1
|
Wang D, Musazade E, Wang H, Liu J, Zhang C, Liu W, Liu Y, Guo L. Regulatory Mechanism of the Constitutive Photomorphogenesis 9 Signalosome Complex in Response to Abiotic Stress in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2777-2788. [PMID: 35199516 DOI: 10.1021/acs.jafc.1c07224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is a highly conserved protein complex that regulates signaling pathways in plants under abiotic stress. We discuss the potential molecular mechanisms of CSN under abiotic stress, including oxidative stress with reactive oxygen species signaling, salt stress with jasmonic acid, gibberellic acid, and abscisic acid signaling, high-temperature stress with auxin signaling, and optical radiation with DNA damage and repair response. We conclude that CSN likely participates in affecting antioxidant biosynthesis and hormone signaling by targeting receptors, kinases, and transcription factors in response to abiotic stress, which potentially provides valuable information for engineering stress-tolerant crops.
Collapse
Affiliation(s)
- Dan Wang
- College of Life Science, Key Laboratory of Straw Biology and Higher Value Application, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
- School of Public Health, Jilin Medical University, Jilin, Jilin 132013, People's Republic of China
| | - Elshan Musazade
- College of Life Science, Key Laboratory of Straw Biology and Higher Value Application, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Huan Wang
- Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Junmei Liu
- Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Chunyu Zhang
- College of Food and Biotechnology, Changchun Polytechnic, Changchun, Jilin 130033, People's Republic of China
| | - Wencong Liu
- College of Resources and Environment, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Yanxi Liu
- College of Life Science, Key Laboratory of Straw Biology and Higher Value Application, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| | - Liquan Guo
- College of Life Science, Key Laboratory of Straw Biology and Higher Value Application, Ministry of Education, Jilin Agricultural University, Changchun, Jilin 130118, People's Republic of China
| |
Collapse
|
2
|
Zhang Y, Hou J, Shi S, Du J, Liu Y, Huang P, Li Q, Liu L, Hu H, Ji Y, Guo L, Shi Y, Liu Y, Cui H. CSN6 promotes melanoma proliferation and metastasis by controlling the UBR5-mediated ubiquitination and degradation of CDK9. Cell Death Dis 2021; 12:118. [PMID: 33483464 PMCID: PMC7822921 DOI: 10.1038/s41419-021-03398-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
As a critical subunit of the constitutive photomorphogenesis 9 (COP9) signalosome (CSN), CSN6 is upregulated in some human cancers and plays critical roles in tumorigenesis and progression, but its biological functions and molecular mechanisms in melanoma remain unknown. Our study showed that CSN6 expression was upregulated in melanoma patients and cells, and correlated with poor survival in melanoma patients. In melanoma cells, CSN6 knockdown remarkably inhibited cell proliferation, tumorigenicity, migration, and invasion, whereas CSN6 recovery rescued the proliferative and metastatic abilities. Notably, we identified that CSN6 stabilized CDK9 expression by reducing CDK9 ubiquitination levels, thereby activating CDK9-mediated signaling pathways. In addition, our study described a novel CSN6-interacting E3 ligase UBR5, which was negatively regulated by CSN6 and could regulate the ubiquitination and degradation of CDK9 in melanoma cells. Furthermore, in CSN6-knockdown melanoma cells, UBR5 knockdown abrogated the effects caused by CSN6 silencing, suggesting that CSN6 activates the UBR5/CDK9 pathway to promote melanoma cell proliferation and metastasis. Thus, this study illustrates the mechanism by which the CSN6-UBR5-CDK9 axis promotes melanoma development, and demonstrate that CSN6 may be a potential biomarker and anticancer target in melanoma.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China.,Cancer center, Medical Research Institute, Southwest University, 400716, Chongqing, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, 400716, Chongqing, China
| | - Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Juan Du
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Yudong Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China.,Cancer center, Medical Research Institute, Southwest University, 400716, Chongqing, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, 400716, Chongqing, China
| | - Pan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China.,Cancer center, Medical Research Institute, Southwest University, 400716, Chongqing, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, 400716, Chongqing, China
| | - Qian Li
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Lichao Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Huanrong Hu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China
| | - Yacong Ji
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Leiyang Guo
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Yaqiong Shi
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical University, 050051, Shijiazhuang, Hebei, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China. .,Cancer center, Medical Research Institute, Southwest University, 400716, Chongqing, China. .,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, 400716, Chongqing, China. .,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
3
|
Choi HH, Zou S, Wu J, Wang H, Phan L, Li K, Zhang P, Chen D, Liu Q, Qin B, Nguyen TAT, Yeung SJ, Fang L, Lee M. EGF Relays Signals to COP1 and Facilitates FOXO4 Degradation to Promote Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000681. [PMID: 33101846 PMCID: PMC7578864 DOI: 10.1002/advs.202000681] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 08/19/2020] [Indexed: 05/10/2023]
Abstract
Forkhead-Box Class O 4 (FOXO4) is involved in critical biological functions, but its response to EGF-PKB/Akt signal regulation is not well characterized. Here, it is reported that FOXO4 levels are downregulated in response to EGF treatment, with concurrent elevation of COP9 Signalosome subunit 6 (CSN6) and E3 ubiquitin ligase constitutive photomorphogenic 1 (COP1) levels. Mechanistic studies show that CSN6 binds and regulates FOXO4 stability through enhancing the E3 ligase activity of COP1, and that COP1 directly interacts with FOXO4 through a VP motif on FOXO4 and accelerates the ubiquitin-mediated degradation of FOXO4. Metabolomic studies demonstrate that CSN6 expression leads to serine and glycine production. It is shown that FOXO4 directly binds and suppresses the promoters of serine-glycine-one-carbon (SGOC) pathway genes, thereby diminishing SGOC metabolism. Evidence shows that CSN6 can regulate FOXO4-mediated SGOC gene expression. Thus, these data suggest a link of CSN6-FOXO4 axis and ser/gly metabolism. Further, it is shown that CSN6-COP1-FOXO4 axis is deregulated in cancer and that the protein expression levels of CSN6 and FOXO4 can serve as prognostic markers for cancers. The results illustrate a pathway regulation of FOXO4-mediated serine/glycine metabolism through the function of CSN6-COP1 axis. Insights into this pathway may be strategically designed for therapeutic intervention in cancers.
Collapse
Affiliation(s)
- Hyun Ho Choi
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Shaomin Zou
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Jian‐lin Wu
- State Key Laboratory of Quality Research in Chinese MedicineMacau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyMacao999078China
| | - Huashe Wang
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Liem Phan
- Department of Molecular and Cellular OncologyDivision of Basic Science ResearchThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Kai Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Peng Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Daici Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Qingxin Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Baifu Qin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | | | - Sai‐Ching J. Yeung
- Department of Emergency MedicineDivision of Internal MedicineThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Lekun Fang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of Colorectal SurgeryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Mong‐Hong Lee
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseaseThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Research Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| |
Collapse
|
4
|
Mao Z, Chen C, Pei DS. The Emerging Role of CSN6 in Biological Behavior and Cancer Progress. Anticancer Agents Med Chem 2020; 19:1198-1204. [PMID: 30961513 DOI: 10.2174/1871520619666190408142131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/23/2018] [Accepted: 03/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Constitutive Photomorphogenesis 9 (COP9) signalosome (CSN) subunit 6 (CSN6) noticeably acts as a regulator of the degradation of cancer-related proteins, which contributes to cancerogenesis. The aims of this paper are to expound the research advances of CSN6, particularly focusing on roles of CSN6 in the regulation of biological behavior and cancer progress. METHODS Literature from PubMed and Web of Science databases about biological characteristics and application of CSN6 published in recent years was collected to conduct a review. RESULTS CSN6, not only the non-catalytic Mpr1p and Pad1p N-terminal (MPN) subunit of CSN, but also a relatively independent protein molecule, has received great attention as a regulator of a wide range of developmental processes by taking part in the ubiquitin-proteasome system and signal transduction, as well as regulating genome integrity and DNA damage response. In addition, phosphorylation of CSN6 increases the stability of CSN6, thereby promoting its regulatory capacity. Moreover, CSN6 is overexpressed in many types of cancer compared with normal tissues and is involved in the regulation of several important intracellular pathways, consisting of cell proliferation, migration, invasion, transformation, and tumorigenesis. CONCLUSION We mainly present insights into the function and research development of CSN6, hoping that it can help guide the treatment of developmental defects and improve clinical care, especially in the regulation of cancer signaling pathways.
Collapse
Affiliation(s)
- Zun Mao
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Cheng Chen
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Dong-Sheng Pei
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
5
|
Hou J, Cui H. CSN6: a promising target for cancer prevention and therapy. Histol Histopathol 2020; 35:645-652. [PMID: 32016946 DOI: 10.14670/hh-18-206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CSN6 has recently received increased attention as a multifunctional protein involved in protein stability. CSN6 plays an important role in controlling cellular proliferation, apoptosis and metastasis, modulating signal transduction, as well as regulating DNA damage and repair. Most studies have demonstrated that CSN6 is significantly upregulated in human malignant tumors such as cervical cancer, papillary thyroid cancer, colorectal cancer, breast cancer, lung adenocarcinoma, and glioblastoma, and its expression is usually correlated with poor prognosis. In this review, we summarize recent available findings regarding the oncogenic role of CSN6 in tumors, and provide a better understanding of CSN6 function at the molecular level and its potential therapeutic implications in combating human cancers.
Collapse
Affiliation(s)
- Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China.
| |
Collapse
|
6
|
Song Y, Liu Y, Pan S, Xie S, Wang ZW, Zhu X. Role of the COP1 protein in cancer development and therapy. Semin Cancer Biol 2020; 67:43-52. [PMID: 32027978 DOI: 10.1016/j.semcancer.2020.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/31/2022]
Abstract
COP1, an E3 ubiquitin ligase, has been demonstrated to play a vital role in the regulation of cell proliferation, apoptosis and DNA repair. Accumulated evidence has revealed that COP1 is involved in carcinogenesis via targeting its substrates, including p53, c-Jun, ETS, β-catenin, STAT3, MTA1, p27, 14-3-3σ, and C/EBPα, for ubiquitination and degradation. COP1 can play tumor suppressive and oncogenic roles in human malignancies, urging us to summarize the functions of COP1 in tumorigenesis. In this review, we describe the structure of COP1 and its known substrates. Moreover, we dissect the function of COP1 by physiological (mouse models), pathological (human tumor specimens) and biochemical (ubiquitin substrates) Evidence. Furthermore, we discuss COP1 as a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shangdan Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
7
|
Shi J, Guan X, Zhan F, Liu C, Li Z, Yao Y, Wang B, Lou C, Zhang Y. CSN6 expression is associated with pancreatic cancer progression and predicts poor prognosis. Cancer Biol Ther 2019; 20:1290-1299. [PMID: 31311398 DOI: 10.1080/15384047.2019.1632143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Constitutive photomorphogenesis 9 (COP9) signalosome 6 (CSN6) plays an essential role in tumor development. The present study aims to demonstrate that CSN6 is an important biomarker and has prognostic value for patients with pancreatic ductal adenocarcinoma (PDAC). We analyzed CSN6 expression levels in PDAC and adjacent non-cancerous tissues using immunohistochemistry (IHC) and quantitative real-time PCR (qPCR) analysis. We found that CSN6 was highly expressed in PDAC tissues, contrasting to adjacent non-cancerous tissues. Interestingly, CSN6 expression was positively associated with proliferating cell nuclear antigen (PCNA) expression. Further investigation indicated that CSN6 knockdown significantly suppressed the proliferation of PDAC cells and decreased the expression levels of PCNA, while CSN6 overexpression increased the proliferation, as well as the expression levels of PCNA in PDAC cells. Furthermore, a χ2 test indicated that the expression of CSN6 in PDAC tissues was markedly associated with tumor infiltration and serum carbohydrate antigen 19-9 levels. In addition, univariate and multivariate analyses showed that CSN6 levels were significantly correlated with poor clinical outcomes of patients with PDAC. Kaplan-Meier analysis showed that patients with high expression of CSN6 had shorter overall survival. These results suggest that the expression of CSN6 correlates with the progression of PDAC, resulting in poor prognosis. Thus, CSN6 may play a significant role in the development of PDAC and is a potential target to prevent and treat PDAC.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital , Harbin , Heilongjiang Province , P. R. China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences , Harbin , P. R. China
| | - Xin Guan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital , Harbin , Heilongjiang Province , P. R. China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences , Harbin , P. R. China
| | - Fei Zhan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital , Harbin , Heilongjiang Province , P. R. China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences , Harbin , P. R. China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital , Harbin , Heilongjiang Province , P. R. China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences , Harbin , P. R. China
| | - Zhiwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital , Harbin , Heilongjiang Province , P. R. China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital , Harbin , Heilongjiang Province , P. R. China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences , Harbin , P. R. China
| | - Bojun Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital , Harbin , Heilongjiang Province , P. R. China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences , Harbin , P. R. China
| | - Changjie Lou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital , Harbin , Heilongjiang Province , P. R. China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital , Harbin , Heilongjiang Province , P. R. China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences , Harbin , P. R. China
| |
Collapse
|
8
|
HuCOP1 contributes to the regulation of DNA repair in keratinocytes. Mol Cell Biochem 2016; 427:103-109. [PMID: 27995412 DOI: 10.1007/s11010-016-2901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
We have previously demonstrated that the E3 ligase Human Constitutive Photomorphogenic Protein (huCOP1) is expressed in human keratinocytes and negatively regulates p53. The MutS homolog 2 (MSH2) protein plays a central role in DNA MMR mechanism and is implicated in the cellular response to anticancer agents, such as cisplatin. Our aim was to clarify whether huCOP1 plays a role in DNA MMR by affecting MSH2 protein level in human keratinocytes. To define the role of huCOP1 in DNA mismatch repair, we determined whether huCOP1 affects MSH2 abundance. MSH2 protein level was detected by immunocytochemical staining using a keratinocyte cell line in which the expression level of huCOP1 was stably decreased (siCOP1). To investigate whether huCOP1 silencing influences cisplatin-induced cell death, control and siCOP1 keratinocyte cells were treated with increasing concentrations of cisplatin and cell viability was recorded after 48 and 96 h. Stable silencing of huCOP1 in human keratinocytes resulted in a reduced level of MSH2 protein. huCOP1 silencing also sensitized keratinocytes to the interstrand crosslinking inducer cisplatin. Our results indicate that decreased huCOP1 correlates with lower MSH2 levels. These protein level changes lead to increased sensitivity toward cisplatin treatment, implicating that huCOP1 plays a positive role in maintaining genome integrity in human keratinocytes.
Collapse
|
9
|
Gao S, Fang L, Phan LM, Qdaisat A, Yeung SCJ, Lee MH. COP9 signalosome subunit 6 (CSN6) regulates E6AP/UBE3A in cervical cancer. Oncotarget 2016; 6:28026-41. [PMID: 26318036 PMCID: PMC4695042 DOI: 10.18632/oncotarget.4731] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/23/2015] [Indexed: 02/03/2023] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women. Human papillomaviruses (HPVs) are the major cause in almost 99.7% of cervical cancer. E6 oncoprotein of HPV and E6-associated protein (E6AP) are critical in causing p53 degradation and malignancy. Understanding the E6AP regulation is critical to develop treating strategy for cervical cancer patients. The COP9 signalosome subunit 6 (CSN6) is involved in ubiquitin-mediated protein degradation. We found that both CSN6 and E6AP are overexpressed in cervical cancer. We characterized that CSN6 associated with E6AP and stabilized E6AP expression by reducing E6AP poly-ubiquitination, thereby regulating p53 activity in cell proliferation and apoptosis. Mechanistic studies revealed that CSN6-E6AP axis can be regulated by EGF/Akt signaling. Furthermore, inhibition of CSN6-E6AP axis hinders cervical cancer growth in mice. Taken together, our results indicate that CSN6 is a positive regulator of E6AP and is important for cervical cancer development.
Collapse
Affiliation(s)
- Shujun Gao
- Obstetrics and Gynecology Hospital Fudan University, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lekun Fang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Liem Minh Phan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Aiham Qdaisat
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sai-Ching J Yeung
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mong-Hong Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.,Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
10
|
Choi HH, Phan L, Chou PC, Su CH, Yeung SCJ, Chen JS, Lee MH. COP1 enhances ubiquitin-mediated degradation of p27Kip1 to promote cancer cell growth. Oncotarget 2016; 6:19721-34. [PMID: 26254224 PMCID: PMC4637316 DOI: 10.18632/oncotarget.3821] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/11/2015] [Indexed: 11/25/2022] Open
Abstract
p27 is a critical CDK inhibitor involved in cell cycle regulation, and its stability is critical for cell proliferation. Constitutive photomorphogenic 1 (COP1) is a RING-containing E3 ubiquitin ligase involved in regulating important target proteins for cell growth, but its biological activity in cell cycle progression is not well characterized. Here, we report that p27Kip1 levels are accumulated in G1 phase, with concurrent reduction of COP1 levels. Mechanistic studies show that COP1 directly interacts with p27 through a VP motif on p27 and functions as an E3 ligase of p27 to accelerate the ubiquitin-mediated degradation of p27. Also, COP1-p27 axis deregulation is involved in tumorigenesis. These findings define a new mechanism for posttranslational regulation of p27 and provide insight into the characteristics of COP1-overexpressing cancers.
Collapse
Affiliation(s)
- Hyun Ho Choi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA
| | - Liem Phan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping-Chieh Chou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Chun-Hui Su
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sai-Ching J Yeung
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA.,Department of Cancer Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiun-Sheng Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mong-Hong Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, USA.,Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
11
|
Fang L, Lu W, Choi HH, Yeung SCJ, Tung JY, Hsiao CD, Fuentes-Mattei E, Menter D, Chen C, Wang L, Wang J, Lee MH. ERK2-Dependent Phosphorylation of CSN6 Is Critical in Colorectal Cancer Development. Cancer Cell 2015; 28:183-97. [PMID: 26267535 PMCID: PMC4560098 DOI: 10.1016/j.ccell.2015.07.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/17/2015] [Accepted: 07/10/2015] [Indexed: 12/25/2022]
Abstract
Biomarkers for predicting prognosis are critical to treating colorectal cancer (CRC) patients. We found that CSN6, a subunit of COP9 signalosome, is overexpressed in CRC samples and that CSN6 overexpression is correlated with poor patient survival. Mechanistic studies revealed that CSN6 is deregulated by epidermal growth factor receptor (EGFR) signaling, in which ERK2 binds directly to CSN6 Leu163/Val165 and phosphorylates CSN6 at Ser148. Furthermore, CSN6 regulated β-Trcp and stabilized β-catenin expression by blocking the ubiquitin-proteasome pathway, thereby promoting CRC development. High CSN6 expression was positively correlated with ERK2 activation and β-catenin overexpression in CRC samples, and inhibiting CSN6 stability with cetuximab reduced colon cancer growth. Taken together, our study's findings indicate that the deregulation of β-catenin by ERK2-activated CSN6 is important for CRC development.
Collapse
Affiliation(s)
- Lekun Fang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Hyun Ho Choi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sai-Ching J Yeung
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jung-Yu Tung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Enrique Fuentes-Mattei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chuangqi Chen
- Department of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lei Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Jianping Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China.
| | - Mong-Hong Lee
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA; Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Shin J, Phan L, Chen J, Lu Z, Lee MH. CSN6 positively regulates c-Jun in a MEKK1-dependent manner. Cell Cycle 2015; 14:3079-87. [PMID: 26237449 DOI: 10.1080/15384101.2015.1078030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
c-Jun is a proto-oncoprotein that is commonly overexpressed in many types of cancer and is believed to regulate cell proliferation, the cell cycle, and apoptosis by controlling AP-1 activity. Understanding the c-Jun regulation is important to develop treatment strategy for cancer. The COP9 signalosome subunit 6 (CSN6) plays a critical role in ubiquitin-mediated protein degradation. MEKK1 is a serine/threonine kinase and E3 ligase containing PHD/RING domain involved in c-Jun ubiquitination. Here, we show that CSN6 associates with MEKK1 and reduces MEKK1 expression level by facilitating the ubiquitin-mediated degradation of MEKK1. Also we show that CSN6 overexpression diminishes MEKK1-mediated c-Jun ubiquitination, which is manifested in mitigating osmotic stress-mediated c-Jun downregulation. Thus, CSN6 is involved in positively regulating the stability of c-Jun. Overexpression of CSN6 correlates with the upregulation of c-Jun target gene expression in cancer. These findings provide new insight into CSN6-MEKK1-c-Jun axis in tumorigenesis.
Collapse
Affiliation(s)
- Jihyun Shin
- a Departments of Molecular and Cellular Oncology ; The University of Texas MD Anderson Cancer Center ; Houston , TX USA
| | - Liem Phan
- a Departments of Molecular and Cellular Oncology ; The University of Texas MD Anderson Cancer Center ; Houston , TX USA
| | - Jian Chen
- a Departments of Molecular and Cellular Oncology ; The University of Texas MD Anderson Cancer Center ; Houston , TX USA
| | - Zhimin Lu
- b Molecular pathology; The University of Texas MD Anderson Cancer Center ; Houston , TX USA
| | - Mong-Hong Lee
- a Departments of Molecular and Cellular Oncology ; The University of Texas MD Anderson Cancer Center ; Houston , TX USA
| |
Collapse
|
13
|
Phan L, Chou PC, Velazquez-Torres G, Samudio I, Parreno K, Huang Y, Tseng C, Vu T, Gully C, Su CH, Wang E, Chen J, Choi HH, Fuentes-Mattei E, Shin JH, Shiang C, Grabiner B, Blonska M, Skerl S, Shao Y, Cody D, Delacerda J, Kingsley C, Webb D, Carlock C, Zhou Z, Hsieh YC, Lee J, Elliott A, Ramirez M, Bankson J, Hazle J, Wang Y, Li L, Weng S, Rizk N, Wen YY, Lin X, Wang H, Wang H, Zhang A, Xia X, Wu Y, Habra M, Yang W, Pusztai L, Yeung SC, Lee MH. The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming. Nat Commun 2015; 6:7530. [PMID: 26179207 PMCID: PMC4507299 DOI: 10.1038/ncomms8530] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/18/2015] [Indexed: 12/16/2022] Open
Abstract
Extensive reprogramming of cellular energy metabolism is a hallmark of cancer. Despite its importance, the molecular mechanism controlling this tumour metabolic shift remains not fully understood. Here we show that 14-3-3σ regulates cancer metabolic reprogramming and protects cells from tumorigenic transformation. 14-3-3σ opposes tumour-promoting metabolic programmes by enhancing c-Myc poly-ubiquitination and subsequent degradation. 14-3-3σ demonstrates the suppressive impact on cancer glycolysis, glutaminolysis, mitochondrial biogenesis and other major metabolic processes of tumours. Importantly, 14-3-3σ expression levels predict overall and recurrence-free survival rates, tumour glucose uptake and metabolic gene expression in breast cancer patients. Thus, these results highlight that 14-3-3σ is an important regulator of tumour metabolism, and loss of 14-3-3σ expression is critical for cancer metabolic reprogramming. We anticipate that pharmacologically elevating the function of 14-3-3σ in tumours could be a promising direction for targeted anticancer metabolism therapy development in future.
Collapse
Affiliation(s)
- Liem Phan
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Ping-Chieh Chou
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Guermarie Velazquez-Torres
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Ismael Samudio
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth Parreno
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yaling Huang
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Chieh Tseng
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Thuy Vu
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Chris Gully
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Chun-Hui Su
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Edward Wang
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Jian Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyun-Ho Choi
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Enrique Fuentes-Mattei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ji-Hyun Shin
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Christine Shiang
- 1] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA. [2] Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brian Grabiner
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Marzenna Blonska
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stephen Skerl
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiping Shao
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dianna Cody
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jorge Delacerda
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles Kingsley
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Douglas Webb
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Colin Carlock
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| | - Zhongguo Zhou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yun-Chih Hsieh
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jaehyuk Lee
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Elliott
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marc Ramirez
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jim Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongxing Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Li
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaofan Weng
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nibal Rizk
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu Ye Wen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xin Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hua Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aijun Zhang
- Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Xuefeng Xia
- Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Yun Wu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mouhammed Habra
- Department of Endocrinology Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Yang
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lajos Pusztai
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sai-Ching Yeung
- 1] Department of Endocrinology Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mong-Hong Lee
- 1] Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. [2] Graduate School of Biomedical Sciences, The University of Texas at Houston, Houston, TX 77030, USA
| |
Collapse
|
14
|
Affiliation(s)
- Hyun Ho Choi
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Mong-Hong Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
- Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
- Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
15
|
Choi HH, Guma S, Fang L, Phan L, Ivan C, Baggerly K, Sood A, Lee MH. Regulating the stability and localization of CDK inhibitor p27(Kip1) via CSN6-COP1 axis. Cell Cycle 2015; 14:2265-73. [PMID: 25945542 DOI: 10.1080/15384101.2015.1046655] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The COP9 signalosome subunit 6 (CSN6), which is involved in ubiquitin-mediated protein degradation, is overexpressed in many types of cancer. CSN6 is critical in causing p53 degradation and malignancy, but its target in cell cycle progression is not fully characterized. Constitutive photomorphogenic 1 (COP1) is an E3 ubiquitin ligase associating with COP9 signalosome to regulate important target proteins for cell growth. p27 is a critical G1 CDK inhibitor involved in cell cycle regulation, but its upstream regulators are not fully characterized. Here, we show that the CSN6-COP1 link is regulating p27(Kip1) stability, and that COP1 is a negative regulator of p27(Kip1). Ectopic expression of CSN6 can decrease the expression of p27(Kip1), while CSN6 knockdown leads to p27(Kip1) stabilization. Mechanistic studies show that CSN6 interacts with p27(Kip1) and facilitates ubiquitin-mediated degradation of p27(Kip1). CSN6-mediated p27 degradation depends on the nuclear export of p27(Kip1), which is regulated through COP1 nuclear exporting signal. COP1 overexpression leads to the cytoplasmic distribution of p27, thereby accelerating p27 degradation. Importantly, the negative impact of COP1 on p27 stability contributes to elevating expression of genes that are suppressed through p27 mediation. Kaplan-Meier analysis of tumor samples demonstrates that high COP1 expression was associated with poor overall survival. These data suggest that tumors with CSN6/COP1 deregulation may have growth advantage by regulating p27 degradation and subsequent impact on p27 targeted genes.
Collapse
Affiliation(s)
- Hyun Ho Choi
- a Department of Molecular and Cellular Oncology ; The University of Texas MD Anderson Cancer Center ; Houston , TX USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Fang L, Yang Z, Zhou J, Tung JY, Hsiao CD, Wang L, Deng Y, Wang P, Wang J, Lee MH. Circadian Clock Gene CRY2 Degradation Is Involved in Chemoresistance of Colorectal Cancer. Mol Cancer Ther 2015; 14:1476-87. [PMID: 25855785 DOI: 10.1158/1535-7163.mct-15-0030] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/01/2015] [Indexed: 01/13/2023]
Abstract
Biomarkers for predicting chemotherapy response are important to the treatment of colorectal cancer patients. Cryptochrome 2 (CRY2) is a circadian clock protein involved in cell cycle, but the biologic consequences of this activity in cancer are poorly understood. We set up biochemical and cell biology analyses to analyze CRY2 expression and chemoresistance. Here, we report that CRY2 is overexpressed in chemoresistant colorectal cancer samples, and CRY2 overexpression is correlated with poor patient survival. Knockdown of CRY2 increased colorectal cancer sensitivity to oxaliplatin in colorectal cancer cells. We also identify FBXW7 as a novel E3 ubiquitin ligase for targeting CRY2 through proteasomal degradation. Mechanistic studies show that CRY2 is regulated by FBXW7, in which FBXW7 binds directly to phosphorylated Thr300 of CRY2. Furthermore, FBXW7 expression leads to degradation of CRY2 through enhancing CRY2 ubiquitination and accelerating the CRY2's turnover rate. High FBXW7 expression downregulates CRY2 and increases colorectal cancer cells' sensitivity to chemotherapy. Low FBXW7 expression is correlated with high CRY2 expression in colorectal cancer patient samples. Also, low FBXW7 expression is correlated with poor patient survival. Taken together, our findings indicate that the upregulation of CRY2 caused by downregulation of FBXW7 may be a novel prognostic biomarker and may represent a new therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Lekun Fang
- Department of Surgery, Guangdong Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China. Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zihuan Yang
- Department of Surgery, Guangdong Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Junyi Zhou
- Department of Surgery, Guangdong Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jung-Yu Tung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Lei Wang
- Department of Surgery, Guangdong Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanhong Deng
- Department of Oncology, Guangdong Gastroenterology Institute, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Puning Wang
- Department of Surgery, Guangdong Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianping Wang
- Department of Surgery, Guangdong Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Mong-Hong Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|