1
|
Basilotta R, Casili G, Mannino D, Filippone A, Lanza M, Capra AP, Giosa D, Forte S, Colarossi L, Sciacca D, Esposito E, Paterniti I. Benzyl isothiocyanate suppresses development of thyroid carcinoma by regulating both autophagy and apoptosis pathway. iScience 2024; 27:110796. [PMID: 39398237 PMCID: PMC11471196 DOI: 10.1016/j.isci.2024.110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is the most aggressive type of thyroid cancer, characterized by rapid growth and invasion and poor prognosis. Due to its rarity and aggressive nature, ATC is a difficult condition to treat, thus knowledge of the mechanisms underlying its progression represents important research challenges. Benzyl isothiocyanate (BITC) is a natural compound that has shown promising anticancer properties. The aim of this study was to evaluate the antitumor effect of BITC in ATC, highlighting signaling pathways involved in BITC mechanism of action. This work included in vitro and in vivo studies. Results obtained indicate that BITC, both in vitro and in vivo, has the potential to slow the progression of ATC through interactions with autophagy, reduction in epithelial-mesenchymal transition (EMT) and attenuation of inflammation. In conclusion, this study identifies BITC as a compound worth further investigation for the development of new treatment strategies for this aggressive form of thyroid cancer.
Collapse
Affiliation(s)
- Rossella Basilotta
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Giovanna Casili
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Deborah Mannino
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Alessia Filippone
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Marika Lanza
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Anna Paola Capra
- Department of Clinical and Experimental Medicine, University of Messina, Viale Ferdinando Stagno D' Alcontres 31, 98166 Messina, ME, Italy
| | - Domenico Giosa
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Stefano Forte
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Dorotea Sciacca
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Emanuela Esposito
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| | - Irene Paterniti
- Departement of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
2
|
Campolo M, Scuderi SA, Filippone A, Bova V, Lombardo SP, Colarossi L, Sava S, Capra AP, De Gaetano F, Portelli M, Militi A, Esposito E, Paterniti I. EZH2 Inhibition to Counteract Oral Cancer Progression through Wnt/β-Catenin Pathway Modulation. Pharmaceuticals (Basel) 2024; 17:1102. [PMID: 39204206 PMCID: PMC11357505 DOI: 10.3390/ph17081102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common human malignancies worldwide. The molecular mechanisms of OSCC pathogenesis are still unknown; however, in recent years, several reports have focused on the role of enhancer of zeste homolog 2 (EZH2) in OSCC. Therefore, in this study we aimed to investigate the effects of GSK343, a selective EZH2 inhibitor, and its impact on the signaling pathways in OSCC, using an in vitro and in vivo orthotopic model. In the in vitro model, GSK343 (1, 10, and 25 μM) significantly decreased OSCC cell viability and cell migration through EZH2 inhibition, modulating NF-κB/IκBα pathway activation and eNOS, VEGF, and TGFβ expression, important markers of angiogenesis. In the in vivo model, GSK343 (5 mg/kg and 10 mg/kg) restored tongue tissue architecture and reduced tumor progression through EZH2 inhibition and Wnt/β-catenin signaling pathway modulation. Moreover, GSK343 reduced the expression of inflammatory mediators; eNOS and TGFβ, markers of angiogenesis; and CD31 and CD34, markers of micro vessel density, respectively. In conclusion, our data demonstrate that GSK343 counteracts oral cancer progression through EZH2/Wnt/β-catenin pathway modulation, suggesting that it could be a promising therapeutic approach for OSCC management.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Valentina Bova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Sofia Paola Lombardo
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, CT, Italy; (S.P.L.); (L.C.); (S.S.)
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, CT, Italy; (S.P.L.); (L.C.); (S.S.)
| | - Serena Sava
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, CT, Italy; (S.P.L.); (L.C.); (S.S.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Marco Portelli
- Department of Biomedical and Dental Science, Morphological and Functional Images, University of Messina, Via Consolare Valeria, 98125 Messina, ME, Italy; (M.P.); (A.M.)
| | - Angela Militi
- Department of Biomedical and Dental Science, Morphological and Functional Images, University of Messina, Via Consolare Valeria, 98125 Messina, ME, Italy; (M.P.); (A.M.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| |
Collapse
|
3
|
Cucinotta L, Mannino D, Casili G, Repici A, Crupi L, Paterniti I, Esposito E, Campolo M. Prolyl oligopeptidase inhibition ameliorates experimental pulmonary fibrosis both in vivo and in vitro. Respir Res 2023; 24:211. [PMID: 37626373 PMCID: PMC10463606 DOI: 10.1186/s12931-023-02519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Pulmonary fibrosis is a progressive disease characterized by lung remodeling due to excessive deposition of extracellular matrix. Although the etiology remains unknown, aberrant angiogenesis and inflammation play an important role in the development of this pathology. In this context, recent scientific research has identified new molecules involved in angiogenesis and inflammation, such as the prolyl oligopeptidase (PREP), a proteolytic enzyme belonging to the serine protease family, linked to the pathology of many lung diseases such as pulmonary fibrosis. Therefore, the aim of this study was to investigate the effect of a selective inhibitor of PREP, known as KYP-2047, in an in vitro and in an in vivo model of pulmonary fibrosis. METHODS The in vitro model was performed using human alveolar A549 cells. Cells were exposed to lipopolysaccharide (LPS) 10 μg/ml and then, cells were treated with KYP-2047 at the concentrations of 1 μM, 10 μM and 50 μM. Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) bromide colorimetric assay, while inflammatory protein expression was assessed by western blots analysis. The in vivo model was induced in mice by intra-tracheal administration of bleomycin (1 mg/kg) and then treated intraperitoneally with KYP-2047 at doses of 1, 2.5 and 5 mg/kg once daily for 12 days and then mice were sacrificed, and lung tissues were collected for analyses. RESULTS The in vitro results demonstrated that KYP-2047 preserved cell viability, reduced inflammatory process by decreasing IL-18 and TNF-α, and modulated lipid peroxidation as well as nitrosative stress. The in vivo pulmonary fibrosis has demonstrated that KYP-2047 was able to restore histological alterations reducing lung injury. Our data demonstrated that KYP-2047 significantly reduced angiogenesis process and the fibrotic damage modulating the expression of fibrotic markers. Furthermore, KYP-2047 treatment modulated the IκBα/NF-κB pathway and reduced the expression of related pro-inflammatory enzymes and cytokines. Moreover, KYP-2047 was able to modulate the JAK2/STAT3 pathway, highly involved in pulmonary fibrosis. CONCLUSION In conclusion, this study demonstrated the involvement of PREP in the pathogenesis of pulmonary fibrosis and that its inhibition by KYP-2047 has a protective role in lung injury induced by BLM, suggesting PREP as a potential target therapy for pulmonary fibrosis. These results speculate the potential protective mechanism of KYP-2047 through the modulation of JAK2/STAT3 and NF-κB pathways.
Collapse
Affiliation(s)
- Laura Cucinotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy.
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 7 Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| |
Collapse
|
4
|
Lanza M, Basilotta R, Cuzzocrea S, Bulzomì M, Oddo S, Casili G, Esposito E. An RNAi-Mediated Reduction in Transcription Factor Nrf-2 Blocks the Positive Effects of Dimethyl Fumarate on Metabolic Stress in Alzheimer's Disease. Int J Mol Sci 2023; 24:11303. [PMID: 37511065 PMCID: PMC10378911 DOI: 10.3390/ijms241411303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The prevalence of obesity is rapidly rising around the world, and this will have a significant impact on our society as it is believed to be one of the leading causes of death. One of the main causes of these occurrences is added sugar consumption, which is associated with a higher risk of obesity, heart disease, diabetes, and brain illnesses such as Alzheimer's disease (AD). To this purpose, excess sugar might worsen oxidative damage and brain inflammation: two neuropathological signs of AD. Dimethyl fumarate (DMF) is an orally accessible methyl ester of fumaric acid with putative neuroprotective and immunomodulatory properties. In addition, DMF stimulates the nuclear factor erythroid 2-related factor 2 (Nrf-2), a key regulator of the antioxidant response mechanism in cells. The aim of the current study was to assess the potential therapeutic benefits of DMF in an in vitro model of metabolic stress induced by high and low sugar levels. We discovered that DMF reversed the negative impacts of high and low glucose exposure on the viability and oxidative stress of SH-SY5Y cells. Mechanistically, DMF's actions were mediated by Nrf-2. To this end, we discovered that DMF boosted the expression of the Nrf-2-regulated genes heme-oxygenase-1 (HO1) and manganese superoxide dismutase (MnSOD). More importantly, we found that inhibiting Nrf-2 expression prevented DMF's positive effects. Our combined findings suggest that DMF may be a valuable support for treatments for metabolic diseases.
Collapse
Affiliation(s)
- Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Maria Bulzomì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
5
|
Scuderi SA, Filippone A, Basilotta R, Mannino D, Casili G, Capra AP, Chisari G, Colarossi L, Sava S, Campolo M, Esposito E, Paterniti I. GSK343, an Inhibitor of Enhancer of Zeste Homolog 2, Reduces Glioblastoma Progression through Inflammatory Process Modulation: Focus on Canonical and Non-Canonical NF-κB/IκBα Pathways. Int J Mol Sci 2022; 23:ijms232213915. [PMID: 36430394 PMCID: PMC9694970 DOI: 10.3390/ijms232213915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GB) is a tumor of the central nervous system characterized by high proliferation and invasiveness. The standard treatment for GB includes radiotherapy and chemotherapy; however, new therapies are needed. Particular attention was given to the role of histone methyltransferase enhancer of zeste-homolog-2 (EZH2) in GB. Recently, several EZH2-inhibitors have been developed, particularly GSK343 is well-known to regulate apoptosis and autophagy processes; however, its abilities to modulate canonical/non-canonical NF-κB/IκBα pathways or an immune response in GB have not yet been investigated. Therefore, this study investigated for the first time the effect of GSK343 on canonical/non-canonical NF-κB/IκBα pathways and the immune response, by an in vitro, in vivo and ex vivo model of GB. In vitro results demonstrated that GSK343 treatments 1, 10 and 25 μM significantly reduced GB cell viability, showing the modulation of canonical/non-canonical NF-κB/IκBα pathway activation. In vivo GSK343 reduced subcutaneous tumor mass, regulating canonical/non-canonical NF-κB/IκBα pathway activation and the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD). Ex vivo results confirmed the anti-proliferative effect of GSK343 and also demonstrated its ability to regulate immune response through CXCL9, CXCL10 and CXCL11 expression in GB. Thus, GSK343 could represent a therapeutic strategy to counteract GB progression, thanks to its ability to modulate canonical/non-canonical NF-κB/IκBα pathways and immune response.
Collapse
Affiliation(s)
- Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Giulia Chisari
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Serena Sava
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
- Correspondence:
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98166 Messina, Italy
| |
Collapse
|