Wang
- Department of Lymphoma, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shiyang Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - John Minna
- Hamon Center for Therapeutic Oncology, The Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Reza J Mehran
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
10
|
Fang B. RAS signaling and anti-RAS therapy: lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies. Acta Biochim Biophys Sin (Shanghai) 2016; 48:27-38. [PMID: 26350096 DOI: 10.1093/abbs/gmv090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022] Open
Abstract
Activating mutations of oncogenic RAS genes are frequently detected in human cancers. The studies in genetically engineered mouse models (GEMMs) reveal that Kras-activating mutations predispose mice to early onset tumors in the lung, pancreas, and gastrointestinal tract. Nevertheless, most of these tumors do not have metastatic phenotypes. Metastasis occurs when tumors acquire additional genetic changes in other cancer driver genes. Studies on clinical specimens also demonstrated that KRAS mutations are present in premalignant tissues and that most of KRAS mutant human cancers have co-mutations in other cancer driver genes, including TP53, STK11, CDKN2A, and KMT2C in lung cancer; APC, TP53, and PIK3CA in colon cancer; and TP53, CDKN2A, SMAD4, and MED12 in pancreatic cancer. Extensive efforts have been devoted to develop therapeutic agents that target enzymes involved in RAS posttranslational modifications, that inhibit downstream effectors of RAS signaling pathways, and that kill RAS mutant cancer cells through synthetic lethality. Recent clinical studies have revealed that sorafenib, a pan-RAF and VEGFR inhibitor, has impressive benefits for KRAS mutant lung cancer patients. Combination therapy of MEK inhibitors with either docetaxel, AKT inhibitors, or PI3K inhibitors also led to improved clinical responses in some KRAS mutant cancer patients. This review discusses knowledge gained from GEMMs, human cancer cells, and patient-related studies on RAS-mediated tumorigenesis and anti-RAS therapy. Emerging evidence demonstrates that RAS mutant cancers are heterogeneous because of the presence of different mutant alleles and/or co-mutations in other cancer driver genes. Effective subclassifications of RAS mutant cancers may be necessary to improve patients' outcomes through personalized precision medicine.
Collapse
Affiliation(s)
- Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Fang B, Mehran RJ, Heymach JV, Swisher SG. Predictive biomarkers in precision medicine and drug development against lung cancer. CHINESE JOURNAL OF CANCER 2015; 34:295-309. [PMID: 26134262 PMCID: PMC4593363 DOI: 10.1186/s40880-015-0028-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/04/2015] [Indexed: 02/06/2023]
Abstract
The molecular characterization of various cancers has shown that cancers with the same origins, histopathologic diagnoses, and clinical stages can be highly heterogeneous in their genetic and epigenetic alterations that cause tumorigenesis. A number of cancer driver genes with functional abnormalities that trigger malignant transformation and that are required for the survival of cancer cells have been identified. Therapeutic agents targeting some of these cancer drivers have been successfully developed, resulting in substantial improvements in clinical symptom amelioration and outcomes in a subset of cancer patients. However, because such therapeutic drugs often benefit only a limited number of patients, the successes of clinical development and applications rely on the ability to identify those patients who are sensitive to the targeted therapies. Thus, biomarkers that can predict treatment responses are critical for the success of precision therapy for cancer patients and of anticancer drug development. This review discusses the molecular heterogeneity of lung cancer pathogenesis; predictive biomarkers for precision medicine in lung cancer therapy with drugs targeting epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), c-ros oncogene 1 receptor tyrosine kinase (ROS1), and immune checkpoints; biomarkers associated with resistance to these therapeutics; and approaches to identify predictive biomarkers in anticancer drug development. The identification of predictive biomarkers during anticancer drug development is expected to greatly facilitate such development because it will increase the chance of success or reduce the attrition rate. Additionally, such identification will accelerate the drug approval process by providing effective patient stratification strategies in clinical trials to reduce the sample size required to demonstrate clinical benefits.
Collapse
Affiliation(s)
- Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Reza J Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - John V Heymach
- Department of Thoracic and Head/Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|