1
|
Zhao J, Williams MD, Hernandez M, Kuang G, Goldberg H, Fan J, Ning J, Ferrarotto R, Esmaeli B. Prognostic Impact of Notch1 Intracellular Domain, P63, and c-MYC in Lacrimal Gland Adenoid Cystic Carcinoma. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 39230995 PMCID: PMC11379087 DOI: 10.1167/iovs.65.11.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/03/2024] [Indexed: 09/06/2024] Open
Abstract
Purpose We assessed whether NICD1 expression, c-MYC expression, and P63 expression by immunohistochemistry (IHC) correlate with prognosis and high-risk clinicopathological features in lacrimal gland adenoid cystic carcinoma (ACC). Methods Records of patients with lacrimal gland ACC who underwent surgery between 1998 to 2018 were reviewed. Clinicopathologic and treatment data were collected. Tumor tissues were subjected to light microscopy and IHC. Results Of 43 patients treated during the study period, 21 had archived tumor tissue available and were included. The median age at diagnosis was 47 years, and 13 patients (62%) were male. Thirteen patients (62%) had T2 disease, and none had nodal or distant metastasis at diagnosis. Tumors were positive for NICD1 expression in eight cases (38%), c-MYC expression in eight (38%), and P63 expression in 11 (52%). Positive NICD1 expression was associated with predominantly solid (vs. cribriform/tubular) pattern (P < 0.001), treatment with orbital exenteration (vs. eye-sparing surgery) (P = 0.008), local recurrence (P = 0.047), and death (P = 0.012). Negative P63 expression was associated with predominantly solid pattern (P = 0.001), local recurrence (P = 0.012), distant metastasis (P = 0.001), and death (P = 0.035). A higher percentage of tumor cells staining for c-MYC was associated with presence of perineural invasion (P = 0.036). Positive NICD1 expression was associated with worse disease-free survival (hazard ratio, 6.27; 95% CI, 1.29-30.46), whereas positive P63 expression was associated with better disease-free survival (hazard ratio, 0.03; 95% CI, 0.0002-0.26). Conclusions IHC for NICD1 and P63 should be considered in lacrimal gland ACC because of their prognostic value and potential as treatment targets.
Collapse
Affiliation(s)
- Jiawei Zhao
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Michelle D. Williams
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Mike Hernandez
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Grace Kuang
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Hila Goldberg
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Janet Fan
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Jing Ning
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Bita Esmaeli
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| |
Collapse
|
2
|
Jiang W, Shaw S, Rush J, Dumont N, Kim J, Singh R, Skepner A, Khodier C, Raffier C, Yan N, Schluter C, Yu X, Szuchnicki M, Sathappa M, Kahn J, Sperling AS, McKinney DC, Gould AE, Garvie CW, Miller PG. Identification of Small Molecule Inhibitors of PPM1D Using a Novel Drug Discovery Platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595001. [PMID: 38826457 PMCID: PMC11142126 DOI: 10.1101/2024.05.20.595001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Protein phosphatase, Mg2+/Mn2+ dependent 1D (PPM1D), is a serine/threonine phosphatase that is recurrently activated in cancer, regulates the DNA damage response (DDR), and suppresses the activation of p53. Consistent with its oncogenic properties, genetic loss or pharmacologic inhibition of PPM1D impairs tumor growth and sensitizes cancer cells to cytotoxic therapies in a wide range of preclinical models. Given the therapeutic potential of targeting PPM1D specifically and the DDR and p53 pathway more generally, we sought to deepen our biological understanding of PPM1D as a drug target and determine how PPM1D inhibition differs from other therapeutic approaches to activate the DDR. We performed a high throughput screen to identify new allosteric inhibitors of PPM1D, then generated and optimized a suite of enzymatic, cell-based, and in vivo pharmacokinetic and pharmacodynamic assays to drive medicinal chemistry efforts and to further interrogate the biology of PPM1D. Importantly, this drug discovery platform can be readily adapted to broadly study the DDR and p53. We identified compounds distinct from previously reported allosteric inhibitors and showed in vivo on-target activity. Our data suggest that the biological effects of inhibiting PPM1D are distinct from inhibitors of the MDM2-p53 interaction and standard cytotoxic chemotherapies. These differences also highlight the potential therapeutic contexts in which targeting PPM1D would be most valuable. Therefore, our studies have identified a series of new PPM1D inhibitors, generated a suite of in vitro and in vivo assays that can be broadly used to interrogate the DDR, and provided important new insights into PPM1D as a drug target.
Collapse
Affiliation(s)
- Wei Jiang
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Subrata Shaw
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Jason Rush
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Nancy Dumont
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - John Kim
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Ritu Singh
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Adam Skepner
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Carol Khodier
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Cerise Raffier
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Ni Yan
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for Cancer Research and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Cameron Schluter
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for Cancer Research and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Xiao Yu
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Mateusz Szuchnicki
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Murugappan Sathappa
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Josephine Kahn
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Adam S. Sperling
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David C. McKinney
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Alexandra E. Gould
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Colin W. Garvie
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Peter G. Miller
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for Cancer Research and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
3
|
Zhang L, Hsu JI, Goodell MA. PPM1D in Solid and Hematologic Malignancies: Friend and Foe? Mol Cancer Res 2022; 20:1365-1378. [PMID: 35657598 PMCID: PMC9437564 DOI: 10.1158/1541-7786.mcr-21-1018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023]
Abstract
In the face of constant genomic insults, the DNA damage response (DDR) is initiated to preserve genome integrity; its disruption is a classic hallmark of cancer. Protein phosphatase Mg2+/Mn2+-dependent 1D (PPM1D) is a central negative regulator of the DDR that is mutated or amplified in many solid cancers. PPM1D overexpression is associated with increased proliferative and metastatic behavior in multiple solid tumor types and patients with PPM1D-mutated malignancies have poorer prognoses. Recent findings have sparked an interest in the role of PPM1D in hematologic malignancies. Acquired somatic mutations may provide hematopoietic stem cells with a competitive advantage, leading to a substantial proportion of mutant progeny in the peripheral blood, an age-associated phenomenon termed "clonal hematopoiesis" (CH). Recent large-scale genomic studies have identified PPM1D to be among the most frequently mutated genes found in individuals with CH. While PPM1D mutations are particularly enriched in patients with therapy-related myeloid neoplasms, their role in driving leukemic transformation remains uncertain. Here, we examine the mechanisms through which PPM1D overexpression or mutation may drive malignancy by suppression of DNA repair, cell-cycle arrest, and apoptosis. We also discuss the divergent roles of PPM1D in the oncogenesis of solid versus hematologic cancers with a view to clinical implications and new therapeutic avenues.
Collapse
Affiliation(s)
- Linda Zhang
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Joanne I. Hsu
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Margaret A. Goodell
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Corresponding Author: Margaret A. Goodell, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030. E-mail:
| |
Collapse
|
4
|
Hämetoja H, Mäkitie A, Bäck L, Leivo I, Haglund C, Sorsa T, Hagström J. Matrix metalloproteinase-7, -8, -9, -15, and -25 in minor salivary gland adenoid cystic carcinoma. Pathol Res Pract 2020; 217:153293. [PMID: 33278774 DOI: 10.1016/j.prp.2020.153293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022]
Abstract
Knowledge on the role of matrix metalloproteinases (MMPs) in adenoid cystic carcinoma (ACC) is limited. MMPs are capable of degrading almost all extracellular and pericellular components to promote invasion and metastasis. This study aimed to evaluate the immunohistochemical expression of MMP-7, -8, -9, -15, and -25 in ACC and to relate the results with clinicopathological factors and survival. The study included 68 patients with minor salivary gland ACC treated at the Helsinki University Hospital (Helsinki, Finland) in 1974-2012. Samples from 52 patients were available, consisting of 44 primary tumours and eight recurrent tumours. We scored immunostaining of MMP-7, -8, -9, -15, and -25 and analysed the immunoscore against clinical and pathological parameters using statistical correlation test. MMP-9 immunoexpression in pseudocysts of ACC and in peritumoural inflammatory cells associated with better survival and fewer treatment failures. High tumoural MMP-7 and -25 associated with better survival. High tumoural MMP-15 associated with poorer survival and high tumoural MMP-9 with advanced stage and regional recurrences. Tumour cells did not show MMP-8 immunopositivity. These results suggest that MMP-9 may contribute to ACC carcinogenesis in different roles. MMP-7, -8, and -9 can stimulate signalling pathways that may promote tissue modulation and metastatic potential. MMP-15 and -25 may reflect prognosis.
Collapse
Affiliation(s)
- Hanna Hämetoja
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Oral Pathology and Radiology, University of Turku, Turku University Hospital, Turku, Finland.
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Leif Bäck
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ilmo Leivo
- Institute of Biomedicine, Pathology, University of Turku, Turku, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland; Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jaana Hagström
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Oral Pathology and Radiology, University of Turku, Turku University Hospital, Turku, Finland; Research Programs Unit, Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Ren XH, He XY, Liu BY, Xu C, Cheng SX. Self-Assembled Plasmid Delivery System for PPM1D Knockout to Reverse Tumor Malignancy. ACS APPLIED BIO MATERIALS 2020; 3:7831-7839. [DOI: 10.1021/acsabm.0c01009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Xiao-Yan He
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Bo-Ya Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
6
|
Ferrarotto R, Mitani Y, McGrail DJ, Li K, Karpinets TV, Bell D, Frank SJ, Song X, Kupferman ME, Liu B, Lee JJ, Glisson BS, Zhang J, Aster JC, Lin SY, Futreal PA, Heymach JV, El-Naggar AK. Proteogenomic Analysis of Salivary Adenoid Cystic Carcinomas Defines Molecular Subtypes and Identifies Therapeutic Targets. Clin Cancer Res 2020; 27:852-864. [PMID: 33172898 DOI: 10.1158/1078-0432.ccr-20-1192] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/10/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Salivary gland adenoid cystic carcinoma (ACC) has heterogeneous clinical behavior. Currently, all patients are treated uniformly, and no standard-of-care systemic therapy exists for metastatic ACC. We conducted an integrated proteogenomic analyses of ACC tumors to identify dysregulated pathways and propose a classification with therapeutic implications. EXPERIMENTAL DESIGN RNA/DNA sequencing of 54 flash-frozen salivary ACCs and reverse phase protein array (RPPA) in 38 specimens were performed, with validation by Western blotting and/or IHC. Three independent ACC cohorts were used for validation. RESULTS Both unbiased RNA sequencing (RNA-seq) and RPPA analysis revealed two molecular subtypes: ACC-I (37%) and ACC-II (63%). ACC-I had strong upregulation of MYC, MYC target genes, and mRNA splicing, enrichment of NOTCH-activating mutations, and dramatically worse prognosis. ACC-II exhibited upregulation of TP63 and receptor tyrosine kinases (AXL, MET, and EGFR) and less aggressive clinical course. TP63 and MYC were sufficient to assign tumors to ACC subtypes, which was validated in one independent cohort by IHC and two additional independent cohorts by RNA-seq. Furthermore, IHC staining for MYC and P63 protein levels can be used to identify ACC subtypes, enabling rapid clinical deployment to guide therapeutic decisions. Our data suggest a model in which ACC-I is driven by MYC signaling through either NOTCH mutations or direct amplification, which in turn suppress P63 signaling observed in ACC-II, producing unique therapeutic vulnerabilities for each subtype. CONCLUSIONS Cooccurrence of multiple actionable protein/pathways alterations in each subtype indicates unique therapeutic vulnerabilities and opportunities for optimal combination therapy for this understudied and heterogeneous disease.
Collapse
Affiliation(s)
- Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Yoshitsugu Mitani
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel J McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kaiyi Li
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tatiana V Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Diana Bell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven J Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael E Kupferman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J Jack Lee
- Department of Statistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bonnie S Glisson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jon C Aster
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adel K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
7
|
Wu J, He J, Tian X, Li H, Wen Y, Shao Q, Cheng C, Wang G, Sun X. Upregulation of miRNA-9-5p Promotes Angiogenesis after Traumatic Brain Injury by Inhibiting Ptch-1. Neuroscience 2020; 440:160-174. [PMID: 32502567 DOI: 10.1016/j.neuroscience.2020.05.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
MicroRNA-9-5p (miRNA-9-5p) is an important regulator of angiogenesis in many pathological states. However, the effect of miRNA-9-5p on angiogenesis after traumatic brain injury (TBI) has not been elucidated. In this study, a controlled cortical impact (CCI) model was used to induce TBI in Sprague-Dawley rats, and an oxygen glucose deprivation (OGD) model was used to mimic the pathological state in vitro. Brain microvascular endothelial cells (BMECs) were extracted from immature rats. The results showed that the level of miRNA-9-5p was significantly increased in the traumatic foci after TBI, and the upregulation of miRNA9-5p promoted the recovery of neurological function. Moreover, the upregulation of miRNA-9-5p with miRNA agomir significantly increased the density of the microvascular and neurons around the traumatic foci in rats after TBI. The results of the in vitro experiments confirmed that the upregulation of miRNA-9-5p with a miRNA mimic improved cellular viability and alleviated cellular apoptosis. Dual luciferase reporter assay validated that miRNA-9-5p was a posttranscriptional modulator of Ptch-1. Activation of the Hedgehog pathway by increasing the level of miRNA-9-5p promoted the migration and tube formation of BMECs in vitro. In addition, we found that the upregulation of miRNA-9-5p activated the Hedgehog pathway and increased the phosphorylation of AKT, which promoted the expression of cyclin D1, MMP-9 and VEGF in BMECs. All these results indicate that the upregulation of miRNA-9-5p promotes angiogenesis and improves neurological functional recovery after TBI, mainly by activating the Hedgehog pathway. MiRNA-9-5p may be a potential new therapeutic target for TBI.
Collapse
Affiliation(s)
- Jingchuan Wu
- Department of Neurosurgery, General Hospital of The YangTze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, China; Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junchi He
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaocui Tian
- College of Pharmacy, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, District of Yuzhong, Chongqing 400016, China
| | - Hui Li
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Wen
- Department of Neurosurgery, General Hospital of The YangTze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, China
| | - Qiang Shao
- Department of Neurosurgery, General Hospital of The YangTze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, China
| | - Chongjie Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Guangyu Wang
- Department of Neurosurgery, Qi lu Children's Hospital of Shandong University, Jinan, Shandong 250022, China.
| | - Xiaochuan Sun
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
8
|
Lu ZW, Wen D, Wei WJ, Han LT, Xiang J, Wang YL, Wang Y, Liao T, Ji QH. Silencing of PPM1D inhibits cell proliferation and invasion through the p38 MAPK and p53 signaling pathway in papillary thyroid carcinoma. Oncol Rep 2020; 43:783-794. [PMID: 31922231 PMCID: PMC7040886 DOI: 10.3892/or.2020.7458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Endeavors towards identifying key molecular markers for early diagnosis and treatment are driving the clinical study of papillary thyroid carcinoma (PTC). Recent studies have indicated that protein phosphatase, Mg2+/Mn2+ dependent, 1D (PPM1D) exerts an oncogenic function by increasing cell proliferation, migration and invasion in various cancer types. In addition, PPM1D has a high frequency of genetic alterations and has been proposed as a tumor driver in thyroid cancer, making PPM1D an attractive potential oncotarget for cancer treatment. The aims of the present study were to investigate the downstream targets of PPM1D and the potential molecular mechanisms of its oncogenic activities, as well as its clinical significance in PTC. As anticipated, PPM1D overexpression was confirmed in PTC clinical specimens. Furthermore, knockdown of PPM1D in thyroid cancer cell lines significantly suppressed the proliferation, migration and invasion but facilitated cell apoptosis. The protein levels of phosphorylated p38 mitogen-activated protein kinase (MAPK), p53 and Bax were increased in PPM1D-knockdown cells, while inhibition of p38 phosphorylation restored cell migration, proliferation and cell apoptosis. In addition, silencing of PPM1D expression induced nuclear translocation of p53 in K-1 and TPC-1 cells. The present results demonstrated that PPM1D regulated p38 MAPK and p53 signaling pathways to promote thyroid cancer progression. Collectively with the clinical results, these data qualified PPM1D as a potential diagnostic biomarker and therapeutic target in human thyroid cancer.
Collapse
Affiliation(s)
- Zhong-Wu Lu
- Department of Head and Neck Surgery, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Duo Wen
- Department of Head and Neck Surgery, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Wen-Jun Wei
- Department of Head and Neck Surgery, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Li-Tao Han
- Department of Head and Neck Surgery, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Jun Xiang
- Department of Head and Neck Surgery, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yu Wang
- Department of Head and Neck Surgery, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Tian Liao
- Department of Head and Neck Surgery, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
9
|
Souza Freitas V, dos Santos JN, de Andrade Santos PP, Nonaka CFW, Pereira Pinto L, de Souza LB. Expression of matrix metalloproteinases (MMPs-2, -7, -9, and -26) and tissue inhibitors of metalloproteinases (TIMPs-1 and -2) in pleomorphic adenomas and adenoid cystic carcinomas. Eur Arch Otorhinolaryngol 2018; 275:3075-3082. [DOI: 10.1007/s00405-018-5176-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/16/2018] [Indexed: 02/03/2023]
|
10
|
Qiu CW, Liu ZY, Hou K, Liu SY, Hu YX, Zhang L, Zhang FL, Lv KY, Kang Q, Hu WY, Ma N, Jiao Y, Bai WJ, Xiao ZC. Wip1 knockout inhibits neurogenesis by affecting the Wnt/β-catenin signaling pathway in focal cerebral ischemia in mice. Exp Neurol 2018; 309:44-53. [PMID: 30048716 DOI: 10.1016/j.expneurol.2018.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022]
Abstract
Neurogenesis correlates closely with the recovery of neural function after brain ischemia but the critical proteins and signaling pathways involved remain unclear. The phosphatase WIP1 has been shown to regulate neurogenesis in models of aging. However, it is not known if WIP1 affects neurogenesis and functional recovery after brain ischemia. To explore these questions, we performed permanent middle cerebral artery occlusion (MCAO) in mice and performed BrdU labeling, neurobehavioral testing, western blotting, and immunofluorescence staining. We found that ischemia induced WIP1 expression in the area bordering the injury. Compared to wild-type mice, the knockout of the Wip1 gene inhibited neurological functional recovery, reduced the expression of doublecortin, and inactivated the Wnt/β-Catenin signaling pathway in cerebral ischemia in mice. Pharmacological activation of the Wnt/β-Catenin signaling pathway compensated for the Wip1 knockout-induced deficit in neuroblast formation in animals with MCAO. These findings indicate that WIP1 is essential for neurogenesis after brain injury by activating the Wnt/β-Catenin signaling pathway.
Collapse
Affiliation(s)
- Cai-Wei Qiu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming city 650500, Yunnan, China.
| | - Zong-Yao Liu
- School of Pharmaceutical Science, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Kun Hou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming city 650500, Yunnan, China
| | - Shu-Yi Liu
- School of Pharmaceutical Science, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Yue-Xin Hu
- Experiment Enter for Medical Science Research, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Ling Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming city 650500, Yunnan, China
| | - Feng-Lan Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming city 650500, Yunnan, China
| | - Ke-Ying Lv
- School of Basic Medical Sciences, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Qiang Kang
- Department of Hepatobiliary Surgery, The second Affiliated Hospital, Kunming Medical University, Kunming City 650106, Yunnan, China
| | - Wei-Yan Hu
- School of Pharmaceutical Science, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Na Ma
- School of Basic Medical Sciences, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Yang Jiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming city 650500, Yunnan, China
| | - Wen-Jin Bai
- Faculty of Education and Management, Yunnan Normal University, Kunming City 650500, Yunnan, China
| | - Zhi-Cheng Xiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming city 650500, Yunnan, China; Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Australia.
| |
Collapse
|
11
|
Barillari G, Monini P, Sgadari C, Ensoli B. The Impact of Human Papilloma Viruses, Matrix Metallo-Proteinases and HIV Protease Inhibitors on the Onset and Progression of Uterine Cervix Epithelial Tumors: A Review of Preclinical and Clinical Studies. Int J Mol Sci 2018; 19:E1418. [PMID: 29747434 PMCID: PMC5983696 DOI: 10.3390/ijms19051418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022] Open
Abstract
Infection of uterine cervix epithelial cells by the Human Papilloma Viruses (HPV) is associated with the development of dysplastic/hyperplastic lesions, termed cervical intraepithelial neoplasia (CIN). CIN lesions may regress, persist or progress to invasive cervical carcinoma (CC), a leading cause of death worldwide. CIN is particularly frequent and aggressive in women infected by both HPV and the Human Immunodeficiency Virus (HIV), as compared to the general female population. In these individuals, however, therapeutic regimens employing HIV protease inhibitors (HIV-PI) have reduced CIN incidence and/or clinical progression, shedding light on the mechanism(s) of its development. This article reviews published work concerning: (i) the role of HPV proteins (including HPV-E5, E6 and E7) and of matrix-metalloproteinases (MMPs) in CIN evolution into invasive CC; and (ii) the effect of HIV-PI on events leading to CIN progression such as basement membrane and extracellular matrix invasion by HPV-positive CIN cells and the formation of new blood vessels. Results from the reviewed literature indicate that CIN clinical progression can be monitored by evaluating the expression of MMPs and HPV proteins and they suggest the use of HIV-PI or their derivatives for the block of CIN evolution into CC in both HIV-infected and uninfected women.
Collapse
Affiliation(s)
- Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 1 via Montpellier, 00133 Rome, Italy.
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 299 viale Regina Elena, 00161 Rome, Italy.
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 299 viale Regina Elena, 00161 Rome, Italy.
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 299 viale Regina Elena, 00161 Rome, Italy.
| |
Collapse
|
12
|
Frerich CA, Brayer KJ, Painter BM, Kang H, Mitani Y, El-Naggar AK, Ness SA. Transcriptomes define distinct subgroups of salivary gland adenoid cystic carcinoma with different driver mutations and outcomes. Oncotarget 2017; 9:7341-7358. [PMID: 29484115 PMCID: PMC5800907 DOI: 10.18632/oncotarget.23641] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022] Open
Abstract
The relative rarity of salivary gland adenoid cystic carcinoma (ACC) and its slow growing yet aggressive nature has complicated the development of molecular markers for patient stratification. To analyze molecular differences linked to the protracted disease course of ACC and metastases that form 5 or more years after diagnosis, detailed RNA-sequencing (RNA-seq) analysis was performed on 68 ACC tumor samples, starting with archived, formalin-fixed paraffin-embedded (FFPE) samples up to 25 years old, so that clinical outcomes were available. A statistical peak-finding approach was used to classify the tumors that expressed MYB or MYBL1, which had overlapping gene expression signatures, from a group that expressed neither oncogene and displayed a unique phenotype. Expression of MYB or MYBL1 was closely correlated to the expression of the SOX4 and EN1 genes, suggesting that they are direct targets of Myb proteins in ACC tumors. Unsupervised hierarchical clustering identified a subgroup of approximately 20% of patients with exceptionally poor overall survival (median less than 30 months) and a unique gene expression signature resembling embryonic stem cells. The results provide a strategy for stratifying ACC patients and identifying the high-risk, poor-outcome group that are candidates for personalized therapies.
Collapse
Affiliation(s)
- Candace A Frerich
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Kathryn J Brayer
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Brandon M Painter
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Huining Kang
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yoshitsugu Mitani
- Head and Neck Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adel K El-Naggar
- Head and Neck Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott A Ness
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| |
Collapse
|
13
|
Wip1 suppresses ovarian cancer metastasis through the ATM/AKT/Snail mediated signaling. Oncotarget 2017; 7:29359-70. [PMID: 27121065 PMCID: PMC5045401 DOI: 10.18632/oncotarget.8833] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 03/28/2016] [Indexed: 01/03/2023] Open
Abstract
Inactivation of p53 greatly contributes to serous ovarian cancer, while the role of the wild-type p53 induced phosphatase 1 (Wip1) is quite unclear. In this study, by silencing or overexpression of Wip1, we found that Wip1 suppressed ovarian cancer cell invasion, migration, epithelial to mesenchymal transition (EMT), and ovarian cancer metastasis in xenograft animal models. Mechanistic studies showed that Wip1 may block ovarian cancer metastasis through inhibition of Snail and p-Akt expression because silencing or overexpression of Wip1 either upregulated or downregulated the expression of Snail and p-Akt (Ser 473), while further knockdown of Snail by shRNA or inhibition of p-Akt by a chemical compound attenuated cell invasion, migration and EMT in Wip1 silencing cells. We also found that the phosphorylation of Akt at Ser 473 might be mediated through p-ATM (Ser 1981). Thus, Wip1 may suppress ovarian cancer metastasis through negative regulation of p-ATM, p-Akt, and Snail, which was also evidenced in the limited clinical specimens. Therefore, our data may provide a novel therapeutic indication for serous ovarian cancer based on the uncovered mechanism associated with the precise function of Wip1 independent of p53.
Collapse
|
14
|
Yang J, Lv X, Chen J, Xie C, Xia W, Jiang C, Zeng T, Ye Y, Ke L, Yu Y, Liang H, Guan XY, Guo X, Xiang Y. CCL2-CCR2 axis promotes metastasis of nasopharyngeal carcinoma by activating ERK1/2-MMP2/9 pathway. Oncotarget 2017; 7:15632-47. [PMID: 26701209 PMCID: PMC4941266 DOI: 10.18632/oncotarget.6695] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Distant metastasis remains the major failure of nasopharyngeal carcinoma (NPC). In this study, the roles of chemokine C-C motif ligand 2 (CCL2), and its receptor chemokine C-C motif receptor type 2 (CCR2) on NPC metastasis were investigated. Serum CCL2 and CCL2/CCR2 expression level were remarkably increased in NPC patients compared to non-tumor patients by ELISA and IHC analyses. High expressions of CCL2/CCR2 were significantly associated with NPC metastasis and poor overall survival (OS). High expression of CCR2 is an independent adverse prognostic factor of OS and distant metastasis free survival (DMFS). Overexpressions of CCL2 and CCR2 were detected in high-metastatic NPC cell lines. Upregulating CCL2 and CCR2 respectively in low-metastatic NPC cell lines could promote cell migration and invasion, and exogenous CCL2 enhanced the motility in CCR2-overexpressing cells. On the other hand, downregulating CCL2 and CCR2 respectively in high-metastatic NPC cell lines by shRNA could decrease cell migration and invasion. However, exogenous CCL2 could not rescue the weaken ability of motility of CCR2-silencing cells. In nude mouse model, distant metastasis was significantly facilitated in either CCL2-overexpressing or CCR2-overexpressing groups, which was more obvious in CCR2-overexpressing group. Also, distant metastasis was considerably inhibited in either CCL2-silencing or CCR2-silencing groups. Dual overexpression of CCL2/CCR2 could activate extracellular signal-regulated kinase (ERK1/2) signaling pathway, which sequentially induced matrix metalloproteinase (MMP) 2 and 9 upregulations in the downstream. In conclusion, CCL2-CCR2 axis could promote NPC metastasis by activating ERK1/2-MMP2/9 pathway. This study helps to develop novel therapeutic targets for distant metastasis in NPC.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xing Lv
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jinna Chen
- Department of Clinical Oncology, Hong Kong University, Hong Kong, China
| | - Changqing Xie
- Internal Medicine Residency Program, Vidant Medical Center, East Carolina University, Greenville, NC, USA
| | - Weixiong Xia
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chen Jiang
- Department of Clinical Oncology, Hong Kong University, Hong Kong, China
| | - Tingting Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yanfang Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liangru Ke
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yahui Yu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hu Liang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Clinical Oncology, Hong Kong University, Hong Kong, China
| | - Xiang Guo
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yanqun Xiang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
15
|
Liu S, Jiang B, Li H, He Z, Lv P, Peng C, Wang Y, Cheng W, Xu Z, Chen W, Liu Z, Zhang B, Shen S, Xiang S. Wip1 is associated with tumorigenity and metastasis through MMP-2 in human intrahepatic cholangiocarcinoma. Oncotarget 2017; 8:56672-56683. [PMID: 28915621 PMCID: PMC5593592 DOI: 10.18632/oncotarget.18074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
Wip1 has been shown to correlate with the metastasis/invasion of several tumors. This study was designed to investigate the clinical significance and biological function of Wip1 in intrahepatic cholangiocarcinoma (ICC). The expression of Wip1 was investigated in sixty human ICC biopsy samples by immunohistochemistry. Transient and stable knockdown of Wip1 in two human ICC cells (ICC-9810 and SSP25) were established using short hairpin RNA expression vector. Immunohistochemistry revealed that Wip1 was up-regulated in human ICC tissues (47/60, 78.3%). High levels of Wip1 in human ICC correlated with metastasis to the lymph metastasis (P=0.022). Genetic depletion of Wip1 in ICC cells resulted in significantly inhibited proliferation and invasion compared with controls. Most importantly, Wip1 down-regulation impaired tumor migration capacity of ICC cells in vivo. Subsequent investigations revealed that matrix metalloproteinase-2 (MMP-2) is an important target of Wip1. Consistently, in human ICC tissues, Wip1 level was positively correlated with MMP-2 expression. Taken together, our founding indicates that Wip1 may be a crucial regulator in the tumorigenicity and invasion of human ICC, Wip1 exerts its pro-invasion function at least in part through the MMP-2 signaling pathway, suggesting Wip1 as a potential therapeutic target for ICC.
Collapse
Affiliation(s)
- Sulai Liu
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Bo Jiang
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Hao Li
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Zili He
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Pin Lv
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Chuang Peng
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Yonggang Wang
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Wei Cheng
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Zhengquan Xu
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Wei Chen
- Department of Thoracic, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Zhengkai Liu
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Bao Zhang
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Shengqian Shen
- Department of Hepatobiliary Surgery/Hunan Research Center of Biliary Disease, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
16
|
Feng Y, Liu F, Du Z, Zhao D, Cheng J, Guo W. Wip1 regulates SKOV3 cell apoptosis through the p38 MAPK signaling pathway. Mol Med Rep 2017; 15:3651-3657. [PMID: 28440479 PMCID: PMC5436208 DOI: 10.3892/mmr.2017.6469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to explore the effect of silencing wild-type p53-induced phosphatase 1 (Wip1) on apoptosis of human ovarian cancer SKOV3 cells. SKOV3 cells cultured in vitro were divided into three groups: untreated cells, cells transfected with control small interfering RNA (siRNA) and cells transfected with siRNA targeting Wip1. Flow cytometry analysis was used to detect cell apoptosis. Western blot analysis was performed to determine expression of tumor protein 53 (p53), cleaved caspase-3, caspase-3, BCL2 associated X (Bax), BCL2 apoptosis regulator (Bcl-2), p38 mitogen-activated protein kinase (p38 MAPK) and phosphorylated (p)-p38 MAPK. Reverse transcription-quantitative polymerase chain reaction was used to detect expression of p53, Bax, Bcl-2 and caspase-3 mRNAs. Compared with control, apoptosis of SKOV3 cell was significantly increased following Wip1 siRNA silencing. Wip1 silencing also resulted in a significant increase of p53 and p-p38 MAPK expression, as well as increased cleaved caspase-3/caspase-3 and Bax/Bcl-2 protein ratios. No significant differences were observed in apoptosis and apoptosis-related protein expression in the control siRNA transfected cells. The present study demonstrated that Wip1 silencing promotes apoptosis of human ovarian cancer SKOV3 cells by activation of the p38 MAPK signaling pathways and through subsequent upregulation of p53, and cleaved caspase-3/caspase-3 and Bax/Bcl-2 protein ratios. Overall, the findings of the present study suggest that targeting Wip1 may be a potential therapeutic avenue for the treatment of human ovarian cancer in the future.
Collapse
Affiliation(s)
- Yanping Feng
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Fang Liu
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Zhixiang Du
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Dongjie Zhao
- Department of Surgery, The Third Hospital of Tangshan, Tangshan, Hebei 063100, P.R. China
| | - Jianxin Cheng
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wei Guo
- Department of Reproductive Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| |
Collapse
|
17
|
Liang Y, Ye J, Jiao J, Zhang J, Lu Y, Zhang L, Wan D, Duan L, Wu Y, Zhang B. Down-regulation of miR-125a-5p is associated with salivary adenoid cystic carcinoma progression via targeting p38/JNK/ERK signal pathway. Am J Transl Res 2017; 9:1101-1113. [PMID: 28386337 PMCID: PMC5376002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/09/2017] [Indexed: 06/07/2023]
Abstract
Salivary adenoid cystic carcinoma (SACC) is a relatively uncommon epithelial-like malignancy that can occur in the head and neck region. Despite its slow growth, this aggressive salivary gland tumor frequently recurs and metastasizes to distant organs since lacking effective chemotherapy treatment. MicroRNAs are key regulators in tumor metastasis and progression, but their roles during SACC progression have not been illustrated. In current study, we demonstrate that miR-125a-5p is down-regulated in SACC and closely related to the metastasis and progression in human SACC specimens. In vitro, miR-125a-5p mimic can suppress SACC cell migration and invasion; while blocking miR-125a-5p can relieve the inhibition effect. By using dual-luciferase assay, we confirmed that miR-125a-5p directly targeted to p38 and tissue samples of patients indicated the negative correlation between miR-125a-5p and p38; clinical analysis also showed that low level expression of miR-125a-5p is closely associated with poor prognosis of SACC. Furthermore, down-regulation of miR-125a-5p triggered downstream p38/JNK/ERK activation. Taken together, our results indicate that down-regulation of miR-125a-5p promotes SACC progression through p38 signal pathway and miR-125a-5p can be a potential therapeutic target of SACC.
Collapse
Affiliation(s)
- Yancan Liang
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangzhou Higher Education Institutes, Sun Yat-Sen UniversityGuangzhou, China
| | - Jiantao Ye
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangzhou Higher Education Institutes, Sun Yat-Sen UniversityGuangzhou, China
| | - Jiuyang Jiao
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangzhou Higher Education Institutes, Sun Yat-Sen UniversityGuangzhou, China
| | - Jin Zhang
- Department of Internal Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou, China
| | - Yingjuan Lu
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangzhou Higher Education Institutes, Sun Yat-Sen UniversityGuangzhou, China
| | - Li Zhang
- Department of Stomatology, The Affiliated Wujing Hospital of Guangzhou Medical CollegeGuangzhou, China
| | - Di Wan
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangzhou Higher Education Institutes, Sun Yat-Sen UniversityGuangzhou, China
| | - Liming Duan
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangzhou Higher Education Institutes, Sun Yat-Sen UniversityGuangzhou, China
| | - You Wu
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangzhou Higher Education Institutes, Sun Yat-Sen UniversityGuangzhou, China
| | - Bin Zhang
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangzhou Higher Education Institutes, Sun Yat-Sen UniversityGuangzhou, China
| |
Collapse
|
18
|
Cytokeratin-14 contributes to collective invasion of salivary adenoid cystic carcinoma. PLoS One 2017; 12:e0171341. [PMID: 28152077 PMCID: PMC5289574 DOI: 10.1371/journal.pone.0171341] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/19/2017] [Indexed: 02/05/2023] Open
Abstract
Collective invasion of cells plays a fundamental role in tissue growth, wound healing, immune response and cancer metastasis. This paper aimed to investigate cytokeratin-14 (CK14) expression and analyze its association with collective invasion in the invasive front of salivary adenoid cystic carcinoma (SACC) to uncover the role of collective invasion in SACC. Here, in the clinical data of 121 patients with SACC, the positive expression of CK14 was observed in 35/121(28.93%) of the invasive front of SACC. CK14 expression in the invasive front, local regional recurrence and distant metastasis were independent and significant prognostic factors in SACC patients. Then, we found that in an ex vivo 3D culture assay, CK14 siRNA receded the collective invasion, and in 2D monolayer culture, CK14 overexpression induced a collective SACC cell migration. These data indicated that the presence of characterized CK14+ cells in the invasive front of SACC promoted collective cell invasion of SACC and may be a biomarker of SACC with a worse prognosis.
Collapse
|
19
|
Wang P, Ye JA, Hou CX, Zhou D, Zhan SQ. Combination of lentivirus-mediated silencing of PPM1D and temozolomide chemotherapy eradicates malignant glioma through cell apoptosis and cell cycle arrest. Oncol Rep 2016; 36:2544-2552. [PMID: 27633132 PMCID: PMC5055212 DOI: 10.3892/or.2016.5089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/22/2016] [Indexed: 01/06/2023] Open
Abstract
Temozolomide (TMZ) is approved for use as first-line treatment for glioblastoma multiforme (GBM). However, GBM shows chemoresistance shortly after the initiation of treatment. In order to detect whether silencing of human protein phosphatase 1D magnesium dependent (PPM1D) gene could increase the effects of TMZ in glioma cells, glioma cells U87-MG were infected with lentiviral shRNA vector targeting PPM1D silencing. After PPM1D silencing was established, cells were treated with TMZ. The multiple functions of human glioma cells after PPM1D silencing and TMZ chemotherapy were detected by flow cytometry and MTT assay. Significantly differentially expressed genes were distinguished by microarray-based gene expression profiling and analyzed by gene pathway enrichment analysis and ontology assessment. Western blotting was used to establish the protein expression of the core genes. PPM1D gene silencing improves TMZ induced cell proliferation and induces cell apoptosis and cell cycle arrest. When PPM1D gene silencing combined with TMZ was performed in glioma cells, 367 genes were upregulated and 444 genes were downregulated compared with negative control. The most significant differential expression pathway was pathway in cancer and IGFR1R, PIK3R1, MAPK8 and EP300 are core genes in the network. Western blotting showed that MAPK8 and PIK3R1 protein expression levels were upregulated and RB1 protein expression was decreased. It was consistent with that detected in gene expression profiling. In conclusion, PPM1D gene silencing combined with TMZ eradicates glioma cells through cell apoptosis and cell cycle arrest. PIK3R1/AKT pathway plays a role in the multiple functions of glioma cells after PPM1D silencing and TMZ chemotherapy.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jing-An Ye
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Chong-Xian Hou
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Sheng-Quan Zhan
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
20
|
Chen Z, Tang YP, Tong L, Wang Y, Zhou Y, Wang Q, Han J, He Z, Liao Y, Fan B, Zou RH, Zhang J, Sun X, Yan G. [Effects of RhoA gene silencing by RNA interference on invasion of tongue carcinoma]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2016; 34:183-188. [PMID: 27337930 PMCID: PMC7029975 DOI: 10.7518/hxkq.2016.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/18/2015] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To study the effects of RhoA down-regulation by RNA interference on the invasion of tongue carcinoma Tca8113 and SCC-4. METHODS Determination of the human RhoA sequence as well as the design and constructionof a short specific small interfering RNAs (siRNA) were performed. The siRNA of RhoA gene was transfected into humantongue squamous cell carcinoma Tca8113 and SCC-4 cells line by Lipofectamine 2000. Quantitative real-time polymerasechain reaction was used to examine the mRNA expressionlevels of RhoA. Protein expressions of mRNA, galectin-3,and matrix metalloproteinase (MMP)-9 were evaluated byWestern blot. Transwell invasion assay was performed toassess the invasion ability of tongue carcinoma. RESULTS RhoA expressions in Tca8113 and SCC-4 cells were reducedsignificantly after transfection of RhoA-siRNA. Protein levels f galectin-3 and MVP-9 were also down-regulated significantly. Invasion ability was inhibited as well. CONCLUSION RhoA-siRNA can effectively inhibit RhoA expression in Tca8113 and SCC-4 cells. The invasion ability of tongue carcinoma cells decreased with down-regulation of the protein expressions of galectin-3 and MMP-9, indicating that RhoA-siRNA can inhibit invasion of tongue carcinoma. Results show that RhoA may play an important role in the processes of invasion and metastasis of tongue carcinoma.
Collapse
|