1
|
Tompa M, Galik B, Urban P, Kajtar BI, Kraboth Z, Gyenesei A, Miseta A, Kalman B. On the Boundary of Exploratory Genomics and Translation in Sequential Glioblastoma. Int J Mol Sci 2024; 25:7564. [PMID: 39062807 PMCID: PMC11277311 DOI: 10.3390/ijms25147564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
OMICS methods brought significant advancements to the understanding of tumor cell biology, which transformed the treatment and prognosis of several cancers. Clinical practice and outcomes, however, changed significantly less in the case of glioblastoma (GBM). In this study, we aimed to assess the utility of whole exome (WES) sequencing in the clinical setting. Ten pairs of formalin-fixed, paraffin-embedded (FFPE) GBM specimens were obtained at onset (GBM-P) and at recurrence (GBM-R). Histopathological and molecular features of all samples supported the diagnosis of GBM based on WHO CNS5. WES data were filtered, applying a strict and custom-made pipeline, and occurrence of oncogenic and likely oncogenic variants in GBM-P, GBM-R or both were identified by using the VarSeq program version 2.5.0 (Golden Helix, Inc.). Characteristics and recurrence of the variants were analyzed in our own cohort and were also compared to those available in the COSMIC database. The lists of oncogenic and likely oncogenic variants corresponded to those identified in other studies. The average number of these variants were 4 and 5 out of all detected 24 and 34 variants in GBM-P and GBM-R samples, respectively. On average, one shared oncogenic/likely oncogenic variant was found in the pairs. We assessed the identified variants' therapeutic significance, also taking into consideration the guidelines by the Association for Molecular Pathology (AMP). Our data support that a thorough WES analysis is suitable for identifying oncogenic and likely oncogenic variants in an individual clinical sample or a small cohort of FFPE glioma specimens, which concur with those of comprehensive research studies. Such analyses also allow us to monitor molecular dynamics of sequential GBM. In addition, careful evaluation of data according to the AMP guideline reveal that though therapeutic applicability of the variants is generally limited in the clinic, such information may be valuable in selected cases, and can support innovative preclinical and clinical trials.
Collapse
Affiliation(s)
- Marton Tompa
- Szentagothai Research Center, University of Pecs, 20. Ifjusag Street, 7624 Pecs, Hungary; (B.G.); (P.U.); (A.G.)
- Department of Molecular Medicine, Markusovszky University Teaching Hospital, 5. Markusovszky Street, 9700 Szombathely, Hungary
| | - Bence Galik
- Szentagothai Research Center, University of Pecs, 20. Ifjusag Street, 7624 Pecs, Hungary; (B.G.); (P.U.); (A.G.)
| | - Peter Urban
- Szentagothai Research Center, University of Pecs, 20. Ifjusag Street, 7624 Pecs, Hungary; (B.G.); (P.U.); (A.G.)
| | - Bela Istvan Kajtar
- Department of Pathology, School of Medicine, University of Pecs, 12. Szigeti Street, 7624 Pecs, Hungary; (B.I.K.); (Z.K.)
| | - Zoltan Kraboth
- Department of Pathology, School of Medicine, University of Pecs, 12. Szigeti Street, 7624 Pecs, Hungary; (B.I.K.); (Z.K.)
| | - Attila Gyenesei
- Szentagothai Research Center, University of Pecs, 20. Ifjusag Street, 7624 Pecs, Hungary; (B.G.); (P.U.); (A.G.)
| | - Attila Miseta
- Office of the Dean, School of Medicine, University of Pecs, 20. Ifjusag Street, 7624 Pecs, Hungary;
| | - Bernadette Kalman
- Szentagothai Research Center, University of Pecs, 20. Ifjusag Street, 7624 Pecs, Hungary; (B.G.); (P.U.); (A.G.)
- Department of Molecular Medicine, Markusovszky University Teaching Hospital, 5. Markusovszky Street, 9700 Szombathely, Hungary
- Office of the Dean, School of Medicine, University of Pecs, 20. Ifjusag Street, 7624 Pecs, Hungary;
| |
Collapse
|
2
|
Vučković N, Hoppe-Seyler K, Riemer AB. Characterization of DoTc2 4510-Identifying HPV16 Presence in a Cervical Carcinoma Cell Line Previously Considered to Be HPV-Negative. Cancers (Basel) 2023; 15:3810. [PMID: 37568626 PMCID: PMC10417116 DOI: 10.3390/cancers15153810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Cervical cancer is the fourth leading cause of cancer deaths in women, with over 340,000 women dying from this disease in 2020. Almost all cases have an underlying persistent infection with an oncogenic high-risk type of human papillomavirus (HPV), mainly HPV16. While cervical squamous cell carcinoma is hardly ever HPV-negative, a small subset of adenocarcinoma exhibits absence of HPV, even after disproval of false-negative testing results due to low viral load. This proportion is evident in many cervical cancer studies and is reflected in the repertoire of model cell lines commonly used in research. As the viral origin of cervical cancer makes it a disease preventable and potentially treatable by immunotherapeutic approaches, it is the focus of many studies. For pertinent research, both a broad set of HPV-infected cervical carcinoma models are required, as well as stringent negative controls. A ubiquitously used HPV-negative cervical adenocarcinoma cell line is C-33A. Another cervical cancer cell line is available for purchase from the American Type Culture Collection (ATCC), namely DoTc2 4510, described to be HPV-negative and thus as a model for a rare gynecological malignancy. Here, we present findings proving that DoTc2 4510 is, in fact, an HPV16-positive cell line. This we assessed using a highly sensitive nested multiplex PCR protocol adapted for the identification of 12 carcinogenic HPV types and a second PCR targeting the HPV16 oncogenes E6 and E7. Subsequently, the protein expression of E6 and E7 was examined, as well as the expression of their target proteins p53, p21, and p16INK4a, to assess E6/E7 functionality. Finally, to attest to the survival dependence of DoTc2 4510 cells on HPV16, we performed an HPV16 E6/E7-targeted siRNA knock-down, which indeed led to senescence induction. Together, these findings demonstrate that DoTc2 4510 is an HPV16-transformed cell line.
Collapse
Affiliation(s)
- Nika Vučković
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Karin Hoppe-Seyler
- Molecular Therapy of Virus-Associated Cancers, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Angelika B. Riemer
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Pairawan S, Akcakanat A, Kopetz S, Tapia C, Zheng X, Chen H, Ha MJ, Rizvi Y, Holla V, Wang J, Evans KW, Zhao M, Busaidy N, Fang B, Roth JA, Dumbrava EI, Meric-Bernstam F. Combined MEK/MDM2 inhibition demonstrates antitumor efficacy in TP53 wild-type thyroid and colorectal cancers with MAPK alterations. Sci Rep 2022; 12:1248. [PMID: 35075200 PMCID: PMC8786858 DOI: 10.1038/s41598-022-05193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022] Open
Abstract
Most tumors with activating MAPK (mitogen-activated protein kinase) pathway alterations respond poorly to MEK inhibitors alone. Here, we evaluated combination therapy with MEK inhibitor selumetinib and MDM2 inhibitor KRT-232 in TP53 wild-type and MAPK altered colon and thyroid cancer models. In vitro, we showed synergy between selumetinib and KRT-232 on cell proliferation and colony formation assays. Immunoblotting confirmed p53 upregulation and MEK pathway inhibition. The combination was tested in vivo in seven patient-derived xenograft (PDX) models (five colorectal carcinoma and two papillary thyroid carcinoma models) with different KRAS, BRAF, and NRAS mutations. Combination therapy significantly prolonged event-free survival compared with monotherapy in six of seven models tested. Reverse-phase protein arrays and immunohistochemistry, respectively, demonstrated upregulation of the p53 pathway and in two models cleaved caspase 3 with combination therapy. In summary, combined inhibition of MEK and MDM2 upregulated p53 expression, inhibited MAPK signaling and demonstrated greater antitumor efficacy than single drug therapy in both in vitro and in vivo settings. These findings support further clinical testing of the MEK/MDM2 inhibitor combination in tumors of epithelial origin with MAPK pathway alterations.
Collapse
Affiliation(s)
- Seyed Pairawan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Argun Akcakanat
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Coya Tapia
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Epizyme Inc., Boston, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Jin Ha
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yasmeen Rizvi
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vijaykumar Holla
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kurt W Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Naifa Busaidy
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ecaterina Ileana Dumbrava
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, FC8.3044, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Cissé MY, Pyrdziak S, Firmin N, Gayte L, Heuillet M, Bellvert F, Fuentes M, Delpech H, Riscal R, Arena G, Chibon F, Le Gellec S, Maran-Gonzalez A, Chateau MC, Theillet C, Carrere S, Portais JC, Le Cam L, Linares LK. Targeting MDM2-dependent serine metabolism as a therapeutic strategy for liposarcoma. Sci Transl Med 2021; 12:12/547/eaay2163. [PMID: 32522803 DOI: 10.1126/scitranslmed.aay2163] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 05/04/2020] [Indexed: 12/25/2022]
Abstract
Well-differentiated and dedifferentiated liposarcomas (LPSs) are characterized by a systematic amplification of the MDM2 oncogene, which encodes a key negative regulator of the p53 pathway. The molecular mechanisms underlying MDM2 overexpression while sparing wild-type p53 in LPS remain poorly understood. Here, we show that the p53-independent metabolic functions of chromatin-bound MDM2 are exacerbated in LPS and mediate an addiction to serine metabolism that sustains nucleotide synthesis and tumor growth. Treatment of LPS cells with Nutlin-3A, a pharmacological inhibitor of the MDM2-p53 interaction, stabilized p53 but unexpectedly enhanced MDM2-mediated control of serine metabolism by increasing its recruitment to chromatin, likely explaining the poor clinical efficacy of this class of MDM2 inhibitors. In contrast, genetic or pharmacological inhibition of chromatin-bound MDM2 by SP141, a distinct MDM2 inhibitor triggering its degradation, or interfering with de novo serine synthesis, impaired LPS growth both in vitro and in clinically relevant patient-derived xenograft models. Our data indicate that targeting MDM2 functions in serine metabolism represents a potential therapeutic strategy for LPS.
Collapse
Affiliation(s)
- Madi Y Cissé
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France.,Equipe Labélisée par la Ligue contre le Cancer, Paris F-75013, France
| | - Samuel Pyrdziak
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France.,Equipe Labélisée par la Ligue contre le Cancer, Paris F-75013, France
| | - Nelly Firmin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France.,Equipe Labélisée par la Ligue contre le Cancer, Paris F-75013, France.,Institut régional du Cancer Montpellier, Montpellier F-34298, France
| | - Laurie Gayte
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France.,Equipe Labélisée par la Ligue contre le Cancer, Paris F-75013, France
| | - Maud Heuillet
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse F-31400, France.,MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse F-31077, France
| | - Floriant Bellvert
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse F-31400, France.,MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse F-31077, France
| | - Maryse Fuentes
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France.,Equipe Labélisée par la Ligue contre le Cancer, Paris F-75013, France
| | - Hélène Delpech
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France.,Equipe Labélisée par la Ligue contre le Cancer, Paris F-75013, France
| | - Romain Riscal
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France.,Equipe Labélisée par la Ligue contre le Cancer, Paris F-75013, France
| | - Giuseppe Arena
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France.,Equipe Labélisée par la Ligue contre le Cancer, Paris F-75013, France
| | - Frédéric Chibon
- INSERM UMR 1037, Centre de Recherche en Cancérologie de Toulouse, Université Paul Sabatier Toulouse-III, Toulouse F-31100, France
| | - Sophie Le Gellec
- INSERM UMR 1037, Centre de Recherche en Cancérologie de Toulouse, Université Paul Sabatier Toulouse-III, Toulouse F-31100, France.,Department of Pathology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse F-31100, France
| | | | | | - Charles Theillet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France.,Equipe Labélisée par la Ligue contre le Cancer, Paris F-75013, France
| | - Sébastien Carrere
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France.,Equipe Labélisée par la Ligue contre le Cancer, Paris F-75013, France.,Institut régional du Cancer Montpellier, Montpellier F-34298, France
| | - Jean-Charles Portais
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse F-31400, France.,MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse F-31077, France.,Université Paul Sabatier, Université de Toulouse, Toulouse F-31062, France
| | - Laurent Le Cam
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France. .,Equipe Labélisée par la Ligue contre le Cancer, Paris F-75013, France
| | - Laetitia K Linares
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France. .,Equipe Labélisée par la Ligue contre le Cancer, Paris F-75013, France
| |
Collapse
|
5
|
Grigoreva T, Sagaidak A, Romanova A, Novikova D, Garabadzhiu A, Tribulovich V. Establishment of drug-resistant cell lines under the treatment with chemicals acting through different mechanisms. Chem Biol Interact 2021; 344:109510. [PMID: 33974899 DOI: 10.1016/j.cbi.2021.109510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
The problem of chemoresistance development is an inescapable flipside of modern oncotherapy, in particular for сolorectal cancer patients. The search for or development of drugs effective against resistant tumors involves the use of model resistant cell lines in vitro. To obtain such lines, we reproduced the development of chemoresistance of human colon adenocarcinoma cells under the treatment with drugs of different mechanisms, a cytostatic (paclitaxel) and a targeted agent (Nutlin-3a, an inhibitor of p53-Mdm2 protein-protein interaction). In each case, we gradually increased the content of the substance in the medium, starting from effective concentrations that do not cause total cell death. When studying the lines resistant to the corresponding drug, we noted a reduced sensitivity to the drug of another mechanism of action. Analysis of the original and resistant lines showed that the cells use the universal efflux defense mechanism. The observed effect can be partially neutralized using inhibitors of the ABC transport proteins, including P-glycoprotein, known for its oncoprotective function. The role of the latter was confirmed by real-time RT-PCR and Western blotting.
Collapse
Affiliation(s)
- Tatyana Grigoreva
- St. Petersburg State Institute of Technology (Technical University), Moskovskii Prospect, 26, St. Petersburg, 190013, Russia.
| | - Aleksandra Sagaidak
- St. Petersburg State Institute of Technology (Technical University), Moskovskii Prospect, 26, St. Petersburg, 190013, Russia
| | - Angelina Romanova
- St. Petersburg State Institute of Technology (Technical University), Moskovskii Prospect, 26, St. Petersburg, 190013, Russia
| | - Daria Novikova
- St. Petersburg State Institute of Technology (Technical University), Moskovskii Prospect, 26, St. Petersburg, 190013, Russia
| | - Aleksander Garabadzhiu
- St. Petersburg State Institute of Technology (Technical University), Moskovskii Prospect, 26, St. Petersburg, 190013, Russia
| | - Viacheslav Tribulovich
- St. Petersburg State Institute of Technology (Technical University), Moskovskii Prospect, 26, St. Petersburg, 190013, Russia
| |
Collapse
|
6
|
Schubert NA, Schild L, van Oirschot S, Keller KM, Alles LK, Vernooij L, Nulle ME, Dolman MEM, van den Boogaard ML, Molenaar JJ. Combined targeting of the p53 and pRb pathway in neuroblastoma does not lead to synergistic responses. Eur J Cancer 2020; 142:1-9. [PMID: 33190064 DOI: 10.1016/j.ejca.2020.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Despite intensive treatment protocols and recent advances, neuroblastomas still account for approximately 15% of all childhood cancer deaths. In contrast with adult cancers, p53 pathway inactivation in neuroblastomas is rarely caused by p53 mutation but rather by altered MDM2 or p14ARF expression. Moreover, neuroblastomas are characterised by high proliferation rates, frequently triggered by pRb pathway dysfunction due to aberrant expression of cyclin D1, CDK4 or p16INK4a. Simultaneous disturbance of these pathways can occur via co-amplification of MDM2 and CDK4 or homozygous deletion of CDKN2A, which encodes both p14ARF and p16INK4a. METHODS AND RESULTS We examined whether both single and combined inhibition of MDM2 and CDK4/6 is effective in reducing neuroblastoma cell viability. In our panel of ten cell lines with a spectrum of aberrations in the p53 and pRb pathway, idasanutlin and abemaciclib were the most potent MDM2 and CDK4/6 inhibitors, respectively. No correlation was observed between the genetic background and response to the single inhibitors. We confirmed this lack of correlation in isogenic systems overexpressing MDM2 and/or CDK4. In addition, combined inhibition did not result in synergistic effects. Instead, abemaciclib diminished the pro-apoptotic effect of idasanutlin, leading to slightly antagonistic effects. In vivo treatment with idasanutlin and abemaciclib led to reduced tumour growth compared with single drug treatment, but no synergistic response was observed. CONCLUSION We conclude that p53 and pRb pathway aberrations cannot be used as predictive biomarkers for neuroblastoma sensitivity to MDM2 and/or CDK4/6 inhibitors. Moreover, we advise to be cautious with combining these inhibitors in neuroblastomas.
Collapse
Affiliation(s)
- Nil A Schubert
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Linda Schild
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Kaylee M Keller
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Lindy K Alles
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Lindy Vernooij
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marloes E Nulle
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - M Emmy M Dolman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Colecchia M, Bertolotti A, Paolini B, Giunchi F, Necchi A, Paganoni AM, Ricci C, Fiorentino M, Dagrada GP. The Leydig cell tumour Scaled Score (LeSS): a method to distinguish benign from malignant cases, with additional correlation with MDM2 and CDK4 amplification. Histopathology 2020; 78:290-299. [PMID: 32757426 DOI: 10.1111/his.14225] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/01/2020] [Indexed: 01/22/2023]
Abstract
AIMS To investigate the morphological and molecular characteristics of Leydig cell tumours (LCTs) of the testis for the identification of cases that may metastasise. METHODS AND RESULTS Six parameters for a predictive model of the metastatic risk were evaluated in 37 benign and 14 malignant LCTs of the testis [LCT Scaled Score (LeSS)]. The tumour size (benign LCTs, mean 13.3 mm; malignant LCTs, mean 44 mm) (P < 0.001) and five other parameters (infiltrative margins, necrosis, vascular invasion, mitotic count, and nuclear atypia) showed significant differences (Wilcoxon's test, P < 0.001). Eight metastatic LCTs and one benign LCT had infiltrative margins. Foci of coagulative necrosis occurred in 10 metastatic LCTs, whereas vascular invasion was identified in nine of 14 metastatic LCTs and none of 37 benign LCTs. Benign LCTs showed <2 mitoses/10 high-power fields (HPFs), whereas a high mitotic count (range, 3-50 mitoses/10 HPFs) was a feature of malignant LCTs. These parameters were selected by use of an inferential analysis based on univariate logistic regression models to develop a score. A LeSS of <4 correctly identified all histologically and clinically benign LCTs. A LeSS of ≥4 correctly identified all malignant LCTs. MDM2 and CDK4 immunostains were applied in all 51 cases: benign LCTs were negative; three of 11 malignant LCTs (27%) showed strong and diffuse immunopositivity and high levels of MDM2 and CDK4 amplification as determined with fluorescence in-situ hybridisation analysis and next-generation sequencing. CONCLUSION We provide a new tool, the LeSS, for the prediction of malignant behaviour in LCTs.
Collapse
Affiliation(s)
- Maurizio Colecchia
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessia Bertolotti
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Biagio Paolini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Giunchi
- Department of Pathology, Ospedale Maggiore and University of Bologna, Bologna, Italy
| | - Andrea Necchi
- Department of Medical Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Anna M Paganoni
- Department of Mathematics, MOX-Modelling and Scientific Computing, Politecnico di Milano, Politecnico di Milano, Milan, Italy
| | - Costantino Ricci
- Department of Pathology, Ospedale Maggiore and University of Bologna, Bologna, Italy
| | | | - Gian P Dagrada
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
8
|
Duffy MJ, Synnott NC, O'Grady S, Crown J. Targeting p53 for the treatment of cancer. Semin Cancer Biol 2020; 79:58-67. [PMID: 32741700 DOI: 10.1016/j.semcancer.2020.07.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/26/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
Dysfunction of the TP53 (p53) gene occurs in most if not all human malignancies. Two principal mechanisms are responsible for this dysfunction; mutation and downregulation of wild-type p53 mediated by MDM2/MDM4. Because of its almost universal inactivation in malignancy, p53 is a highly attractive target for the development of new anticancer drugs. Although multiple strategies have been investigated for targeting dysfunctional p53 for cancer treatment, only 2 of these have so far yielded compounds for testing in clinical trials. These strategies include the identification of compounds for reactivating the mutant form of p53 back to its wild-type form and compounds for inhibiting the interaction between wild-type p53 and MDM2/MDM4. Currently, multiple p53-MDM2/MDM4 antagonists are undergoing clinical trials, the most advanced being idasanutlin which is currently undergoing testing in a phase III clinical trial in patients with relapsed or refractory acute myeloid leukemia. Two mutant p53-reactivating compounds have progressed to clinical trials, i.e., APR-246 and COTI-2. Although promising data has emerged from the testing of both MDM2/MDM4 inhibitors and mutant p53 reactivating compounds in preclinical models, it is still unclear if these agents have clinical efficacy. However, should any of the compounds currently being evaluated in clinical trials be shown to have efficacy, it is likely to usher in a new era in cancer treatment, especially as p53 dysfunction is so prevalent in human cancers.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland.
| | - Naoise C Synnott
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; Division of Cancer Epidemiology and Genetics, and Division of Cancer Prevention, National Cancer Institute, National Institute of Health, Rockville, MD, USA
| | - Shane O'Grady
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
9
|
Lieschke E, Wang Z, Kelly GL, Strasser A. Discussion of some 'knowns' and some 'unknowns' about the tumour suppressor p53. J Mol Cell Biol 2020; 11:212-223. [PMID: 30496435 PMCID: PMC6478126 DOI: 10.1093/jmcb/mjy077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/22/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Activation of the tumour suppressor p53 upon cellular stress can induce a number of different cellular processes. The diverse actions of these processes are critical for the protective function of p53 in preventing the development of cancer. However, it is still not fully understood which process(es) activated by p53 is/are critical for tumour suppression and how this might differ depending on the type of cells undergoing neoplastic transformation and the nature of the drivers of oncogenesis. Moreover, it is not clear why upon activation of p53 some cells undergo cell cycle arrest and senescence whereas others die by apoptosis. Here we discuss some of the cellular processes that are crucial for p53-mediated tumour suppression and the factors that could impact cell fate upon p53 activation. Finally, we describe therapies aimed either at activating wild-type p53 or at changing the behaviour of mutant p53 to unleash tumour growth suppressive processes for therapeutic benefit in malignant disease.
Collapse
Affiliation(s)
- Elizabeth Lieschke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Zilu Wang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Rusiecki R, Witkowski J, Jaszczewska-Adamczak J. MDM2-p53 Interaction Inhibitors: The Current State-of-Art and Updated Patent Review (2010-Present). Recent Pat Anticancer Drug Discov 2020; 14:324-369. [DOI: 10.2174/1574892814666191022163540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023]
Abstract
Background:
Mouse Double Minute 2 protein (MDM2) is a cellular regulator of p53 tumor
suppressor (p53). Inhibition of the interaction between MDM2 and p53 proteins is a promising anticancer
therapy.
Objective:
This updated patent review is an attempt to compile the research and achievements of the
various researchers working on small molecule MDM2 inhibitors from 2010 to date. We provide an
outlook into the future for therapy based on MDM2 inhibition by presenting an overview of the most
relevant patents which have recently appeared in the literature.
Methods:
Literature and recent patents focusing on the anticancer potential of MDM2-p53 interaction
inhibitors and its applications have been analyzed. We put the main emphasis on the most perspective
compounds which are or were examined in clinical trials.
Results:
Literature data indicated that MDM2 inhibitors are therapeutically effective in specific types
of cancer or non-cancer diseases. A great number of patents and research work around new MDM2-
p53 interaction inhibitors, possible combinations, new indications, clinical regimens in previous years
prove that this targeted therapy is in the scope of interest for many business and academic research
groups.
Conclusion:
Novel MDM2 inhibitors thanks to higher potency and better ADME properties have
shown effectiveness in preclinical and clinical development however the final improvement of therapeutic
potential for MDM2 inhibitors might depend on the useful combination therapy and exploring
new cancer and non-cancer indications.
Collapse
Affiliation(s)
- Rafał Rusiecki
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Jakub Witkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | | |
Collapse
|
11
|
Jeruc J, Čugura T, Tomažič A, Boštjančič E. MDM2-positive papillary sarcomatoid renal cell carcinoma: a potential diagnostic pitfall. Virchows Arch 2019; 476:783-786. [PMID: 31732813 DOI: 10.1007/s00428-019-02703-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/12/2019] [Accepted: 10/17/2019] [Indexed: 11/28/2022]
Abstract
Sarcomatoid renal cell carcinoma is a highly aggressive form of carcinoma, histologically showing both carcinomatous and mesenchymal component in different proportions. We present a case of advanced type 1 papillary sarcomatoid renal cell carcinoma infiltrating adjacent organs and showing positivity for MDM2 by immunohistochemistry and MDM2 amplification by fluorescence in situ hybridization. This finding, together with sarcomatoid morphology, poses a potential pitfall for diagnosis with dedifferentiated liposarcoma. MDM2 is known to be altered in various human sarcomas. Only recently, MDM2 alterations have been reported in carcinomas. The presented case illustrates the need of thorough sampling with clinic-pathological correlation before making a final diagnosis in sarcomatoid retroperitoneal tumours. Additionally, the potential clinical implications of MDM2 amplification in renal cell carcinoma are discussed.
Collapse
Affiliation(s)
- Jera Jeruc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia.
| | - Tanja Čugura
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Aleš Tomažič
- Department of Abdominal Surgery, University Medical Center Ljubljana, Zaloška cesta 7, 1000, Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
12
|
Engineering Optogenetic Control of Endogenous p53 Protein Levels. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transcription factor p53 is a stress sensor that turns specific sets of genes on to allow the cell to respond to the stress depending on its severity and type. p53 is classified as tumor suppressor because its function is to maintain genome integrity promoting cell cycle arrest, apoptosis, or senescence to avoid proliferation of cells with damaged DNA. While in many human cancers the p53 gene is itself mutated, there are some in which the dysfunction of the p53 pathway is caused by the overexpression of negative regulators of p53, such as Mdm2, that keep it at low levels at all times. Here we develop an optogenetic approach to control endogenous p53 levels with blue light. Specifically, we control the nuclear localization of the Mmd2-binding PMI peptide using the light-inducible export system LEXY. In the dark, the PMI-LEXY fusion is nuclear and binds to Mdm2, consenting to p53 to accumulate and transcribe the target gene p21. Blue light exposure leads to the export of the PMI-LEXY fusion into the cytosol, thereby Mdm2 is able to degrade p53 as in the absence of the peptide. This approach may be useful to study the effect of localized p53 activation within a tissue or organ.
Collapse
|
13
|
Wong W, Lowery MA, Berger MF, Kemel Y, Taylor B, Zehir A, Srinivasan P, Bandlamudi C, Chou J, Capanu M, Varghese A, Yu KH, Iacobuzio-Donahue CA, Shia J, Klimstra DS, Jarnagin WR, Stadler ZK, O'Reilly EM. Ampullary cancer: Evaluation of somatic and germline genetic alterations and association with clinical outcomes. Cancer 2019; 125:1441-1448. [PMID: 30620386 DOI: 10.1002/cncr.31951] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/27/2018] [Accepted: 10/31/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ampullary carcinoma (AC) is a rare gastrointestinal cancer. Pathogenic germline alterations (PGAs) in BRCA2 and potentially targetable somatic alterations (SAs) in ERBB2 and ELF3 have been previously described in AC. Memorial Sloan Kettering Cancer Center has implemented an opt-in strategy for germline testing (GT) and somatic testing (ST) for patients with AC to further evaluate the spectrum of PGAs and SAs. METHODS Forty-five patients with pathologically confirmed AC prospectively consented with the Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) test (410-468 genes). A subset of the cohort (23 of the 45 patients) also consented to GT with MSK-IMPACT (76-88 genes). Germline data for 21 of the remaining 22 patients who had not consented to GT were obtained in a de-identified fashion without clinical correlation. Clinicopathologic features, treatment histories, and survival data for consenting patients were collected and analyzed. RESULTS Pancreaticobiliary, intestinal, and mixed features of the 2 types were the primary pathologic subtypes of AC identified in this cohort. No difference in median overall survival was found between pathologic subtypes. Eight of 44 patients (18%) were identified as harboring pathogenic mutations in BRCA2, ATM, RAD50, and MUTYH. In addition, this study found a wide spectrum of SAs in genes such as KRAS, MDM2, ERBB2, ELF3, and PIK3CA. Two patients in the cohort underwent SA-targeted therapy, and 1 had a partial radiographic response. CONCLUSIONS Mutations in multiple somatic and germline genes were identified in this cohort. Significantly, actionable targets were identified in the tumors, and broader testing for PGAs and SAs should be considered for all patients with AC.
Collapse
Affiliation(s)
- Winston Wong
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Maeve A Lowery
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, New York.,David M. Rubenstein Center for Pancreatic Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael F Berger
- Robert and Kate Niehaus Center for Inherited Genomics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yelena Kemel
- Robert and Kate Niehaus Center for Inherited Genomics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Barry Taylor
- Robert and Kate Niehaus Center for Inherited Genomics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmet Zehir
- Robert and Kate Niehaus Center for Inherited Genomics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Preethi Srinivasan
- Robert and Kate Niehaus Center for Inherited Genomics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chaitanya Bandlamudi
- Department of Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joanne Chou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anna Varghese
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, New York.,David M. Rubenstein Center for Pancreatic Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth H Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, New York.,David M. Rubenstein Center for Pancreatic Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christine A Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David S Klimstra
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William R Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, New York.,David M. Rubenstein Center for Pancreatic Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Department of Medicine, Weill Cornell Medicine, New York, New York.,David M. Rubenstein Center for Pancreatic Research, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
14
|
Dembla V, Somaiah N, Barata P, Hess K, Fu S, Janku F, Karp DD, Naing A, Piha-Paul SA, Subbiah V, Tsimberidou AM, Shaw K, Meric-Bernstam F, Hong DS. Prevalence of MDM2 amplification and coalterations in 523 advanced cancer patients in the MD Anderson phase 1 clinic. Oncotarget 2018; 9:33232-33243. [PMID: 30237864 PMCID: PMC6145698 DOI: 10.18632/oncotarget.26075] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/20/2018] [Indexed: 01/03/2023] Open
Abstract
Background TP53 is the most commonly mutated gene in cancer and codes for the best studied tumor suppressor, p53. MDM2 is involved in the negative regulation of p53 and itself serves as an oncogene, reported to be overexpressed in several cancer tumor types. In this retrospective study, we assessed the occurrence of MDM2 amplification among patients with various types of cancers and its association with clinical factors, other genetic aberrations, and response to targeted therapy in a phase I clinical trial setting. Methods Samples from patients with advanced solid tumors who had been referred to the MD Anderson phase I clinical trials program between January 2011 and January 2016 were collected and analyzed for MDM2 amplification using FoundationOne's genomic profiling assay. Patients whose tumors expressed MDM2 amplification were compared to those with tumors of the same histologic types without MDM2 amplification. Results We tested tumors from 523 patients, of which 23 (4.4%) had MDM2 amplification. The highest prevalence of MDM2 amplification was in sarcoma (57%), breast cancer (13%) and bladder cancer (9%). Six patients with liposarcoma were treated on phase I protocol with an MDM2 inhibitor. The most common molecular aberrations co-occurring with MDM2 amplification was CDK4 amplification (70%). TP53 mutation was also detected in 7 patients (30%). Conclusion MDM2 amplification was most commonly associated with liposarcoma. Concomitant alterations in additional genes such as CDK4 amplification and TP53 mutations, along with variable responses to targeted therapies including MDM2 inhibitors, suggest that further combinational studies are needed to target this population.
Collapse
Affiliation(s)
- Vikas Dembla
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Pedro Barata
- Department of Solid Tumors, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kenneth Hess
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Filip Janku
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aung Naing
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarina Anne Piha-Paul
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenna Shaw
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David S Hong
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
15
|
Induction of the p53 Tumor Suppressor in Cancer Cells through Inhibition of Cap-Dependent Translation. Mol Cell Biol 2018; 38:MCB.00367-17. [PMID: 29483299 DOI: 10.1128/mcb.00367-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/18/2018] [Indexed: 12/17/2022] Open
Abstract
The p53 tumor suppressor plays a critical role in protecting normal cells from malignant transformation. Development of small molecules to reactivate p53 in cancer cells has been an area of intense research. We previously identified an internal ribosomal entry site (IRES) within the 5' untranslated region of p53 mRNA that mediates translation of the p53 mRNA independent of cap-dependent translation. Our results also show that in response to DNA damage, cells switch from cap-dependent translation to cap-independent translation of p53 mRNA. In the present study, we discovered a specific inhibitor of cap-dependent translation, 4EGI-1, that is capable of inducing the accumulation of p53 in cancer cells retaining wild-type p53. Our results show that 4EGI-1 causes an increase in p53 IRES activity, leading to increased translation of p53 mRNA. We also observed that 4EGI-1 induces cancer cell apoptosis in a p53-dependent manner. Furthermore, 4EGI-1 induces p53 in cancer cells without causing DNA double-strand breaks. In conclusion, we discovered a mechanistic link between inhibition of cap-dependent translation and enhanced p53 accumulation. This leads to apoptosis of cancer cells without causing collateral damage to normal cells, thus providing a novel and effective therapeutic strategy for cancer.
Collapse
|
16
|
Boyarskikh U, Pintus S, Mandrik N, Stelmashenko D, Kiselev I, Evshin I, Sharipov R, Stegmaier P, Kolpakov F, Filipenko M, Kel A. Computational master-regulator search reveals mTOR and PI3K pathways responsible for low sensitivity of NCI-H292 and A427 lung cancer cell lines to cytotoxic action of p53 activator Nutlin-3. BMC Med Genomics 2018; 11:12. [PMID: 29504919 PMCID: PMC5836833 DOI: 10.1186/s12920-018-0330-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Small molecule Nutlin-3 reactivates p53 in cancer cells by interacting with the complex between p53 and its repressor Mdm-2 and causing an increase in cancer cell apoptosis. Therefore, Nutlin-3 has potent anticancer properties. Clinical and experimental studies of Nutlin-3 showed that some cancer cells may lose sensitivity to this compound. Here we analyze possible mechanisms for insensitivity of cancer cells to Nutlin-3. METHODS We applied upstream analysis approach implemented in geneXplain platform ( genexplain.com ) using TRANSFAC® database of transcription factors and their binding sites in genome and using TRANSPATH® database of signal transduction network with associated software such as Match™ and Composite Module Analyst (CMA). RESULTS Using genome-wide gene expression profiling we compared several lung cancer cell lines and showed that expression programs executed in Nutlin-3 insensitive cell lines significantly differ from that of Nutlin-3 sensitive cell lines. Using artificial intelligence approach embed in CMA software, we identified a set of transcription factors cooperatively binding to the promoters of genes up-regulated in the Nutlin-3 insensitive cell lines. Graph analysis of signal transduction network upstream of these transcription factors allowed us to identify potential master-regulators responsible for maintaining such low sensitivity to Nutlin-3 with the most promising candidate mTOR, which acts in the context of activated PI3K pathway. These finding were validated experimentally using an array of chemical inhibitors. CONCLUSIONS We showed that the Nutlin-3 insensitive cell lines are actually highly sensitive to the dual PI3K/mTOR inhibitor NVP-BEZ235, while no responding to either PI3K -specific LY294002 nor Bcl-XL specific 2,3-DCPE compounds.
Collapse
Affiliation(s)
- Ulyana Boyarskikh
- Institute of Chemical Biology and Fundamental Medicine, SBRAN, Novosibirsk, Russia
| | | | | | | | | | | | | | | | | | - Maxim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, SBRAN, Novosibirsk, Russia
| | - Alexander Kel
- Institute of Chemical Biology and Fundamental Medicine, SBRAN, Novosibirsk, Russia.
- Biosoft.ru, Ltd, Novosibirsk, Russia.
- geneXplain GmbH, D-38302, Wolfenbüttel, Germany.
| |
Collapse
|
17
|
Drummond CJ, Esfandiari A, Liu J, Lu X, Hutton C, Jackson J, Bennaceur K, Xu Q, Makimanejavali AR, Del Bello F, Piergentili A, Newell DR, Hardcastle IR, Griffin RJ, Lunec J. TP53 mutant MDM2-amplified cell lines selected for resistance to MDM2-p53 binding antagonists retain sensitivity to ionizing radiation. Oncotarget 2018; 7:46203-46218. [PMID: 27323823 PMCID: PMC5216791 DOI: 10.18632/oncotarget.10073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/29/2016] [Indexed: 12/20/2022] Open
Abstract
Non-genotoxic reactivation of the p53 pathway by MDM2-p53 binding antagonists is an attractive treatment strategy for wild-type TP53 cancers. To determine how resistance to MDM2/p53 binding antagonists might develop, SJSA-1 and NGP cells were exposed to growth inhibitory concentrations of chemically distinct MDM2 inhibitors, Nutlin-3 and MI-63, and clonal resistant cell lines generated. The p53 mediated responses of parental and resistant cell lines were compared. In contrast to the parental cell lines, p53 activation by Nutlin-3, MI-63 or ionizing radiation was not observed in either the SJSA-1 or the NGP derived cell lines. An identical TP53 mutation was subsequently identified in both of the SJSA-1 resistant lines, whilst one out of three identified mutations was common to both NGP derived lines. Mutation specific PCR revealed these mutations were present in parental SJSA-1 and NGP cell populations at a low frequency. Despite cross-resistance to a broad panel of MDM2/p53 binding antagonists, these MDM2-amplified and TP53 mutant cell lines remained sensitive to ionizing radiation (IR). These results indicate that MDM2/p53 binding antagonists will select for p53 mutations present in tumours at a low frequency at diagnosis, leading to resistance, but such tumours may nevertheless remain responsive to alternative therapies, including IR.
Collapse
Affiliation(s)
- Catherine J Drummond
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Arman Esfandiari
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Junfeng Liu
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Xiaohong Lu
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Claire Hutton
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Jennifer Jackson
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Karim Bennaceur
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Qing Xu
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Aditya Rao Makimanejavali
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - David R Newell
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Ian R Hardcastle
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Roger J Griffin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - John Lunec
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
18
|
Yang P, Chen W, Li X, Eilers G, He Q, Liu L, Wu Y, Wu Y, Yu W, Fletcher JA, Ou WB. Downregulation of cyclin D1 sensitizes cancer cells to MDM2 antagonist Nutlin-3. Oncotarget 2018; 7:32652-63. [PMID: 27129163 PMCID: PMC5078041 DOI: 10.18632/oncotarget.8999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/31/2016] [Indexed: 12/14/2022] Open
Abstract
The MDM2-p53 pathway has a prominent oncogenic function in the pathogenesis of various cancers. Nutlin-3, a small-molecule antagonist of MDM2-p53 interaction, inhibits proliferation in cancer cells with wild-type p53. Herein, we evaluate the expression of MDM2, both the full length and a splicing variant MDM2-A, and the sensitivity of Nutlin-3 in different cancer cell lines. Included are seven cell lines with wild-type p53 (four mesothelioma, one breast cancer, one chondrosarcoma, and one leiomyosarcoma), two liposarcoma cell lines harboring MDM2 amplification and wild-type p53, and one mesothelioma cell line harboring a p53 point mutation. Nutlin-3 treatment increased expression of cyclin D1, MDM2, and p53 in cell lines with wild-type p53. Additive effects were observed in cells containing wild-type p53 through coordinated attack on MDM2-p53 binding and cyclin D1 by lentivirual shRNA knockdown or small molecule inhibition, as demonstrated by immunoblots and cell viability analyses. Further results demonstrate that MDM2 binds to cyclin D1, and that an increase in cyclin D1 expression after Nutlin-3 treatment is correlated with expression and ubiquitin E3-ligase activity of MDM2. MDM2 and p53 knockdown experiments demonstrated inhibition of cyclin D1 by MDM2 but not p53. These results indicate that combination inhibition of cyclin D1 and MDM2-p53 binding warrants clinical evaluation as a novel therapeutic strategy in cancer cells harboring wild-type p53.
Collapse
Affiliation(s)
- Peipei Yang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Weicai Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuhui Li
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China
| | - Grant Eilers
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Quan He
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lili Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yeqing Wu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuehong Wu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wei Yu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Madhavan S, Ritter D, Micheel C, Rao S, Roy A, Sonkin D, Mccoy M, Griffith M, Griffith OL, Mcgarvey P, Kulkarni S. ClinGen Cancer Somatic Working Group - standardizing and democratizing access to cancer molecular diagnostic data to drive translational research. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2018; 23:247-258. [PMID: 29218886 PMCID: PMC5728662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A growing number of academic and community clinics are conducting genomic testing to inform treatment decisions for cancer patients (1). In the last 3-5 years, there has been a rapid increase in clinical use of next generation sequencing (NGS) based cancer molecular diagnostic (MolDx) testing (2). The increasing availability and decreasing cost of tumor genomic profiling means that physicians can now make treatment decisions armed with patient-specific genetic information. Accumulating research in the cancer biology field indicates that there is significant potential to improve cancer patient outcomes by effectively leveraging this rich source of genomic data in treatment planning (3). To achieve truly personalized medicine in oncology, it is critical to catalog cancer sequence variants from MolDx testing for their clinical relevance along with treatment information and patient outcomes, and to do so in a way that supports large-scale data aggregation and new hypothesis generation. One critical challenge to encoding variant data is adopting a standard of annotation of those variants that are clinically actionable. Through the NIH-funded Clinical Genome Resource (ClinGen) (4), in collaboration with NLM's ClinVar database and >50 academic and industry based cancer research organizations, we developed the Minimal Variant Level Data (MVLD) framework to standardize reporting and interpretation of drug associated alterations (5). We are currently involved in collaborative efforts to align the MVLD framework with parallel, complementary sequence variants interpretation clinical guidelines from the Association of Molecular Pathologists (AMP) for clinical labs (6). In order to truly democratize access to MolDx data for care and research needs, these standards must be harmonized to support sharing of clinical cancer variants. Here we describe the processes and methods developed within the ClinGen's Somatic WG in collaboration with over 60 cancer care and research organizations as well as CLIA-certified, CAP-accredited clinical testing labs to develop standards for cancer variant interpretation and sharing.
Collapse
Affiliation(s)
- Subha Madhavan
- Innovation Center for Biomedical Informatics, Georgetown University, Washington D.C., USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chang LC, Vural S, Sonkin D. Detection of homozygous deletions in tumor-suppressor genes ranging from dozen to hundreds nucleotides in cancer models. Hum Mutat 2017; 38:1449-1453. [PMID: 28762582 DOI: 10.1002/humu.23308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 01/21/2023]
Abstract
Tumor-suppressor genes can be inactivated by several mechanisms and, in a majority of cases, both alleles need to be affected. One of the mechanisms of inactivation is due to deletions ranging from dozen to hundreds of nucleotides; such deletions are often missed by variant callers. HomDelDetect is a method to detect such homozygous deletions in cancer models, such as cancer cell lines and potentially patient tumor-derived xenografts. This method can be applied to partial exome, whole-exome sequencing, whole-genome sequencing, and RNA-seq data. We applied our method across a panel of CCLE cancer cell lines and observed good concordance with SNP array-based analysis and also detected deletions that have been missed by variant callers and by SNP arrays, demonstrating the ability of HomDelDetect to improve the annotations of tumor-suppressor genes in cancer models.
Collapse
Affiliation(s)
- Lun-Ching Chang
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Biometric Research Program, Computational and Systems Biology Branch, Rockville, Maryland
| | - Suleyman Vural
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Biometric Research Program, Computational and Systems Biology Branch, Rockville, Maryland
| | - Dmitriy Sonkin
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Biometric Research Program, Computational and Systems Biology Branch, Rockville, Maryland
| |
Collapse
|
21
|
Ji B, Harris BRE, Liu Y, Deng Y, Gradilone SA, Cleary MP, Liu J, Yang DQ. Targeting IRES-Mediated p53 Synthesis for Cancer Diagnosis and Therapeutics. Int J Mol Sci 2017; 18:93. [PMID: 28054974 PMCID: PMC5297727 DOI: 10.3390/ijms18010093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022] Open
Abstract
While translational regulation of p53 by the internal ribosome entry site (IRES) at its 5'-untranslated region following DNA damage has been widely accepted, the detailed mechanism underlying the translational control of p53 by its IRES sequence is still poorly understood. In this review, we will focus on the latest progress in identifying novel regulatory proteins of the p53 IRES and in uncovering the functional connection between defective IRES-mediated p53 translation and tumorigenesis. We will also discuss how these findings may lead to a better understanding of the process of oncogenesis and open up new avenues for cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun 130021, China.
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
| | - Benjamin R E Harris
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yibin Deng
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jianhua Liu
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun 130021, China.
| | - Da-Qing Yang
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA.
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
22
|
Hwang SJ, Park HG, Park Y, Lee HJ. An α-quaternary chiral latam derivative, YH-304 as a novel broad-spectrum anticancer agent. Int J Oncol 2016; 49:2480-2486. [PMID: 27748805 DOI: 10.3892/ijo.2016.3726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/30/2016] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported that α-quaternary chiral lactam derivatives have broad spectrum anticancer activity. However, the underlying molecular mechanisms and its relevance are largely unknown. In the present study, we report progress on α-quaternary chiral lactam analogues that address this, focusing on the novel analogue YH-304 as a candidate to broadly target human cancer cells. The effect of YH-304 on cell transformation was assessed by clonogenic assay in non-small cell lung cancer cells (NSCLCs) A549 and 226B. Proapoptotic activity of YH-304 was determined by TUNEL assay and cleaved PARP, cleaved caspase-9, and Bax as markers for apoptosis. The p53-dependency and therapeutic spectrum of YH-304 was assessed by western blot analysis, real-time PCR, and cell viability assays in cells expressing endogenous wild or mutant p53. The effect of YH-304 on angiogenesis in vivo was examined by bFGF-mediated angiogenesis assay in zebrafish. Finally, the effect of YH-304 on AKT and ERK activation (phosphorylation) as a putative mechanism underlying the effect of YH-304 on bFGF-mediated angiogenesis was assessed using western blotting. We found that YH-304 significantly decreases the colony-forming activities of both A549 and 226B cells, inducing cellular apoptosis. Unlike nutlin-3 (p53 pathway activator), YH-304 did not affect the expression levels of p53 and its target gene such as p21 and thus showed p53-independent anticancer activity with broad spectrum. In addition, YH-304 inhibited bFGF-induced angiogenesis in vivo through mediating AKT and ERK signaling pathway, which plays an important role in bFGF activation and angiogenesis. Taken together, our data indicate that YH-304 may represent a novel therapeutic option for the treatment of cancer in a p53-independent manner.
Collapse
Affiliation(s)
- Su Jung Hwang
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 621-749, Republic of Korea
| | - Hyeung-Geun Park
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yohan Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 621-749, Republic of Korea
| | - Hyo-Jong Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 621-749, Republic of Korea
| |
Collapse
|
23
|
McCubrey JA, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Libra M, Cervello M, Montalto G, Yang LV, Abrams SL, Steelman LS. Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis. Adv Biol Regul 2016; 63:32-48. [PMID: 27776972 DOI: 10.1016/j.jbior.2016.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
TP53 is a critical tumor suppressor gene that regulates cell cycle progression, apoptosis, cellular senescence and many other properties critical for control of normal cellular growth and death. Due to the pleiotropic effects that TP53 has on gene expression and cellular physiology, mutations at this tumor suppressor gene result in diverse physiological effects. T53 mutations are frequently detected in numerous cancers. The expression of TP53 can be induced by various agents used to treat cancer patients such as chemotherapeutic drugs and ionizing radiation. Radiation will induce Ataxia telangiectasia mutated (ATM) and other kinases that results in the phosphorylation and activation of TP53. TP53 is also negatively regulated by other mechanisms, such as ubiquitination by ligases such as MDM2. While TP53 has been documented to control the expression of many "classical" genes (e.g., p21Cip-1, PUMA, Bax) by transcriptional mechanisms for quite some time, more recently TP53 has been shown to regulate microRNA (miR) gene expression. Different miRs can promote oncogenesis (oncomiR) whereas others act to inhibit tumor progression (tumor suppressor miRs). Targeted therapies to stabilize TP53 have been developed by various approaches, MDM2/MDM4 inhibitors have been developed to stabilize TP53 in TP53-wild type (WT) tumors. In addition, small molecules have been isolated that will reactivate certain mutant TP53s. Both of these types of inhibitors are in clinical trials. Understanding the actions of TP53 may yield novel approaches to suppress cancer, aging and other health problems.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Guiseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
24
|
Kang MH, Reynolds CP, Kolb EA, Gorlick R, Carol H, Lock R, Keir ST, Maris JM, Wu J, Lyalin D, Kurmasheva RT, Houghton PJ, Smith MA. Initial Testing (Stage 1) of MK-8242-A Novel MDM2 Inhibitor-by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 2016; 63:1744-52. [PMID: 27238606 PMCID: PMC5657425 DOI: 10.1002/pbc.26064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 03/29/2016] [Accepted: 04/12/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND MK-8242 is an inhibitor of MDM2 that stabilizes the tumor suppressor TP53 and induces growth arrest or apoptosis downstream of TP53 induction. PROCEDURES MK-8242 was tested against the Pediatric Preclinical Testing Program (PPTP) in vitro cell line panel at concentrations from 1.0 nM to 10.0 μM and against the PPTP in vivo xenograft panels using oral gavage on Days 1-5 and Day 15-19 at a dose of 125 mg/kg (solid tumors) or 75 mg/kg (acute lymphoblastic leukemia [ALL] models). RESULTS The median IC50 for MK-8242 was 0.07 μM for TP53 wild-type cell lines versus >10 μM for TP53 mutant cell lines. MK-8242 induced a twofold or greater delay in time to event in 10 of 17 (59%) of TP53 wild-type solid tumor xenografts, excluding osteosarcoma xenografts that have very low TP53 expression. Objective responses were observed in seven solid tumor xenografts representing multiple histotypes. For the systemic-disease ALL panel, among eight xenografts there were two complete responses (CRs) and six partial responses (PRs). Two additional MLL-rearranged xenografts (MV4;11 and RS4;11) grown subcutaneously showed maintained CR and PR, respectively. The expected pharmacodynamic responses to TP53 activation were observed in TP53 wild-type models treated with MK-8242. Pharmacokinetic analysis showed that MK-8242 drug exposure in SCID mice appears to exceed that was observed in adult phase 1 trials. CONCLUSIONS MK-8242-induced tumor regressions across multiple solid tumor histotypes and induced CRs or PRs for most ALL xenografts. This activity was observed at MK-8242 drug exposures that appear to exceed those observed in human phase 1 trials.
Collapse
Affiliation(s)
- Min H. Kang
- Texas Tech University Health Sciences Center, Lubbock, TX
| | | | | | | | - Hernan Carol
- Children’s Cancer Institute Australia for Medical Research, Randwick, NSW, Australia
| | - Richard Lock
- Children’s Cancer Institute Australia for Medical Research, Randwick, NSW, Australia
| | | | - John M. Maris
- Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Cancer Research Institute, Philadelphia, PA
| | - Jianwrong Wu
- St. Jude Children's Research Hospital, Memphis, TN
| | | | | | | | | |
Collapse
|
25
|
Bouaoun L, Sonkin D, Ardin M, Hollstein M, Byrnes G, Zavadil J, Olivier M. TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data. Hum Mutat 2016; 37:865-76. [PMID: 27328919 DOI: 10.1002/humu.23035] [Citation(s) in RCA: 550] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/18/2016] [Indexed: 12/12/2022]
Abstract
TP53 gene mutations are one of the most frequent somatic events in cancer. The IARC TP53 Database (http://p53.iarc.fr) is a popular resource that compiles occurrence and phenotype data on TP53 germline and somatic variations linked to human cancer. The deluge of data coming from cancer genomic studies generates new data on TP53 variations and attracts a growing number of database users for the interpretation of TP53 variants. Here, we present the current contents and functionalities of the IARC TP53 Database and perform a systematic analysis of TP53 somatic mutation data extracted from this database and from genomic data repositories. This analysis showed that IARC has more TP53 somatic mutation data than genomic repositories (29,000 vs. 4,000). However, the more complete screening achieved by genomic studies highlighted some overlooked facts about TP53 mutations, such as the presence of a significant number of mutations occurring outside the DNA-binding domain in specific cancer types. We also provide an update on TP53 inherited variants including the ones that should be considered as neutral frequent variations. We thus provide an update of current knowledge on TP53 variations in human cancer as well as inform users on the efficient use of the IARC TP53 Database.
Collapse
Affiliation(s)
- Liacine Bouaoun
- Group of Biostatistics, International Agency for Research on Cancer, Lyon Cedex 08, 69372, France
| | - Dmitriy Sonkin
- Division of Cancer Treatment and Diagnosis, Biometric Research Program, National Cancer Institute, Rockville, 9609, Maryland
| | - Maude Ardin
- Group of Molecular Mechanisms and Biomarkers, International Agency for Research on Cancer, Lyon Cedex 08, 69372, France
| | - Monica Hollstein
- Group of Molecular Mechanisms and Biomarkers, International Agency for Research on Cancer, Lyon Cedex 08, 69372, France
- Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK
| | - Graham Byrnes
- Group of Biostatistics, International Agency for Research on Cancer, Lyon Cedex 08, 69372, France
| | - Jiri Zavadil
- Group of Molecular Mechanisms and Biomarkers, International Agency for Research on Cancer, Lyon Cedex 08, 69372, France
| | - Magali Olivier
- Group of Molecular Mechanisms and Biomarkers, International Agency for Research on Cancer, Lyon Cedex 08, 69372, France
| |
Collapse
|
26
|
Riscal R, Schrepfer E, Arena G, Cissé MY, Bellvert F, Heuillet M, Rambow F, Bonneil E, Sabourdy F, Vincent C, Ait-Arsa I, Levade T, Thibaut P, Marine JC, Portais JC, Sarry JE, Le Cam L, Linares LK. Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53. Mol Cell 2016; 62:890-902. [PMID: 27264869 DOI: 10.1016/j.molcel.2016.04.033] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/07/2016] [Accepted: 04/27/2016] [Indexed: 12/20/2022]
Abstract
The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD(+)/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism.
Collapse
Affiliation(s)
- Romain Riscal
- IRCM, Institut de Recherche en Cancérologie de Montpellier, 34298 Montpellier, France; INSERM, U1194, 34298 Montpellier, France; Université de Montpellier, 34298 Montpellier, France; Institut Régional du Cancer Montpellier, 34298 Montpellier, France
| | - Emilie Schrepfer
- IRCM, Institut de Recherche en Cancérologie de Montpellier, 34298 Montpellier, France; INSERM, U1194, 34298 Montpellier, France; Université de Montpellier, 34298 Montpellier, France; Institut Régional du Cancer Montpellier, 34298 Montpellier, France
| | - Giuseppe Arena
- IRCM, Institut de Recherche en Cancérologie de Montpellier, 34298 Montpellier, France; INSERM, U1194, 34298 Montpellier, France; Université de Montpellier, 34298 Montpellier, France; Institut Régional du Cancer Montpellier, 34298 Montpellier, France
| | - Madi Y Cissé
- IRCM, Institut de Recherche en Cancérologie de Montpellier, 34298 Montpellier, France; INSERM, U1194, 34298 Montpellier, France; Université de Montpellier, 34298 Montpellier, France; Institut Régional du Cancer Montpellier, 34298 Montpellier, France
| | - Floriant Bellvert
- INSA, UPS, INP, Université de Toulouse, 135 Avenue de Rangueil, 31 077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France; CNRS, UMR5504, 31400 Toulouse, France
| | - Maud Heuillet
- INSA, UPS, INP, Université de Toulouse, 135 Avenue de Rangueil, 31 077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France; CNRS, UMR5504, 31400 Toulouse, France
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128 Station Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - Frédérique Sabourdy
- Laboratoire de Biochimie Métabolique, IFB, CHU Purpan, 31059 Toulouse, France; INSERM UMR 1037, CRCT, Université Paul Sabatier Toulouse-III, 31062 Toulouse, France
| | - Charles Vincent
- IRCM, Institut de Recherche en Cancérologie de Montpellier, 34298 Montpellier, France; INSERM, U1194, 34298 Montpellier, France; Université de Montpellier, 34298 Montpellier, France; Institut Régional du Cancer Montpellier, 34298 Montpellier, France
| | - Imade Ait-Arsa
- IRCM, Institut de Recherche en Cancérologie de Montpellier, 34298 Montpellier, France; INSERM, U1194, 34298 Montpellier, France; Université de Montpellier, 34298 Montpellier, France; Institut Régional du Cancer Montpellier, 34298 Montpellier, France
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, IFB, CHU Purpan, 31059 Toulouse, France; INSERM UMR 1037, CRCT, Université Paul Sabatier Toulouse-III, 31062 Toulouse, France
| | - Pierre Thibaut
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128 Station Centre-Ville, Montreal, QC H3C 3J7, Canada; Department of Chemistry, Université de Montréal, P.O. Box 6128 Station Centre-Ville, Montreal, QC H3C 3J7, Canada
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Jean-Charles Portais
- INSA, UPS, INP, Université de Toulouse, 135 Avenue de Rangueil, 31 077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France; CNRS, UMR5504, 31400 Toulouse, France
| | - Jean-Emmanuel Sarry
- INSERM UMR 1037, CRCT, Université Paul Sabatier Toulouse-III, 31062 Toulouse, France
| | - Laurent Le Cam
- IRCM, Institut de Recherche en Cancérologie de Montpellier, 34298 Montpellier, France; INSERM, U1194, 34298 Montpellier, France; Université de Montpellier, 34298 Montpellier, France; Institut Régional du Cancer Montpellier, 34298 Montpellier, France.
| | - Laetitia K Linares
- IRCM, Institut de Recherche en Cancérologie de Montpellier, 34298 Montpellier, France; INSERM, U1194, 34298 Montpellier, France; Université de Montpellier, 34298 Montpellier, France; Institut Régional du Cancer Montpellier, 34298 Montpellier, France.
| |
Collapse
|
27
|
Oral nano-delivery of anticancer ginsenoside 25-OCH3-PPD, a natural inhibitor of the MDM2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action. Oncotarget 2016; 6:21379-94. [PMID: 26041888 PMCID: PMC4673272 DOI: 10.18632/oncotarget.4091] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/12/2015] [Indexed: 01/10/2023] Open
Abstract
The Mouse Double Minute 2 (MDM2) oncogene plays a critical role in cancer development and progression through p53-dependent and p53-independent mechanisms. Both natural and synthetic MDM2 inhibitors have been shown anticancer activity against several human cancers. We have recently identified a novel ginsenoside, 25-OCH3-PPD (GS25), one of the most active anticancer ginsenosides discovered thus far, and have demonstrated its MDM2 inhibition and anticancer activity in various human cancer models, including prostate cancer. However, the oral bioavailability of GS25 is limited, which hampers its further development as an oral anticancer agent. The present study was designed to develop a novel nanoparticle formulation for oral delivery of GS25. After GS25 was successfully encapsulated into PEG-PLGA nanoparticles (GS25NP) and its physicochemical properties were characterized, the efficiency of MDM2 targeting, anticancer efficacy, pharmacokinetics, and safety were evaluated in in vitro and in vivo models of human prostate cancer. Our results indicated that, compared with the unencapsulated GS25, GS25NP demonstrated better MDM2 inhibition, improved oral bioavailability and enhanced in vitro and in vivo activities. In conclusion, the validated nano-formulation for GS25 oral delivery improves its molecular targeting, oral bioavailability and anticancer efficacy, providing a basis for further development of GS25 as a novel agent for cancer therapy and prevention.
Collapse
|
28
|
Oliner JD, Saiki AY, Caenepeel S. The Role of MDM2 Amplification and Overexpression in Tumorigenesis. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026336. [PMID: 27194168 DOI: 10.1101/cshperspect.a026336] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mouse double minute 2 (MDM2) is a critical negative regulator of the tumor suppressor p53, playing a key role in controlling its transcriptional activity, protein stability, and nuclear localization. MDM2 expression is up-regulated in numerous cancers, resulting in a loss of p53-dependent activities, such as apoptosis and cell-cycle arrest. Genetic amplification and inheritance of MDM2 promoter single-nucleotide polymorphisms (SNPs) are the two best-studied mechanisms for up-regulating MDM2 activity. This article provides an overview of these events in human cancer, highlighting the frequent occurrence of MDM2 amplification in sarcoma and the role of SNP309 and SNP285 in regulating MDM2 expression and cancer risk. The availability of large-scale genomic profiling datasets, like those from The Cancer Genome Atlas Research Network, have provided the opportunity to evaluate the consequences of MDM2 amplification and SNP inheritance across high-quality tumor samples from diverse cancer indications.
Collapse
Affiliation(s)
| | - Anne Y Saiki
- Oncology Research, Amgen, Thousand Oaks, California 91320
| | - Sean Caenepeel
- Oncology Research, Amgen, Thousand Oaks, California 91320
| |
Collapse
|
29
|
Esfandiari A, Hawthorne TA, Nakjang S, Lunec J. Chemical Inhibition of Wild-Type p53-Induced Phosphatase 1 (WIP1/PPM1D) by GSK2830371 Potentiates the Sensitivity to MDM2 Inhibitors in a p53-Dependent Manner. Mol Cancer Ther 2016; 15:379-91. [PMID: 26832796 DOI: 10.1158/1535-7163.mct-15-0651] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/23/2015] [Indexed: 01/10/2023]
Abstract
Sensitivity to MDM2 inhibitors is widely different among responsive TP53 wild-type cell lines and tumors. Understanding the determinants of MDM2 inhibitor sensitivity is pertinent for their optimal clinical application. Wild-type p53-inducible phosphatase-1 (WIP1) encoded by PPM1D, is activated, gained/amplified in a range of TP53 wild-type malignancies, and is involved in p53 stress response homeostasis. We investigated cellular growth/proliferation of TP53 wild-type and matched mutant/null cell line pairs, differing in PPM1D genetic status, in response to Nutlin-3/RG7388 ± a highly selective WIP1 inhibitor, GSK2830371. We also assessed the effects of GSK2830371 on MDM2 inhibitor-induced p53(Ser15) phosphorylation, p53-mediated global transcriptional activity, and apoptosis. The investigated cell line pairs were relatively insensitive to single-agent GSK2830371. However, a non-growth-inhibitory dose of GSK2830371 markedly potentiated the response to MDM2 inhibitors in TP53 wild-type cell lines, most notably in those harboring PPM1D-activating mutations or copy number gain (up to 5.8-fold decrease in GI50). Potentiation also correlated with significant increase in MDM2 inhibitor-induced cell death endpoints that were preceded by a marked increase in a WIP1 negatively regulated substrate, phosphorylated p53(Ser15), known to increase p53 transcriptional activity. Microarray-based gene expression analysis showed that the combination treatment increases the subset of early RG7388-induced p53 transcriptional target genes. These findings demonstrate that potent and selective WIP1 inhibition potentiates the response to MDM2 inhibitors in TP53 wild-type cells, particularly those with PPM1D activation or gain, while highlighting the mechanistic importance of p53(Ser15) and its potential use as a biomarker for response to this combination regimen.
Collapse
Affiliation(s)
- Arman Esfandiari
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Thomas A Hawthorne
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sirintra Nakjang
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom. Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John Lunec
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
30
|
Burgess A, Chia KM, Haupt S, Thomas D, Haupt Y, Lim E. Clinical Overview of MDM2/X-Targeted Therapies. Front Oncol 2016; 6:7. [PMID: 26858935 PMCID: PMC4728205 DOI: 10.3389/fonc.2016.00007] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/11/2016] [Indexed: 12/24/2022] Open
Abstract
MDM2 and MDMX are the primary negative regulators of p53, which under normal conditions maintain low intracellular levels of p53 by targeting it to the proteasome for rapid degradation and inhibiting its transcriptional activity. Both MDM2 and MDMX function as powerful oncogenes and are commonly over-expressed in some cancers, including sarcoma (~20%) and breast cancer (~15%). In contrast to tumors that are p53 mutant, whereby the current therapeutic strategy restores the normal active conformation of p53, MDM2 and MDMX represent logical therapeutic targets in cancer for increasing wild-type (WT) p53 expression and activities. Recent preclinical studies suggest that there may also be situations that MDM2/X inhibitors could be used in p53 mutant tumors. Since the discovery of nutlin-3a, the first in a class of small molecule MDM2 inhibitors that binds to the hydrophobic cleft in the N-terminus of MDM2, preventing its association with p53, there is now an extensive list of related compounds. In addition, a new class of stapled peptides that can target both MDM2 and MDMX have also been developed. Importantly, preclinical modeling, which has demonstrated effective in vitro and in vivo killing of WT p53 cancer cells, has now been translated into early clinical trials allowing better assessment of their biological effects and toxicities in patients. In this overview, we will review the current MDM2- and MDMX-targeted therapies in development, focusing particularly on compounds that have entered into early phase clinical trials. We will highlight the challenges pertaining to predictive biomarkers for and toxicities associated with these compounds, as well as identify potential combinatorial strategies to enhance its anti-cancer efficacy.
Collapse
Affiliation(s)
- Andrew Burgess
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St. Vincent's Clinical School, UNSW Australia, Sydney, NSW, Australia
| | - Kee Ming Chia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research , Sydney, NSW , Australia
| | - Sue Haupt
- The Sir Peter MacCallum Department of Oncology, the University of Melbourne , Melbourne, VIC , Australia
| | - David Thomas
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St. Vincent's Clinical School, UNSW Australia, Sydney, NSW, Australia
| | - Ygal Haupt
- The Sir Peter MacCallum Department of Oncology, the University of Melbourne , Melbourne, VIC , Australia
| | - Elgene Lim
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia; Faculty of Medicine, St. Vincent's Clinical School, UNSW Australia, Sydney, NSW, Australia
| |
Collapse
|