1
|
Tataranu LG, Turliuc S, Rizea RE, Dricu A, Alexandru O, Staicu GA, Kamel A. A Synopsis of Biomarkers in Glioblastoma: Past and Present. Curr Issues Mol Biol 2024; 46:6903-6939. [PMID: 39057054 PMCID: PMC11275428 DOI: 10.3390/cimb46070412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Accounting for 48% of malignant brain tumors in adults, glioblastoma has been of great interest in the last decades, especially in the biomolecular and neurosurgical fields, due to its incurable nature and notable neurological morbidity. The major advancements in neurosurgical technologies have positively influenced the extent of safe tumoral resection, while the latest progress in the biomolecular field of GBM has uncovered new potential therapeutical targets. Although GBM currently has no curative therapy, recent progress has been made in the management of this disease, both from surgical and molecular perspectives. The main current therapeutic approach is multimodal and consists of neurosurgical intervention, radiotherapy, and chemotherapy, mostly with temozolomide. Although most patients will develop treatment resistance and tumor recurrence after surgical removal, biomolecular advancements regarding GBM have contributed to a better understanding of this pathology and its therapeutic management. Over the past few decades, specific biomarkers have been discovered that have helped predict prognosis and treatment responses and contributed to improvements in survival rates.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Oana Alexandru
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Georgiana-Adeline Staicu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| |
Collapse
|
2
|
Spring BQ, Watanabe K, Ichikawa M, Mallidi S, Matsudaira T, Timerman D, Swain JWR, Mai Z, Wakimoto H, Hasan T. Red light-activated depletion of drug-refractory glioblastoma stem cells and chemosensitization of an acquired-resistant mesenchymal phenotype. Photochem Photobiol 2024. [PMID: 38922889 DOI: 10.1111/php.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma stem cells (GSCs) are potent tumor initiators resistant to radiochemotherapy, and this subpopulation is hypothesized to re-populate the tumor milieu due to selection following conventional therapies. Here, we show that 5-aminolevulinic acid (ALA) treatment-a pro-fluorophore used for fluorescence-guided cancer surgery-leads to elevated levels of fluorophore conversion in patient-derived GSC cultures, and subsequent red light-activation induces apoptosis in both intrinsically temozolomide chemotherapy-sensitive and -resistant GSC phenotypes. Red light irradiation of ALA-treated cultures also exhibits the ability to target mesenchymal GSCs (Mes-GSCs) with induced temozolomide resistance. Furthermore, sub-lethal light doses restore Mes-GSC sensitivity to temozolomide, abrogating GSC-acquired chemoresistance. These results suggest that ALA is not only useful for fluorescence-guided glioblastoma tumor resection, but that it also facilitates a GSC drug-resistance agnostic, red light-activated modality to mop up the surgical margins and prime subsequent chemotherapy.
Collapse
Affiliation(s)
- Bryan Q Spring
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
| | - Kohei Watanabe
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Healthcare Optics Research Laboratory, Canon USA, Inc., Cambridge, Massachusetts, USA
| | - Megumi Ichikawa
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Tatsuyuki Matsudaira
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dmitriy Timerman
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph W R Swain
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zhiming Mai
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroaki Wakimoto
- Brain Tumor Research Center and Molecular Neurosurgery Laboratory, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Xu C, Hou P, Li X, Xiao M, Zhang Z, Li Z, Xu J, Liu G, Tan Y, Fang C. Comprehensive understanding of glioblastoma molecular phenotypes: classification, characteristics, and transition. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0510. [PMID: 38712813 PMCID: PMC11131044 DOI: 10.20892/j.issn.2095-3941.2023.0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Among central nervous system-associated malignancies, glioblastoma (GBM) is the most common and has the highest mortality rate. The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide. In precision medicine, research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity, as well as the refractory nature of GBM toward therapy. Deep understanding of the different molecular expression patterns of GBM subtypes is critical. Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes. The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors. These subtypes also exhibit high plasticity in their regulatory pathways, oncogene expression, tumor microenvironment alterations, and differential responses to standard therapy. Herein, we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype. Furthermore, we review the mesenchymal transition mechanisms of GBM under various regulators.
Collapse
Affiliation(s)
- Can Xu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Pengyu Hou
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
| | - Xiang Li
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
| | - Menglin Xiao
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Ziqi Zhang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Ziru Li
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
| | - Jianglong Xu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Guoming Liu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Yanli Tan
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding 07100, China
| | - Chuan Fang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| |
Collapse
|
4
|
Doualle C, Gouju J, Nouari Y, Wery M, Guittonneau C, Codron P, Rousseau A, Saulnier P, Eyer J, Letournel F. Dedifferentiated cells obtained from glioblastoma cell lines are an easy and robust model for mesenchymal glioblastoma stem cells studies. Am J Cancer Res 2023; 13:1425-1442. [PMID: 37168329 PMCID: PMC10164819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/12/2023] [Indexed: 05/13/2023] Open
Abstract
Glioblastoma is an aggressive brain tumor with a poor prognosis. Glioblastoma Stem Cells (GSC) are involved in glioblastoma resistance and relapse. Effective glioblastoma treatment must include GSC targeting strategy. Robust and well defined in vitroGSC models are required for new therapies evaluation. In this study, we extensively characterized 4 GSC models obtained by dedifferentiation of commercially available glioblastoma cell lines and compared them to 2 established patient derived GSC lines (Brain Tumor Initiating Cells). Dedifferentiated cells formed gliospheres, typical for GSC, with self-renewal ability. Gene expression and protein analysis revealed an increased expression of several stemness associated markers such as A2B5, integrin α6, Nestin, SOX2 and NANOG. Cells were oriented toward a mesenchymal GSC phenotype as shown by elevated levels of mesenchymal and EMT related markers (CD44, FN1, integrin α5). Dedifferentiated GSC were similar to BTIC in terms of size and heterogeneity. The characterization study also revealed that CXCR4 pathway was activated by dedifferentiation, emphasizing its role as a potential therapeutic target. The expression of resistance-associated markers and the phenotypic diversity of the 4 GSC models obtained by dedifferentiation make them relevant to challenge future GSC targeting therapies.
Collapse
Affiliation(s)
- Cécile Doualle
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
| | - Julien Gouju
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
- Département de Pathologie, CHU AngersF-49000 Angers, France
| | - Yousra Nouari
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
| | | | - Clélia Guittonneau
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
| | - Philippe Codron
- Département de Pathologie, CHU AngersF-49000 Angers, France
- Univ Angers, CHU Angers, Inserm, CNRS, MITOVASC, SFR ICATF-49000 Angers, France
| | - Audrey Rousseau
- Département de Pathologie, CHU AngersF-49000 Angers, France
- Univ Angers, Nantes Université, CHU Angers, Inserm, CNRS, CRCI2NA, SFR ICATF-49000 Angers, France
| | - Patrick Saulnier
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
| | - Joël Eyer
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
| | - Franck Letournel
- Univ Angers, CHU Angers, Inserm, CNRS, MINT, SFR ICATF-49000 Angers, France
- Département de Pathologie, CHU AngersF-49000 Angers, France
| |
Collapse
|
5
|
A Simple 3D Cell Culture Method for Studying the Interactions between Human Mesenchymal Stromal/Stem Cells and Patients Derived Glioblastoma. Cancers (Basel) 2023; 15:cancers15041304. [PMID: 36831643 PMCID: PMC9954562 DOI: 10.3390/cancers15041304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
We have developed a 3D biosphere model using patient-derived cells (PDCs) from glioblastoma (GBM), the major form of primary brain tumors in adult, plus cancer-activated fibroblasts (CAFs), obtained by culturing mesenchymal stem cells with GBM conditioned media. The effect of MSC/CAFs on the proliferation, cell-cell interactions, and response to treatment of PDCs was evaluated. Proliferation in the presence of CAFs was statistically lower but the spheroids formed within the 3D-biosphere were larger. A treatment for 5 days with Temozolomide (TMZ) and irradiation, the standard therapy for GBM, had a marked effect on cell number in monocultures compared to co-cultures and influenced cancer stem cells composition, similar to that observed in GBM patients. Mathematical analyses of spheroids growth and morphology confirm the similarity with GBM patients. We, thus, provide a simple and reproducible method to obtain 3D cultures from patient-derived biopsies and co-cultures with MSC with a near 100% success. This method provides the basis for relevant in vitro functional models for a better comprehension of the role of tumor microenvironment and, for precision and/or personalized medicine, potentially to predict the response to treatments for each GBM patient.
Collapse
|
6
|
Trivieri N, Visioli A, Mencarelli G, Cariglia MG, Marongiu L, Pracella R, Giani F, Soriano AA, Barile C, Cajola L, Copetti M, Palumbo O, Legnani F, DiMeco F, Gorgoglione L, Vescovi AL, Binda E. Growth factor independence underpins a paroxysmal, aggressive Wnt5aHigh/EphA2Low phenotype in glioblastoma stem cells, conducive to experimental combinatorial therapy. J Exp Clin Cancer Res 2022; 41:139. [PMID: 35414102 PMCID: PMC9004109 DOI: 10.1186/s13046-022-02333-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Glioblastoma multiforme (GBM) is an incurable tumor, with a median survival rate of only 14–15 months. Along with heterogeneity and unregulated growth, a central matter in dealing with GBMs is cell invasiveness. Thus, improving prognosis requires finding new agents to inhibit key multiple pathways, even simultaneously. A subset of GBM stem-like cells (GSCs) may account for tumorigenicity, representing, through their pathways, the proper cellular target in the therapeutics of glioblastomas. GSCs cells are routinely enriched and expanded due to continuous exposure to specific growth factors, which might alter some of their intrinsic characteristic and hide therapeutically relevant traits.
Methods
By removing exogenous growth factors stimulation, here we isolated and characterized a subset of GSCs with a “mitogen-independent” phenotype (I-GSCs) from patient’s tumor specimens. Differential side-by-side comparative functional and molecular analyses were performed either in vitro or in vivo on these cells versus their classical growth factor (GF)-dependent counterpart (D-GSCs) as well as their tissue of origin. This was performed to pinpoint the inherent GSCs’ critical regulators, with particular emphasis on those involved in spreading and tumorigenic potential. Transcriptomic fingerprints were pointed out by ANOVA with Benjamini-Hochberg False Discovery Rate (FDR) and association of copy number alterations or somatic mutations was determined by comparing each subgroup with a two-tailed Fisher’s exact test. The combined effects of interacting in vitro and in vivo with two emerging GSCs’ key regulators, such as Wnt5a and EphA2, were then predicted under in vivo experimental settings that are conducive to clinical applications. In vivo comparisons were carried out in mouse-human xenografts GBM model by a hierarchical linear model for repeated measurements and Dunnett’s multiple comparison test with the distribution of survival compared by Kaplan–Meier method.
Results
Here, we assessed that a subset of GSCs from high-grade gliomas is self-sufficient in the activation of regulatory growth signaling. Furthermore, while constitutively present within the same GBM tissue, these GF-independent GSCs cells were endowed with a distinctive functional and molecular repertoire, defined by highly aggressive Wnt5aHigh/EphA2Low profile, as opposed to Wnt5aLow/EphA2High expression in sibling D-GSCs. Regardless of their GBM subtype of origin, I-GSCs, are endowed with a raised in vivo tumorigenic potential than matched D-GSCs, which were fast-growing ex-vivo but less lethal and invasive in vivo. Also, the malignant I-GSCs’ transcriptomic fingerprint faithfully mirrored the original tumor, bringing into evidence key regulators of invasiveness, angiogenesis and immuno-modulators, which became candidates for glioma diagnostic/prognostic markers and therapeutic targets. Particularly, simultaneously counteracting the activity of the tissue invasive mediator Wnt5a and EphA2 tyrosine kinase receptor addictively hindered GSCs’ tumorigenic and invasive ability, thus increasing survival.
Conclusion
We show how the preservation of a mitogen-independent phenotype in GSCs plays a central role in determining the exacerbated tumorigenic and high mobility features distinctive of GBM. The exploitation of the I-GSCs' peculiar features shown here offers new ways to identify novel, GSCs-specific effectors, whose modulation can be used in order to identify novel, potential molecular therapeutic targets. Furthermore, we show how the combined use of PepA, the anti-Wnt5a drug, and of ephrinA1-Fc to can hinder GSCs’ lethality in a clinically relevant xenogeneic in vivo model thus being conducive to perspective, novel combinatorial clinical application.
Collapse
|
7
|
Cost Matrix of Molecular Pathology in Glioma-Towards AI-Driven Rational Molecular Testing and Precision Care for the Future. Biomedicines 2022; 10:biomedicines10123029. [PMID: 36551786 PMCID: PMC9775648 DOI: 10.3390/biomedicines10123029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
Gliomas are the most common and aggressive primary brain tumors. Gliomas carry a poor prognosis because of the tumor's resistance to radiation and chemotherapy leading to nearly universal recurrence. Recent advances in large-scale genomic research have allowed for the development of more targeted therapies to treat glioma. While precision medicine can target specific molecular features in glioma, targeted therapies are often not feasible due to the lack of actionable markers and the high cost of molecular testing. This review summarizes the clinically relevant molecular features in glioma and the current cost of care for glioma patients, focusing on the molecular markers and meaningful clinical features that are linked to clinical outcomes and have a realistic possibility of being measured, which is a promising direction for precision medicine using artificial intelligence approaches.
Collapse
|
8
|
Seliger C, Meyer AL, Leidgens V, Rauer L, Moeckel S, Jachnik B, Proske J, Dettmer K, Rothhammer-Hampl T, Kaulen LD, Riemenschneider MJ, Oefner PJ, Kreutz M, Schmidt NO, Merrill M, Uhl M, Renner K, Vollmann-Zwerenz A, Proescholdt M, Hau P. Metabolic Heterogeneity of Brain Tumor Cells of Proneural and Mesenchymal Origin. Int J Mol Sci 2022; 23:ijms231911629. [PMID: 36232951 PMCID: PMC9569970 DOI: 10.3390/ijms231911629] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Brain-tumor-initiating cells (BTICs) of proneural and mesenchymal origin contribute to the highly malignant phenotype of glioblastoma (GB) and resistance to current therapies. BTICs of different subtypes were challenged with oxidative phosphorylation (OXPHOS) inhibition with metformin to assess the differential effects of metabolic intervention on key resistance features. Whereas mesenchymal BTICs varied according to their invasiveness, they were in general more glycolytic and less responsive to metformin. Proneural BTICs were less invasive, catabolized glucose more via the pentose phosphate pathway, and responded better to metformin. Targeting glycolysis may be a promising approach to inhibit tumor cells of mesenchymal origin, whereas proneural cells are more responsive to OXPHOS inhibition. Future clinical trials exploring metabolic interventions should account for metabolic heterogeneity of brain tumors.
Collapse
Affiliation(s)
- Corinna Seliger
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Neurology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-56-7507
| | - Anne-Louise Meyer
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Freiburg, 79104 Freiburg, Germany
| | - Verena Leidgens
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lisa Rauer
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Sylvia Moeckel
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Birgit Jachnik
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Judith Proske
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany
| | | | - Leon D. Kaulen
- Department of Neurology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | - Peter J. Oefner
- Institute of Functional Genomics, University of Regensburg, 93053 Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nils-Ole Schmidt
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Marsha Merrill
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD 20892, USA
| | - Martin Uhl
- Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Kathrin Renner
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Arabel Vollmann-Zwerenz
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Peter Hau
- Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Petterson SA, Sørensen MD, Burton M, Thomassen M, Kruse TA, Michaelsen SR, Kristensen BW. Differential expression of checkpoint markers in the normoxic and hypoxic microenvironment of glioblastomas. Brain Pathol 2022; 33:e13111. [PMID: 36093941 PMCID: PMC9836374 DOI: 10.1111/bpa.13111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/29/2022] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma is the most common primary malignant brain tumor in adults with an overall survival of only 14.6 months. Hypoxia is known to play a role in tumor aggressiveness but the influence of hypoxia on the immune microenvironment is not fully understood. The aim of this study was to investigate the expression of immune-related proteins in normoxic and hypoxic tumor areas by digital spatial profiling. Tissue samples from 10 glioblastomas were stained with a panel of 40 antibodies conjugated to photo-cleavable oligonucleotides. The free oligo-tags from normoxic and hypoxic areas were hybridized to barcodes for digital counting. Differential expression patterns were validated by Ivy Glioblastoma Atlas Project (GAP) data and an independent patient cohort. We found that CD44, Beta-catenin and B7-H3 were upregulated in hypoxia, whereas VISTA, CD56, KI-67, CD68 and CD11c were downregulated. PD-L1 and PD-1 were not affected by hypoxia. Focusing on the checkpoint-related markers CD44, B7-H3 and VISTA, our findings for CD44 and VISTA could be confirmed with Ivy GAP RNA sequencing data. Immunohistochemical staining and digital quantification of CD44, B7-H3 and VISTA in an independent cohort confirmed our findings for all three markers. Additional stainings revealed fewer T cells and high but equal amounts of tumor-associated microglia and macrophages in both hypoxic and normoxic regions. In conclusion, we found that CD44 and B7-H3 were upregulated in areas with hypoxia whereas VISTA was downregulated together with the presence of fewer T cells. This heterogeneous expression should be taken into consideration when developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Stine Asferg Petterson
- Department of PathologyOdense University HospitalOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Mia Dahl Sørensen
- Department of PathologyOdense University HospitalOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Mark Burton
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of Clinical GeneticsOdense University HospitalOdense CDenmark
| | - Mads Thomassen
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of Clinical GeneticsOdense University HospitalOdense CDenmark
| | - Torben A. Kruse
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of Clinical GeneticsOdense University HospitalOdense CDenmark
| | - Signe Regner Michaelsen
- Department of Pathology, The Bartholin Institute, RigshospitaletCopenhagen University HospitalCopenhagenDenmark,Department of Clinical Medicine and Biotech Research & Innovation Centre (BRIC)University of CopenhagenCopenhagenDenmark
| | - Bjarne Winther Kristensen
- Department of PathologyOdense University HospitalOdenseDenmark,Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark,Department of Pathology, The Bartholin Institute, RigshospitaletCopenhagen University HospitalCopenhagenDenmark,Department of Clinical Medicine and Biotech Research & Innovation Centre (BRIC)University of CopenhagenCopenhagenDenmark
| |
Collapse
|
10
|
Wang H, Tan Y, Jia H, Liu D, Liu R. Posaconazole inhibits the stemness of cancer stem-like cells by inducing autophagy and suppressing the Wnt/β-catenin/survivin signaling pathway in glioblastoma. Front Pharmacol 2022; 13:905082. [PMID: 36034873 PMCID: PMC9403519 DOI: 10.3389/fphar.2022.905082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Posaconazole (POS) has been reported to present potential antitumor activity for glioblastoma (GBM). However, its molecular mechanisms remain unclear. In this study, we found that POS has potent cytotoxicity and inhibits cell viability and proliferation in GBM. In addition, we adopted a sphere formation assay to detect the self-renewal capacity, performed western blotting to measure cancer stem-like cells (CSCs) marker proteins (CD133, SOX2, Nanog and Oct4) and applied flow cytometry to monitor the subpopulation of CD144+/CD33+ cells, and the results all demonstrated that POS can remarkably weaken CSCs stemness. Furthermore, western blotting, immunoflurescence, transmission electron microscopy and acridine orange staining were performed to detect autophagy-related proteins (LC3, SQSTM1, Beclin 1 and Atg5), count the numbers of endogenous LC3 puncta, visually observe the ultrastructural morphology of autophagosomes and judge the formation of acidic vesicular organelles, respectively, and the results validated that POS promotes autophagy induction. Importantly, the suppressive effect of POS on CSCs stemness was partially relieved when autophagy was blocked by the autophagy inhibitor chloroquine (CQ) or Atg5 shRNA. Bioinformatic techniques, including weighted gene coexpression network analysis (WGCNA), gene set difference analysis (GSVA) and KEGG pathway analysis, combined with experimental validations showed that survivin, which is implicated in both autophagy and the stem cell index, is one of the target proteins of POS and that POS weakens CSCs stemness via suppressing the Wnt/β-catenin signaling pathway in GBM. Besides, POS-induced autophagy and the Wnt/β-catenin signaling pathway are negative regulators for each other. Finally, the antitumor activity of POS was confirmed in GBM xenograft models in vivo. Consistent with the in vitro conclusions, POS upregulated the expression of LC3 and decreased the expression of CD133, survivin and β-catenin, as shown by the immunohistochemistry analysis. In summary, this work provides an experimental foundation for exploiting POS as a CSCs-targeting antitumor drug for GBM treatment.
Collapse
Affiliation(s)
- Hua Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Pharmacy, Department of Spine Surgery of The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yinfeng Tan
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Hao Jia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Pharmacy, Department of Spine Surgery of The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Danqi Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Rangru Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Pharmacy, Department of Spine Surgery of The First Affiliated Hospital, Hainan Medical University, Haikou, China
- *Correspondence: Rangru Liu,
| |
Collapse
|
11
|
Effect of Autophagy Inhibitors on Radiosensitivity in DNA Repair-Proficient and -Deficient Glioma Cells. Medicina (B Aires) 2022; 58:medicina58070889. [PMID: 35888608 PMCID: PMC9317283 DOI: 10.3390/medicina58070889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Background and Objectives: The development of radioresistance is a fundamental barrier to successful glioblastoma therapy. Autophagy is thought to play a role in facilitating the DNA repair of DNA damage foci in radiation-exposed tumor cells, thus, potentially contributing to their restoration of proliferative capacity and development of resistance in vitro. However, the effect of autophagy inhibitors on DNA damage repair is not fully clear and requires further investigation. Materials and Methods: In this work, we utilized M059K (DNA-PKcs proficient) and M059J (DNA-PKcs deficient) glioma cell lines to investigate the role of autophagy inhibitors in the DNA repair of radiation-induced DNA damage. Cell viability following radiation was determined by trypan blue exclusion in both cell lines. Cell death and autophagy assays were performed to evaluate radiation-induced cell stress responses. DNA damage was measured as based on the intensity of phosphorylated γ-H2AX, a DNA double-stranded breaks (DSBs) marker, in the presence or absence of autophagy inhibitors. Results: The cell viability assay showed that M059J cells were more sensitive to the same dose of radiation (4 Gy) than M059K cells. This observation was accompanied by an elevation in γ-H2AX formation in M059J but not in M059K cells. In addition, the DAPI/TUNEL and Senescence-associated β-galactosidase (SA-β-gal) staining assays did not reveal significant differences in apoptosis and/or senescence induction in response to radiation, respectively, in either cell line. However, acridine orange staining demonstrated clear promotion of acidic vesicular organelles (AVOs) in both cell lines in response to 4 Gy radiation. Moreover, DNA damage marker levels were found to be elevated 72 h post-radiation when autophagy was inhibited by the lysosomotropic agent bafilomycin A1 (BafA1) or the PI3K inhibitor 3-methyl adenine (3-MA) in M059K cells. Conclusions: The extent of the DNA damage response remained high in the DNA-PKcs deficient cells following exposure to radiation, indicating their inability to repair the newly formed DNA-DSBs. On the other hand, radioresistant M059K cells showed more DNA damage response only when autophagy inhibitors were used with radiation, suggesting that the combination of autophagy inhibitors with radiation may interfere with DNA repair efficiency.
Collapse
|
12
|
Haldavnekar R, Venkatakrishnan A, Kiani A. Tracking the Evolution of Metastasis with Self-Functionalized 3D Nanoprobes. ACS APPLIED BIO MATERIALS 2022; 5:1633-1647. [PMID: 35316034 DOI: 10.1021/acsabm.2c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite recent advances in cancer treatment, metastasis is the cause of mortality in 90% of cancer cases. It has now been well-established that dissemination of cancer cells to distant sites occurs very early during tumorigenesis, resulting in the minimal effect of surgical or chemotherapeutic treatments after the detection of metastasis. The underlying reason for this challenge is mostly due to the limited understanding of molecular mechanisms of the metastasis cascade, particularly related to metastatic traits. Therefore, there is an urgent need to investigate this currently invisible evolution of metastasis. The tracking of metastasis evolution has not been addressed yet. Here, we introduce, for the first time, a synchronous approach to unveil the molecular mechanisms of the metastasis cascade. As cancer stem cells (CSCs) demonstrate cancer initiation, drug resistance, metastasis, and tumor relapse and can exist in a quasi-intermediate epithelial-mesenchymal transition state, the tumor-initiating events during a CSCs metamorphosis were monitored with single-cell sensitivity. Because of the invasive and resistive properties of the metastable intermediate CSCs, investigation of the molecular profiles of the quasi-intermediate CSCs was necessary for the detection of metastasis dissemination. For this purpose, the ultrasensitive technique of surface-enhanced Raman scattering (SERS) was adopted. Titanium-based, biocompatible three-dimensional (3D) nanoprobes that were synthesized for multiphoton ionization achieved a substantial SERS enhancement of ∼80-fold due to the oxygen vacancy-enriched composition of the nanoprobes. The 3D interconnected complex nanoarchitecture of the nanoprobes enabled us to entrap the nonadherent CSCs of three metastatic cancer cell lines (triple negative breast adenocarcinoma (MDAMB231), human Caucasian colon adenocarcinoma (COLO 205), and cervical adenocarcinoma (HeLa)─all very aggressive forms of cancer). The nanoprobes not only promoted the CSC proliferation to successfully attain the quasi-intermediate states but also monitored its reprogramming into a cancer cell state. The nanoprobes substantially amplified weak intracellular Raman signals to capture the molecular events during a CSC transformation. The detection of cancer was achieved with 100% accuracy. We experimentally demonstrated that the molecular signatures of CSC reprogramming are cancer-type specific. This observation enabled us to identify the origin of metastasis with 100% accuracy, providing more clarity on the relatively unknown quasi-intermediate states. This first demonstration of CSC-based tracking of metastasis evolution has the potential to provide an insightful perspective of tumorigenesis that could be useful in cancer diagnosis and prognosis as well as in the monitoring of therapeutic interventions.
Collapse
Affiliation(s)
- Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology, 209 Victoria Street, Toronto, Ontario M5B 1T8, Canada.,Ultrashort Laser Nanomanufacturing research facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B2K3, Canada.,BioNanoInterface Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B2K3, Canada.,Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B2K3, Canada.,Department of Biomedical Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B2K3, Canada
| | - Akshay Venkatakrishnan
- Department of Basic Medical Sciences, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A3K7, Canada
| | - Amirkianoosh Kiani
- Silicon Hall: Micro/Nano Manufacturing Facility, Faculty of Engineering and Applied Science, Ontario Tech University, 2000 Simcoe Street N, Oshawa, Ontario L1G0C5, Canada.,Department of Mechanical and Manufacturing Engineering, Ontario Tech University, 2000 Simcoe Street N, Oshawa, Ontario L1G0C5, Canada
| |
Collapse
|
13
|
Extracellular Vesicles Secreted by Glioma Stem Cells Are Involved in Radiation Resistance and Glioma Progression. Int J Mol Sci 2022; 23:ijms23052770. [PMID: 35269915 PMCID: PMC8911495 DOI: 10.3390/ijms23052770] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma is the most aggressive brain tumour with short survival, partly due to resistance to conventional therapy. Glioma stem cells (GSC) are likely to be involved in treatment resistance, by releasing extracellular vesicles (EVs) containing specific molecular cargoes. Here, we studied the EVs secreted by glioma stem cells (GSC-EVs) and their effects on radiation resistance and glioma progression. EVs were isolated from 3 GSCs by serial centrifugation. NanoSight measurement, cryo-electron microscopy and live imaging were used to study the EVs size, morphology and uptake, respectively. The non-GSC glioma cell lines LN229 and U118 were utilised as a recipient cell model. Wound healing assays were performed to detect cell migration. Colony formation, cell viability and invadopodium assays were conducted to detect cell survival of irradiated recipient cells and cell invasion post GSC-EV treatment. NanoString miRNA global profiling was used to select for the GSC-EVs’ specific miRNAs. All three GSC cell lines secreted different amounts of EVs, and all expressed consistent levels of CD9 but different level of Alix, TSG101 and CD81. EVs were taken up by both LN229 and U118 recipient cells. In the presence of GSC-EVs, these recipient cells survived radiation exposure and initiated colony formation. After GSC-EVs exposure, LN229 and U118 cells exhibited an invasive phenotype, as indicated by an increase in cell migration. We also identified 25 highly expressed miRNAs in the GSC-EVs examined, and 8 of these miRNAs can target PTEN. It is likely that GSC-EVs and their specific miRNAs induced the phenotypic changes in the recipient cells due to the activation of the PTEN/Akt pathway. This study demonstrated that GSC-EVs have the potential to induce radiation resistance and modulate the tumour microenvironment to promote glioma progression. Future therapeutic studies should be designed to interfere with these GSC-EVs and their specific miRNAs.
Collapse
|
14
|
Anti-glioblastoma effects of phenolic variants of benzoylphenoxyacetamide (BPA) with high potential for blood brain barrier penetration. Sci Rep 2022; 12:3384. [PMID: 35232976 PMCID: PMC8888627 DOI: 10.1038/s41598-022-07247-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastomas are the most aggressive brain tumors for which therapeutic options are limited. Current therapies against glioblastoma include surgical resection, followed by radiotherapy plus concomitant treatment and maintenance with temozolomide (TMZ), however, these standard therapies are often ineffective, and average survival time for glioblastoma patients is between 12 and 18 months. We have previously reported a strong anti-glioblastoma activity of several metabolic compounds, which were synthetized based compounds, which were synthetized based on the chemical structure of a common lipid-lowering drug, fenofibrate, and share a general molecular skeleton of benzoylphenoxyacetamide (BPA). Extensive computational analyses of phenol and naphthol moieties added to the BPA skeleton were performed in this study with the objective of selecting new BPA variants for subsequent compound preparation and anti-glioblastoma testing. Initially, 81 structural variations were considered and their physical properties such as solubility (logS), blood–brain partitioning (logBB), and probability of entering the CNS calculated by the Central Nervous System—Multiparameter Optimization (MPO-CNS) algorithm were evaluated. From this initial list, 18 compounds were further evaluated for anti-glioblastoma activity in vitro. Nine compounds demonstrated desirable glioblastoma cell toxicity in cell culture, and two of them, HR51, and HR59 demonstrated significantly improved capability of crossing the model blood–brain-barrier (BBB) composed of endothelial cells, astrocytes and pericytes.
Collapse
|
15
|
Uribe D, Niechi I, Rackov G, Erices JI, San Martín R, Quezada C. Adapt to Persist: Glioblastoma Microenvironment and Epigenetic Regulation on Cell Plasticity. BIOLOGY 2022; 11:313. [PMID: 35205179 PMCID: PMC8869716 DOI: 10.3390/biology11020313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most frequent and aggressive brain tumor, characterized by great resistance to treatments, as well as inter- and intra-tumoral heterogeneity. GBM exhibits infiltration, vascularization and hypoxia-associated necrosis, characteristics that shape a unique microenvironment in which diverse cell types are integrated. A subpopulation of cells denominated GBM stem-like cells (GSCs) exhibits multipotency and self-renewal capacity. GSCs are considered the conductors of tumor progression due to their high tumorigenic capacity, enhanced proliferation, invasion and therapeutic resistance compared to non-GSCs cells. GSCs have been classified into two molecular subtypes: proneural and mesenchymal, the latter showing a more aggressive phenotype. Tumor microenvironment and therapy can induce a proneural-to-mesenchymal transition, as a mechanism of adaptation and resistance to treatments. In addition, GSCs can transition between quiescent and proliferative substates, allowing them to persist in different niches and adapt to different stages of tumor progression. Three niches have been described for GSCs: hypoxic/necrotic, invasive and perivascular, enhancing metabolic changes and cellular interactions shaping GSCs phenotype through metabolic changes and cellular interactions that favor their stemness. The phenotypic flexibility of GSCs to adapt to each niche is modulated by dynamic epigenetic modifications. Methylases, demethylases and histone deacetylase are deregulated in GSCs, allowing them to unlock transcriptional programs that are necessary for cell survival and plasticity. In this review, we described the effects of GSCs plasticity on GBM progression, discussing the role of GSCs niches on modulating their phenotype. Finally, we described epigenetic alterations in GSCs that are important for stemness, cell fate and therapeutic resistance.
Collapse
Affiliation(s)
- Daniel Uribe
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Ignacio Niechi
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Gorjana Rackov
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain;
| | - José I. Erices
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Rody San Martín
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Claudia Quezada
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
16
|
Glioma invasion along white matter tracts: A dilemma for neurosurgeons. Cancer Lett 2022; 526:103-111. [PMID: 34808285 DOI: 10.1016/j.canlet.2021.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022]
Abstract
Invasive growth along white matter (WM) tracts is one of the most prominent clinicopathological features of glioma and is also an important reason for surgical treatment failure in glioma patients. A full understanding of relevant clinical features and mechanisms is of great significance for finding new therapeutic targets and developing new treatment regimens and strategies. Herein, we review the imaging and histological characteristics of glioma patients with WM tracts invasion and summarize the possible molecular mechanism. On this basis, we further discuss the correlation between glioma molecular typing, radiotherapy and tumor treating fields (TTFields) and the invasion of glioma along WM tracts.
Collapse
|
17
|
Multiple Irradiation Affects Cellular and Extracellular Components of the Mouse Brain Tissue and Adhesion and Proliferation of Glioblastoma Cells in Experimental System In Vivo. Int J Mol Sci 2021; 22:ijms222413350. [PMID: 34948147 PMCID: PMC8703639 DOI: 10.3390/ijms222413350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Intensive adjuvant radiotherapy (RT) is a standard treatment for glioblastoma multiforme (GBM) patients; however, its effect on the normal brain tissue remains unclear. Here, we investigated the short-term effects of multiple irradiation on the cellular and extracellular glycosylated components of normal brain tissue and their functional significance. Triple irradiation (7 Gy*3 days) of C57Bl/6 mouse brain inhibited the viability, proliferation and biosynthetic activity of normal glial cells, resulting in a fast brain-zone-dependent deregulation of the expression of proteoglycans (PGs) (decorin, biglycan, versican, brevican and CD44). Complex time-point-specific (24–72 h) changes in decorin and brevican protein and chondroitin sulfate (CS) and heparan sulfate (HS) content suggested deterioration of the PGs glycosylation in irradiated brain tissue, while the transcriptional activity of HS-biosynthetic system remained unchanged. The primary glial cultures and organotypic slices from triple-irradiated brain tissue were more susceptible to GBM U87 cells’ adhesion and proliferation in co-culture systems in vitro and ex vivo. In summary, multiple irradiation affects glycosylated components of normal brain extracellular matrix (ECM) through inhibition of the functional activity of normal glial cells. The changed content and pattern of PGs and GAGs in irradiated brain tissues are accompanied by the increased adhesion and proliferation of GBM cells, suggesting a novel molecular mechanism of negative side-effects of anti-GBM radiotherapy.
Collapse
|
18
|
Behrooz AB, Vazifehmand R, Tajudin AA, Masarudin MJ, Sekawi Z, Masomian M, Syahir A. Tailoring drug co-delivery nanosystem for mitigating U-87 stem cells drug resistance. Drug Deliv Transl Res 2021; 12:1253-1269. [PMID: 34405338 DOI: 10.1007/s13346-021-01017-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2021] [Indexed: 12/17/2022]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent form of brain tumor, which generally has a poor prognosis. According to consensus, recurrence of the tumor and chemotherapy resistance acquisition are the two distinguishing features of GBM originated from glioblastoma stem cells (GSCs). To eliminate these obstacles inherent in GBM chemotherapy, targeting GSCs through a smart drug delivery system has come to the front position of GBM therapeutics. In this study, B19 aptamer (Apt)-conjugated polyamidoamine (PAMAM) G4C12 dendrimer nanoparticles (NPs), called Apt-NPs, were formulated for the co-delivery of paclitaxel (PTX) and temozolomide (TMZ) to U-87 stem cells. These drugs were loaded using a double emulsification solvent evaporation method. As a result, drug-loaded Apt-NPs significantly inhibited the tumor growth of U-87 stem cells, by the initiation of apoptosis via the downregulation of autophagic and multidrug resistance (MDR) genes. Additionally, by their downregulation by qPCR of CD133, CD44, SOX2, and the canonical Wnt/β-catenin pathway, cell proliferation has substantially decreased. Altogether, the results demonstrate that this intelligent drug co-delivery system is capable of effectively transferring PTX and TMZ to U-87 stem cells and without any toxic effect on Apt-NPs alone to U-87 stem cells. Furthermore, the designed dendrimer-based pharmaceutical system along with single-stranded B19 aptamer might be utilized as a new therapeutic strategy for the treatment of U-87 stem cells drug resistance in the GBM.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Reza Vazifehmand
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Human Genetic, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Asilah Ahmad Tajudin
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Malihe Masomian
- Centre of Virus and Vaccine Research, School of Medical and Life Science, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Amir Syahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia. .,MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
19
|
Pienkowski T, Kowalczyk T, Kretowski A, Ciborowski M. A review of gliomas-related proteins. Characteristics of potential biomarkers. Am J Cancer Res 2021; 11:3425-3444. [PMID: 34354853 PMCID: PMC8332856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023] Open
Abstract
Brain tumors are one of the most commonly diagnosed cancers of the central nervous system. Of all diagnosed malignant tumors, 80% are gliomas. An unequivocal diagnosis of gliomas is not always simple, and there is a great need for research to find new treatment options and diagnostic approaches. This paper is focused on the glioma-related protein profiles as compared to healthy brain tissue, which is reflected in multiple correlations between biological aspects that influence proliferation, apoptosis evasion and the invasiveness of neoplastic cells. The work presents the possibilities of facilitating clinical practice with proteomic biomarkers, which offer a wider diagnostic spectrum and reduce the margin of mistake in histopathological or imaging diagnostic methods. In fact, many changes in the body's homeostasis can be overlooked due to the lack of symptoms or their non-specificity. Nevertheless, a single marker has limited reliability in distinguishing a particular tumor subtype, since the increased or decreased level of the protein of interest may differ between the stages or locations of the tumor. Moreover, the correlations between proposed proteins - presented in this paper - may help clinicians to choose the most optimal therapy, and estimate its effectiveness, or indicate new therapeutic targets affecting disrupted biochemical pathways.
Collapse
Affiliation(s)
- Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Tomasz Kowalczyk
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| |
Collapse
|
20
|
Wang D, Starr R, Chang WC, Aguilar B, Alizadeh D, Wright SL, Yang X, Brito A, Sarkissian A, Ostberg JR, Li L, Shi Y, Gutova M, Aboody K, Badie B, Forman SJ, Barish ME, Brown CE. Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Sci Transl Med 2021; 12:12/533/eaaw2672. [PMID: 32132216 DOI: 10.1126/scitranslmed.aaw2672] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 11/01/2019] [Accepted: 01/29/2020] [Indexed: 12/16/2022]
Abstract
Although chimeric antigen receptor (CAR) T cells have demonstrated signs of antitumor activity against glioblastoma (GBM), tumor heterogeneity remains a critical challenge. To achieve broader and more effective GBM targeting, we developed a peptide-bearing CAR exploiting the GBM-binding potential of chlorotoxin (CLTX). We find that CLTX peptide binds a great proportion of tumors and constituent tumor cells. CAR T cells using CLTX as the targeting domain (CLTX-CAR T cells) mediate potent anti-GBM activity and efficiently target tumors lacking expression of other GBM-associated antigens. Treatment with CLTX-CAR T cells resulted in tumor regression in orthotopic xenograft GBM tumor models. CLTX-CAR T cells do not exhibit observable off-target effector activity against normal cells or after adoptive transfer into mice. Effective targeting by CLTX-CAR T cells requires cell surface expression of matrix metalloproteinase-2. Our results pioneer a peptide toxin in CAR design, expanding the repertoire of tumor-selective CAR T cells with the potential to reduce antigen escape.
Collapse
Affiliation(s)
- Dongrui Wang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010, USA.,Irell and Manella Graduate School of Biological Sciences, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Renate Starr
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Wen-Chung Chang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Brenda Aguilar
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Darya Alizadeh
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Sarah L Wright
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Xin Yang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Alfonso Brito
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Aniee Sarkissian
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Julie R Ostberg
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Li Li
- Irell and Manella Graduate School of Biological Sciences, City of Hope Beckman Research Institute, Duarte, CA 91010, USA.,Department of Developmental and Stem Cell Biology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Yanhong Shi
- Department of Developmental and Stem Cell Biology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Margarita Gutova
- Department of Developmental and Stem Cell Biology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Karen Aboody
- Department of Developmental and Stem Cell Biology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Behnam Badie
- Division of Neurosurgery, Department of Surgery, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Stephen J Forman
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Michael E Barish
- Department of Developmental and Stem Cell Biology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| | - Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA 91010, USA. .,Department of Immuno-Oncology, City of Hope Beckman Research Institute, Duarte, CA 91010, USA
| |
Collapse
|
21
|
Hira VV, Molenaar RJ, Breznik B, Lah T, Aronica E, Van Noorden CJ. Immunohistochemical Detection of Neural Stem Cells and Glioblastoma Stem Cells in the Subventricular Zone of Glioblastoma Patients. J Histochem Cytochem 2021; 69:349-364. [PMID: 33596115 PMCID: PMC8091546 DOI: 10.1369/0022155421994679] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma usually recurs after therapy consisting of surgery, radiotherapy, and chemotherapy. Recurrence is at least partly caused by glioblastoma stem cells (GSCs) that are maintained in intratumoral hypoxic peri-arteriolar microenvironments, or niches, in a slowly dividing state that renders GSCs resistant to radiotherapy and chemotherapy. Because the subventricular zone (SVZ) is a major niche for neural stem cells (NSCs) in the brain, we investigated whether GSCs are present in the SVZ at distance from the glioblastoma tumor. We characterized the SVZ of brains of seven glioblastoma patients using fluorescence immunohistochemistry and image analysis. NSCs were identified by CD133 and SOX2 but not CD9 expression, whereas GSCs were positive for all three biomarkers. NSCs were present in all seven samples and GSCs in six out of seven samples. The SVZ in all samples were hypoxic and expressed the same relevant chemokines and their receptors as GSC niches in glioblastoma tumors: stromal-derived factor-1α (SDF-1α), C-X-C receptor type 4 (CXCR4), osteopontin, and CD44. In conclusion, in glioblastoma patients, GSCs are present at distance from the glioblastoma tumor in the SVZ. These findings suggest that GSCs in the SVZ niche are protected against radiotherapy and chemotherapy and protected against surgical resection due to their distant localization and thus may contribute to tumor recurrence after therapy.
Collapse
Affiliation(s)
- Vashendriya V.V. Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Remco J. Molenaar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Tamara Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| | - Cornelis J.F. Van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
- Department of Medical Biology, Cancer Center Amsterdam, Amsterdam UMC at the Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Robilliard LD, Yu J, Anchan A, Joseph W, Finlay G, Angel CE, Scott Graham E. Comprehensive analysis of inhibitory checkpoint ligand expression by glioblastoma cells. Immunol Cell Biol 2020; 99:403-418. [PMID: 33217047 DOI: 10.1111/imcb.12428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/07/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
Abstract
Glioblastoma is a highly aggressive brain malignancy commonly refractory to classical and novel chemo-, radio- and immunotherapies, with median survival times of ~15 months following diagnosis. Poor immunological responses exemplified by the downregulation of T-cell activity, and upregulation of immunosuppressive cells within the tumor microenvironment have limited the effectiveness of immunotherapy in glioblastoma to date. Here we show that glioblastoma cells express a large repertoire of inhibitory checkpoint ligands known to control effector T cell responses. Furthermore, flow cytometry analysis reveals that glioblastoma cells with an enhanced stem cell-like phenotype express several investigated ligands at significant levels on their cell surface. This reveals that glioblastoma stem-like cells express suppressive ligands with the potential of suppressing major T cell checkpoint receptors. With this information, it is now essential that we understand the relevance of this extensive repertoire of immune checkpoint ligands and their functional consequence on immune evasion in glioblastoma. This is necessary to develop effective immunotherapeutics and to be able to match treatment to patient, especially in the light of CheckMate 143.
Collapse
Affiliation(s)
- Laverne D Robilliard
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Jane Yu
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Akshata Anchan
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Wayne Joseph
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Graeme Finlay
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Catherine E Angel
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - E Scott Graham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Thomas L, Florio T, Perez-Castro C. Extracellular Vesicles Loaded miRNAs as Potential Modulators Shared Between Glioblastoma, and Parkinson's and Alzheimer's Diseases. Front Cell Neurosci 2020; 14:590034. [PMID: 33328891 PMCID: PMC7671965 DOI: 10.3389/fncel.2020.590034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the deadliest brain tumor. Its poor prognosis is due to cell heterogeneity, invasiveness, and high vascularization that impede an efficient therapeutic approach. In the past few years, several molecular links connecting GBM to neurodegenerative diseases (NDDs) were identified at preclinical and clinical level. In particular, giving the increasing critical role that epigenetic alterations play in both GBM and NDDs, we deeply analyzed the role of miRNAs, small non-coding RNAs acting epigenetic modulators in several key biological processes. Specific miRNAs, transported by extracellular vesicles (EVs), act as intercellular communication signals in both diseases. In this way, miRNA-loaded EVs modulate GBM tumorigenesis, as they spread oncogenic signaling within brain parenchyma, and control the aggregation of neurotoxic protein (Tau, Aβ-amyloid peptide, and α-synuclein) in NDDs. In this review, we highlight the most promising miRNAs linking GBM and NDDs playing a significant pathogenic role in both diseases.
Collapse
Affiliation(s)
- Laura Thomas
- Instituto de Investigación en Biomedicina de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna and Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| |
Collapse
|
24
|
Ruiz-Garcia H, Alvarado-Estrada K, Schiapparelli P, Quinones-Hinojosa A, Trifiletti DM. Engineering Three-Dimensional Tumor Models to Study Glioma Cancer Stem Cells and Tumor Microenvironment. Front Cell Neurosci 2020; 14:558381. [PMID: 33177991 PMCID: PMC7596188 DOI: 10.3389/fncel.2020.558381] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and devastating primary brain tumor, leading to a uniform fatality after diagnosis. A major difficulty in eradicating GBM is the presence of microscopic residual infiltrating disease remaining after multimodality treatment. Glioma cancer stem cells (CSCs) have been pinpointed as the treatment-resistant tumor component that seeds ultimate tumor progression. Despite the key role of CSCs, the ideal preclinical model to study the genetic and epigenetic landmarks driving their malignant behavior while simulating an accurate interaction with the tumor microenvironment (TME) is still missing. The introduction of three-dimensional (3D) tumor platforms, such as organoids and 3D bioprinting, has allowed for a better representation of the pathophysiologic interactions between glioma CSCs and the TME. Thus, these technologies have enabled a more detailed study of glioma biology, tumor angiogenesis, treatment resistance, and even performing high-throughput screening assays of drug susceptibility. First, we will review the foundation of glioma biology and biomechanics of the TME, and then the most up-to-date insights about the applicability of these new tools in malignant glioma research.
Collapse
Affiliation(s)
- Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Paula Schiapparelli
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | | | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
25
|
Oxidative Stress-Part of the Solution or Part of the Problem in the Hypoxic Environment of a Brain Tumor. Antioxidants (Basel) 2020; 9:antiox9080747. [PMID: 32823815 PMCID: PMC7464568 DOI: 10.3390/antiox9080747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Rapid growth of brain tumors such as glioblastoma often results in oxygen deprivation and the emergence of hypoxic zones. In consequence, the enrichment of reactive oxygen species occurs, harming nonmalignant cells and leading them toward apoptotic cell death. However, cancer cells survive such exposure and thrive in a hypoxic environment. As the mechanisms responsible for such starkly different outcomes are not sufficiently explained, we aimed to explore what transcriptome rearrangements are used by glioblastoma cells in hypoxic areas. Using metadata analysis of transcriptome in different subregions of the glioblastoma retrieved from the Ivy Glioblastoma Atlas Project, we created the reactive oxygen species-dependent map of the transcriptome. This map was then used for the analysis of differential gene expression in the histologically determined cellular tumors and hypoxic zones. The gene ontology analysis cross-referenced with the clinical data from The Cancer Genome Atlas revealed that the metabolic shift is one of the major prosurvival strategies applied by cancer cells to overcome hypoxia-related cytotoxicity.
Collapse
|
26
|
Wang C, Wang Z, Chen C, Fu X, Wang J, Fei X, Yan X, Xu R. A low MW inhibitor of CD44 dimerization for the treatment of glioblastoma. Br J Pharmacol 2020; 177:3009-3023. [PMID: 32080830 PMCID: PMC7280016 DOI: 10.1111/bph.15030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE As a hallmark of glioblastoma multiforme (GBM), CD44 plays a crucial role in promoting glioblastoma stem cell (GSC) stemness phenotypes and multiple drug resistance. The therapeutic potential of CD44 has been validated by the clinical successes of several CD44 inhibitors, including antibodies and hyaluronan-related drugs. EXPERIMENTAL APPROACH We used systemsDock software to predict verbascoside as a candidate CD44 inhibitor. Microscale thermophoresis was used to confirm the interaction between CD44 and verbascoside. Four glioblastoma cell lines and a patient-derived glioblastoma cell line were used to test the influences of verbascoside on glioblastoma. CD44-overexpressing and CD44-knockout cell lines were also used. Real-time quantitative PCR and western blot analyses were performed. A xenograft mouse model was used to test verbascoside. KEY RESULTS Verbascoside bound to CD44 and suppressed its dimerization. By inhibiting CD44 dimerization, verbascoside decreased the release of the CD44 intracellular domain (CD44ICD) and suppressed the expression of CD44 downstream genes. Verbascoside treatment suppressed the stemness phenotypes of cells with high CD44 expression. In a mouse model of glioma, verbascoside treatment highly reduced the growth of intracranial tumours and inhibited CD44ICD release. Both stem cell marker and mesenchymal GBM subtype marker genes were down-regulated in verbascoside-treated mice. CONCLUSION AND IMPLICATIONS Verbascoside suppressed growth of glioblastoma cells by inhibiting CD44 dimerization. Stem cell-like cell properties and tumour cell growth were also suppressed by verbascoside, both in vitro and in vivo. Verbascoside significantly prolonged survival of xenografted mice.
Collapse
Affiliation(s)
- Chongwu Wang
- The 7th Medical center of Chinese PLA general hospitalChinese PLA General Hospital Afflicted the Seventh Medical CenterBeijingChina
| | - Zhaotao Wang
- Department of NeurosurgeryThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Chen Chen
- The 7th Medical center of Chinese PLA general hospitalChinese PLA General Hospital Afflicted the Seventh Medical CenterBeijingChina
| | - Xiaojun Fu
- Chinese PLA General HospitalMedicine School of Chinese PLABeijingChina
| | - Ji Wang
- School of basic medical scienceSouthern Medicine UniversityGuangzhouChina
| | - Xiaowei Fei
- The 7th Medical center of Chinese PLA general hospitalChinese PLA General Hospital Afflicted the Seventh Medical CenterBeijingChina
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and BreedingChinese Academy of ForestryBeijingChina
| | - Ruxiang Xu
- The 7th Medical center of Chinese PLA general hospitalChinese PLA General Hospital Afflicted the Seventh Medical CenterBeijingChina
- School of basic medical scienceSouthern Medicine UniversityGuangzhouChina
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
27
|
Hassn Mesrati M, Behrooz AB, Y. Abuhamad A, Syahir A. Understanding Glioblastoma Biomarkers: Knocking a Mountain with a Hammer. Cells 2020; 9:E1236. [PMID: 32429463 PMCID: PMC7291262 DOI: 10.3390/cells9051236] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Gliomas are the most frequent and deadly form of human primary brain tumors. Among them, the most common and aggressive type is the high-grade glioblastoma multiforme (GBM), which rapidly grows and renders patients a very poor prognosis. Meanwhile, cancer stem cells (CSCs) have been determined in gliomas and play vital roles in driving tumor growth due to their competency in self-renewal and proliferation. Studies of gliomas have recognized CSCs via specific markers. This review comprehensively examines the current knowledge of the most significant CSCs markers in gliomas in general and in glioblastoma in particular and specifically focuses on their outlook and importance in gliomas CSCs research. We suggest that CSCs should be the superior therapeutic approach by directly targeting the markers. In addition, we highlight the association of these markers with each other in relation to their cascading pathways, and interactions with functional miRNAs, providing the role of the networks axes in glioblastoma signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Amir Syahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.H.M.); (A.B.B.); (A.Y.A.)
| |
Collapse
|
28
|
Bryukhovetskiy I, Pak O, Khotimchenko Y, Bryukhovetskiy A, Sharma A, Sharma HS. Personalized therapy and stem cell transplantation for pro-inflammatory modulation of cancer stem cells microenvironment in glioblastoma: Review. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:67-98. [PMID: 32448615 DOI: 10.1016/bs.irn.2020.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive types of brain tumor in humans. The prognosis for patients with GBM is unfavorable and treatment is largely ineffective, where modern treatment regimens typically increase survival by 15 months. GBM relapse and progression are associated with cancer stem cells (CSCs). The present review provides a critical analysis of the primary reasons underlying the lack of effectiveness of modern CSC management methods. An emphasis is placed on the role of the blood-brain barrier in the development of treatment resistance. The existing methods for increasing the efficiency of antitumor genotoxic therapy are also described, and a strategy for personalized regulation of CSC based on post-genome technologies is suggested. The hypothesis that GBM cells employ a special mechanism for DNA repair based on their interactions with normal stem cells, is presented and the function of the tumor microenvironment in fulfilling the antitumor potential of normal stem cells is explained. Additionally, the mechanisms by which cancer stem cells regulate glioblastoma progression and recurrence are described based on novel biomedical technologies.
Collapse
Affiliation(s)
- Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia.
| | - Oleg Pak
- Medical Center, Far Eastern Federal University, Vladivostok, Russia
| | - Yuri Khotimchenko
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Andrey Bryukhovetskiy
- NeuroVita Clinic of Interventional and Restorative Neurology and Therapy, Moscow, Russia
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| |
Collapse
|
29
|
Shevchenko V, Arnotskaya N, Pak O, Sharma A, Sharma HS, Khotimchenko Y, Bryukhovetskiy A, Bryukhovetskiy I. Molecular determinants of the interaction between glioblastoma CD133 + cancer stem cells and the extracellular matrix. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:155-169. [PMID: 32448605 DOI: 10.1016/bs.irn.2020.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common primary tumor of the human brain. It is characterized by invasive growth and strong resistance to treatment, and the median survival time of patients is 15 months. The invasive growth of this tumor type is associated with tumor cells with an aggressive phenotype, while its treatment resistance is attributed to cancer stem cells (CSCs). It remains unclear if CSCs have a more invasive nature than differentiated glioblastoma cells (DGCs), and what contribution CSCs make to the aggressive phenotype of GBM. Interaction with the extracellular matrix (ECM) is a key factor in the development of invasion. The aim of the present study was to compare the expression levels of signaling pathway proteins involved in interaction of receptors with the ECM in CSCs and DGCs. The U-87MG GBM cell line was used in the present study CSCs were extracted from gliomaspheres through magnetic-activated cell sorting based on the expression of cluster of differentiation 133 (CD133); CD133-negative DCGs were used as a control. HPLC and mass spectrometry were also used, and biological and molecular functions, signaling pathways and protein-protein interactions were analyzed using publicly available databases. Increased expression levels of the following 10 proteins involved in interaction with the ECM were identified in CSCs, compared with expression levels in DGCs: COL6A1, COL6A3, FN1, ITGA2, ITGA5, ITGAV, ITGB1, ITGB3, LAMB1 and LAMC1. The proteome of CSCs was observed to have >2-fold higher expression of these key proteins, when compared with the DGC proteome. Increased expression levels of four proteins (FERMT2, LOXL2, HDAC2 and FBN1) involved in activating signaling in response to receptor interaction with the ECM was also observed, indicating that CSCs may have highly invasive nature. LOXL2 expression level was >9-fold higher in CSCs compared to DGCs, suggesting that this protein may have potential as an marker for CSCs and as a target for this cell type in GBM.
Collapse
Affiliation(s)
- Valeriy Shevchenko
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Oncoproteomics, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow, Russia
| | - Natalia Arnotskaya
- Laboratory of Oncoproteomics, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Moscow, Russia
| | - Oleg Pak
- Medical Center, Far Eastern Federal University, Vladivostok, Russia
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, S-75185 Uppsala, Sweden
| | - Yuri Khotimchenko
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Andrey Bryukhovetskiy
- NeuroVita Clinic of Interventional and Restorative Neurology and Therapy, Moscow, Russia
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Medical Center, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia.
| |
Collapse
|
30
|
Crocetin Extracted from Saffron Shows Antitumor Effects in Models of Human Glioblastoma. Int J Mol Sci 2020; 21:ijms21020423. [PMID: 31936544 PMCID: PMC7013996 DOI: 10.3390/ijms21020423] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/23/2019] [Accepted: 01/04/2020] [Indexed: 12/14/2022] Open
Abstract
Over recent years, many authors discussed the effects of different natural compounds on glioblastoma (GBM). Due to its capacity to impair survival and progression of different cancer types, saffron extract (SE), named crocetin (CCT), is particularly noteworthy. In this work, we elucidated the antitumor properties of crocetin in glioma in vivo and in vitro models for the first time. The in vitro results showed that the four tumor cell lines observed in this study (U251, U87, U138, and U373), which were treated with increasing doses of crocetin, showed antiproliferative and pro-differentiative effects as demonstrated by a significant reduction in the number of viable cells, deep changes in cell morphology, and the modulation of mesenchymal and neuronal markers. Indeed, crocetin decreased the expression of Cluster of Differentiation CD44, CD90, CXCR4, and OCT3/4 mesenchymal markers, but increased the expression of βIII-Tubulin and neurofilaments (NFH) neuronal linage-related markers. Epigenetic mechanisms may modulate these changes, since Histone Deacetylase, HDAC1 and HDAC3 were downmodulated in U251 and U87 cells, whereas HDAC1 expression was downmodulated in U138 and U373 cells. Western blotting analyses of Fatty Acid Synthase, FASN, and CD44 resulted in effective inhibition of these markers after CCT treatment, which was associated with important activation of the apoptosis program and reduced glioma cell movement and wound repair. The in vivo studies aligned with the results obtained in vitro. Indeed, crocetin was demonstrated to inhibit the growth of U251 and U87 cells that were subcutaneously injected into animal models. In particular, the Tumor To Progression or TTP values and Kaplan-Meier curves indicated that crocetin had more major effects than radiotherapy alone, but similar effects to temozolomide (TMZ). An intra-brain cell inoculation of a small number of luciferase-transfected U251 cells provided a model that was able to recapitulate recurrence after surgical tumor removal. The results obtained from the orthotopic intra-brain model indicated that CCT treatment increased the disease-free survival (DFS) and overall survival (OS) rates, inducing a delay in appearance of a detectable bioluminescent lesion. CCT showed greater efficacy than Radio Therapy (RT) but comparable efficacy to temozolomide in xenograft models. Therefore, we aimed to continue the study of crocetin's effects in glioma disease, focusing our attention on the radiosensitizing properties of the natural compound and highlighting the ways in which this was realized.
Collapse
|
31
|
Deep sequencing and automated histochemistry of human tissue slice cultures improve their usability as preclinical model for cancer research. Sci Rep 2019; 9:19961. [PMID: 31882946 PMCID: PMC6934722 DOI: 10.1038/s41598-019-56509-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/12/2019] [Indexed: 02/02/2023] Open
Abstract
Cancer research requires models closely resembling the tumor in the patient. Human tissue cultures can overcome interspecies limitations of animal models or the loss of tissue architecture in in vitro models. However, analysis of tissue slices is often limited to histology. Here, we demonstrate that slices are also suitable for whole transcriptome sequencing and present a method for automated histochemistry of whole slices. Tumor and peritumoral tissue from a patient with glioblastoma was processed to slice cultures, which were treated with standard therapy including temozolomide and X-irradiation. Then, RNA sequencing and automated histochemistry were performed. RNA sequencing was successfully accomplished with a sequencing depth of 243 to 368 x 106 reads per sample. Comparing tumor and peritumoral tissue, we identified 1888 genes significantly downregulated and 2382 genes upregulated in tumor. Treatment significantly downregulated 2017 genes, whereas 1399 genes were upregulated. Pathway analysis revealed changes in the expression profile of treated glioblastoma tissue pointing towards downregulated proliferation. This was confirmed by automated analysis of whole tissue slices stained for Ki67. In conclusion, we demonstrate that RNA sequencing of tissue slices is possible and that histochemical analysis of whole tissue slices can be automated which increases the usability of this preclinical model.
Collapse
|
32
|
Yang B, Dai JX, Pan YB, Ma YB, Chu SH. Identification of biomarkers and construction of a microRNA-mRNA regulatory network for ependymoma using integrated bioinformatics analysis. Oncol Lett 2019; 18:6079-6089. [PMID: 31788082 PMCID: PMC6865127 DOI: 10.3892/ol.2019.10941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/22/2019] [Indexed: 12/23/2022] Open
Abstract
Ependymomas (EPNs) are one of the most common types of malignant neuroepithelial tumors. In an effort to identify potential biomarkers involved in the pathogenesis of EPN, the mRNA expression profiles of the GSE25604, GSE50161, GSE66354, GSE74195 and GSE86574 datasets, in addition to the microRNA (miRNA/miR) expression profiles of GSE42657 were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) between EPN and normal brain tissue samples were identified using the Limma package in R and GEO2R, respectively. Functional and pathway enrichment analyses were conducted using the Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction network was constructed using the Search Tool for Retrieval of Interacting Genes database, which was visualized using Cytoscape. The targeted genes of DEMs were predicted using miRWalk2.0 and a miRNA-mRNA regulatory network was constructed. Following analysis, a total of 948 DEGs and 129 DEMs were identified. Functional enrichment analysis revealed that 609 upregulated DEGs were significantly enriched in ‘PI3K-Akt signaling pathway’, while 339 downregulated DEGs were primarily involved in ‘cell junction’ and ‘retrograde endocannabinoid signaling’. In addition, 6 hub genes [cyclin dependent kinase 1, CD44 molecule (Indian blood group) (CD44), proliferating cell nuclear antigen (PCNA), MYC, synaptotagmin 1 (SYT1) and kinesin family member 4A] and 6 crucial miRNAs [homo sapiens (hsa)-miR-34a-5p, hsa-miR-449a, hsa-miR-106a-5p, hsa-miR-124-3p, hsa-miR-128-3p and hsa-miR-330-3p] were identified as biomarkers and potential therapeutic targets for EPN. Furthermore, a microRNA-mRNA regulatory network was constructed to highlight the interactions between DEMs and their target DEGs; this included the hsa-miR-449a-SYT1, hsa-miR-34a-5p-SYT1, hsa-miR-330-3p-CD44 and hsa-miR-124-3p-PCNA pairs, whose expression levels were confirmed using reverse transcription-quantitative polymerase chain reaction. In conclusion, the present study may provide important data for the investigation of the molecular mechanisms of EPN pathogenesis.
Collapse
Affiliation(s)
- Biao Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Jun-Xi Dai
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Yuan-Bo Pan
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Yan-Bin Ma
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Sheng-Hua Chu
- Department of Neurosurgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| |
Collapse
|
33
|
Vengoji R, Ponnusamy MP, Rachagani S, Mahapatra S, Batra SK, Shonka N, Macha MA. Novel therapies hijack the blood-brain barrier to eradicate glioblastoma cancer stem cells. Carcinogenesis 2019; 40:2-14. [PMID: 30475990 DOI: 10.1093/carcin/bgy171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/12/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is amongst the most aggressive brain tumors with a dismal prognosis. Despite significant advances in the current multimodality therapy including surgery, postoperative radiotherapy (RT) and temozolomide (TMZ)-based concomitant and adjuvant chemotherapy (CT), tumor recurrence is nearly universal with poor patient outcomes. These limitations are in part due to poor drug penetration through the blood-brain barrier (BBB) and resistance to CT and RT by a small population of cancer cells recognized as tumor-initiating cells or cancer stem cells (CSCs). Though CT and RT kill the bulk of the tumor cells, they fail to affect CSCs, resulting in their enrichment and their development into more refractory tumors. Therefore, identifying the mechanisms of resistance and developing therapies that specifically target CSCs can improve response, prevent the development of refractory tumors and increase overall survival of GBM patients. Small molecule inhibitors that can breach the BBB and selectively target CSCs are emerging. In this review, we have summarized the recent advancements in understanding the GBM CSC-specific signaling pathways, the CSC-tumor microenvironment niche that contributes to CT and RT resistance and the use of novel combination therapies of small molecule inhibitors that may be used in conjunction with TMZ-based chemoradiation for effective management of GBM.
Collapse
Affiliation(s)
- Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
34
|
Hou C, Ishi Y, Motegi H, Okamoto M, Ou Y, Chen J, Yamaguchi S. Overexpression of CD44 is associated with a poor prognosis in grade II/III gliomas. J Neurooncol 2019; 145:201-210. [PMID: 31506754 DOI: 10.1007/s11060-019-03288-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/05/2019] [Indexed: 02/05/2023]
Abstract
PURPOSE Overexpression of CD44 has been detected in many types of tumor tissues. Moreover, CD44 is recognized as a cancer stem cell marker for many cancers. However, the prognostic value of CD44 for glioma patients has not yet been clarified. The authors tried to explore the impact of CD44 expression on grade II/III glioma patients. METHODS To assess the RNA expression levels of CD44 in glioma tissues and normal brain tissues, meta-analyses were conducted in the online Oncomine database. The mRNA expression levels of CD44, CD44s, and CD44v2-v10 in 112 grade II/III glioma patients in Hokkaido University Hospital (HUH) were detected by qPCR. The RNA-seq data and clinical data of grade II/III glioma patients were obtained from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases. RESULTS Based on the Oncomine database, CD44 has significantly high expression in glioma tissues as compared with normal tissues. We explored the clinical relevance of CD44 mRNA expression based on the HUH cohorts, the TCGA cohorts, and the CGGA cohorts. In survival analysis, high mRNA expression of CD44 was correlated with poor overall survival and poor progression-free survival in grade II/III glioma patients. Multivariate Cox regression analyses confirmed CD44 as an independent prognostic factor for grade II/III glioma patients. CONCLUSIONS The present study suggests that overexpression of CD44 is associated with a poor prognosis for grade II/III glioma patients. Moreover, our findings suggest that CD44 could serve as a prognostic biomarker in grade II/III glioma patients.
Collapse
Affiliation(s)
- Chongxian Hou
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yukitomo Ishi
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hiroaki Motegi
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Michinari Okamoto
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yafei Ou
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814, Japan
| | - Jiawei Chen
- Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Shigeru Yamaguchi
- Department of Neurosurgery, Faculty of Medicine, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
35
|
Megías J, Martínez A, San-Miguel T, Gil-Benso R, Muñoz-Hidalgo L, Albert-Bellver D, Carratalá A, Gozalbo D, López-Ginés C, Gil ML, Cerdá-Nicolás M. Pam3CSK4, a TLR2 ligand, induces differentiation of glioblastoma stem cells and confers susceptibility to temozolomide. Invest New Drugs 2019; 38:299-310. [DOI: 10.1007/s10637-019-00788-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
|
36
|
Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat Commun 2019; 10:1787. [PMID: 30992437 PMCID: PMC6467886 DOI: 10.1038/s41467-019-09853-z] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
The identity and unique capacity of cancer stem cells (CSC) to drive tumor growth and resistance have been challenged in brain tumors. Here we report that cells expressing CSC-associated cell membrane markers in Glioblastoma (GBM) do not represent a clonal entity defined by distinct functional properties and transcriptomic profiles, but rather a plastic state that most cancer cells can adopt. We show that phenotypic heterogeneity arises from non-hierarchical, reversible state transitions, instructed by the microenvironment and is predictable by mathematical modeling. Although functional stem cell properties were similar in vitro, accelerated reconstitution of heterogeneity provides a growth advantage in vivo, suggesting that tumorigenic potential is linked to intrinsic plasticity rather than CSC multipotency. The capacity of any given cancer cell to reconstitute tumor heterogeneity cautions against therapies targeting CSC-associated membrane epitopes. Instead inherent cancer cell plasticity emerges as a novel relevant target for treatment. Cancer stem cells (CSCs) comprise a putative population that can drive growth and resistance. Here, in glioblastoma models the authors show that rather than being a distinct clonal entity, the CSC population represents a plastic state adoptable by most cancer cells via reversible state transitions induced by the microenvironment.
Collapse
|
37
|
Fadhlullah SFB, Halim NBA, Yeo JYT, Ho RLY, Um P, Ang BT, Tang C, Ng WH, Virshup DM, Ho IAW. Pathogenic mutations in neurofibromin identifies a leucine-rich domain regulating glioma cell invasiveness. Oncogene 2019; 38:5367-5380. [PMID: 30967630 PMCID: PMC6755990 DOI: 10.1038/s41388-019-0809-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 03/14/2019] [Accepted: 03/23/2019] [Indexed: 12/25/2022]
Abstract
Glioblastoma (GBM) is the most aggressive tumor of the brain. NF1, a tumor suppressor gene and RAS-GTPase, is one of the highly mutated genes in GBM. Dysregulated NF1 expression promotes cell invasion, proliferation, and tumorigenesis. Loss of NF1 expression in glioblastoma is associated with increased aggressiveness of the tumor. Here, we show that NF1-loss in patient-derived glioma cells using shRNA increases self-renewal, heightens cell invasion, and promotes mesenchymal subtype and epithelial mesenchymal transition-specific gene expression that enhances tumorigenesis. The neurofibromin protein contains at least four major domains, with the GAP-related domain being the most well-studied. In this study, we report that the leucine-rich domain (LRD) of neurofibromin inhibits invasion of human glioblastoma cells without affecting their proliferation. Moreover, under conditions tested, the NF1-LRD fails to hydrolyze Ras-GTP to Ras-GDP, suggesting that its suppressive function is independent of Ras signaling. We further demonstrate that rare variants within the NF1-LRD domain found in a subset of the patients are pathogenic and reduce NF1-LRD’s invasion suppressive function. Taken together, our results show, for the first time, that NF1-LRD inhibits glioma invasion, and provides evidence of a previously unrecognized function of NF1-LRD in glioma biology.
Collapse
Affiliation(s)
- Siti Farah Bte Fadhlullah
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore.,Lucence Diagnostics Pte Ltd., Singapore, Singapore
| | | | - Jacqueline Y T Yeo
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Rachel L Y Ho
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Phoebe Um
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore.,University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beng Ti Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore, 308433, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.,Singapore Institute for Clinical Sciences, A*STAR, Singapore, 117609, Singapore.,Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Carol Tang
- Department of Research, National Neuroscience Institute, Singapore, 308433, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Division of Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore
| | - Wai H Ng
- Department of Neurosurgery, National Neuroscience Institute, Singapore, 308433, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27703, USA
| | - Ivy A W Ho
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore, 308433, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore. .,Duke-NUS Medical School, Singapore, 169857, Singapore.
| |
Collapse
|
38
|
Atkins RJ, Stylli SS, Kurganovs N, Mangiola S, Nowell CJ, Ware TM, Corcoran NM, Brown DV, Kaye AH, Morokoff A, Luwor RB, Hovens CM, Mantamadiotis T. Cell quiescence correlates with enhanced glioblastoma cell invasion and cytotoxic resistance. Exp Cell Res 2019; 374:353-364. [DOI: 10.1016/j.yexcr.2018.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
|
39
|
Wang J, Xu SL, Duan JJ, Yi L, Guo YF, Shi Y, Li L, Yang ZY, Liao XM, Cai J, Zhang YQ, Xiao HL, Yin L, Wu H, Zhang JN, Lv SQ, Yang QK, Yang XJ, Jiang T, Zhang X, Bian XW, Yu SC. Invasion of white matter tracts by glioma stem cells is regulated by a NOTCH1-SOX2 positive-feedback loop. Nat Neurosci 2018; 22:91-105. [PMID: 30559479 DOI: 10.1038/s41593-018-0285-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/31/2018] [Indexed: 11/09/2022]
Abstract
Early invasive growth along specific anatomical structures, especially the white matter tract, is regarded as one of the main causes of poor therapeutic outcome of people with gliomas. We show that some glioma stem cells (GSCs) are preferentially located along white matter tracts, which exhibit a demyelinated phenotype, at the invasive frontier of glioma tissues. These GSCs are CD133+Notch1+, whereas the nerve fibers express the Notch ligand Jagged1. The Notch-induced transcription factor Sox9 promotes the transcription of SOX2 and the methylation level of the NOTCH1 promoter is attenuated by the upregulation of SOX2 to reinforce NOTCH1 expression in GSCs. This positive-feedback loop in a cohort of glioma subjects is correlated with a poor prognosis. Inhibition of Notch signaling attenuates the white-matter-tract tropism of GSCs. These findings provide evidence indicating that the NOTCH1-SOX2 positive-feedback loop controls GSC invasion along white matter tracts.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Sen-Lin Xu
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liang Yi
- Department of Neurosurgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu-Feng Guo
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Li
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ze-Yu Yang
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xue-Mei Liao
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiao Cai
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan-Qi Zhang
- Department of Medical Statistics, Military Preventive Medicine Academy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hua-Liang Xiao
- Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Yin
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hao Wu
- Department of Radiology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing-Na Zhang
- Department of Medical Imaging, College of Biomedical Engineering, Army Medical University (Third Military Medical University), Chongqing, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qing-Kai Yang
- Institute of Cancer Stem Cell, Cancer Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiao-Jun Yang
- Center for Neuroscience, Medical College, Shantou University, Shantou, China
| | - Tao Jiang
- Department of Neurosurgery, TianTan Hospital, Capital Medical University, Beijing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China. .,Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
40
|
ALDH1A3 induces mesenchymal differentiation and serves as a predictor for survival in glioblastoma. Cell Death Dis 2018; 9:1190. [PMID: 30538217 PMCID: PMC6290011 DOI: 10.1038/s41419-018-1232-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023]
Abstract
As aldehyde dehydrogenase (ALDH) is a novel stem cell marker, increasing studies have confirmed that high ALDH activity promotes tumorigenesis and progression in cancers. Some preliminary studies have found that ALDH1A3 may play an important role in glioma malignant progression, but so far there was no conclusive conclusion. The purpose of our study was to elucidate the mechanisms by which ALDH1A3 regulated in glioma and to provide practical tools for clinical application. Aldefluor, flow cytometry sorting and qRT-PCR were performed to verify the role of ALDH1A3 in ALDH activity maintenance. Transwell, immunofluorescence, glycolytic assays, and orthotopic xenograft models were used to explore ALDH1A3 bio-functions in GBM. LASSO-COX, COX survival analysis and Kaplan–Meier analysis were used to establish the prognostic evaluation system and predict postoperative chemotherapy sensitivity of GBMs. Our integrated study found that (1) ALDH1A3 associates with mesenchymal differentiation of GBM in Eastern and Western world patients. (2) ALDH1A3 plays a critical role in ALDH activity maintenance. (3) ALDH1A3 is an activator of mesenchymal transformation in GBM. (4) ALDH1A3-derived PMT markers’ molecular signature can predict 1-, 2-, and 3-year survival rates of GBMs precisely. In conclusion, ALDH1A3 was a major contributor to ALDH activity and a key driver in triggering mesenchymal transformation in GBM. ALDH1A3-based molecular classification scheme can help to improve guidance for prognosis forecasting and individualized treatment decision making for GBM patients.
Collapse
|
41
|
Malgulwar PB, Sharma V, Tomar AS, Verma C, Nambirajan A, Singh M, Suri V, Sarkar C, Sharma MC. Transcriptional co-expression regulatory network analysis for Snail and Slug identifies IL1R1, an inflammatory cytokine receptor, to be preferentially expressed in ST-EPN- RELA and PF-EPN-A molecular subgroups of intracranial ependymomas. Oncotarget 2018; 9:35480-35492. [PMID: 30464804 PMCID: PMC6231457 DOI: 10.18632/oncotarget.26211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/08/2018] [Indexed: 12/14/2022] Open
Abstract
Recent molecular subgrouping of ependymomas (EPN) by DNA methylation profiling has identified ST-EPN-RELA and PF-EPN-A subgroups to be associated with poor outcome. Snail/Slug are cardinal epithelial-to-mesenchymal transcription factors (EMT-TFs) and are overexpressed in several CNS tumors, including EPNs. A systematic analysis of gene-sets/modules co-expressed with Snail and Slug genes using published expression microarray dataset (GSE27279)identified 634 genes for Snail with enriched TGF-β, PPAR and PI3K signaling pathways, and 757 genes for Slug with enriched focal adhesion, ECM-receptor interaction and regulation of actin cytoskeleton related pathways. Of 37 genes commonly expressed with both Snail and Slug, IL1R1, a cytokine receptor of interleukin-1 receptor family, was positively correlated with Snail (r=0.43) and Slug (r=0.51), preferentially expressed in ST-EPN-RELA and PF-EPN-A molecular groups, and enriched for pathways related to inflammation, angiogenesis and glycolysis. IL1R1 expression was fairly specific to EPNs among various CNS tumors analyzed. It also showed significant positive correlation with EMT, stemness and MDSC (myeloid derived suppressor cell) markers. Our study reports IL1R1 as a poor prognostic marker associated with EMT-like phenotype and stemness in EPNs. Our findings emphasize the need to further examine and validate IL1R1 as a novel therapeutic target in aggressive subsets of intracranial EPNs.
Collapse
Affiliation(s)
- Prit Benny Malgulwar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Vikas Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Ashutosh Singh Tomar
- Center for Cellular and Molecular Biology-Council of Scientific and Industrial Research (CCMB-CSIR), Hyderabad, Telangana-500007, India
| | - Chaitenya Verma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Manmohan Singh
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
42
|
Wang F, Zheng Z, Guan J, Qi D, Zhou S, Shen X, Wang F, Wenkert D, Kirmani B, Solouki T, Fonkem E, Wong ET, Huang JH, Wu E. Identification of a panel of genes as a prognostic biomarker for glioblastoma. EBioMedicine 2018; 37:68-77. [PMID: 30341039 PMCID: PMC6284420 DOI: 10.1016/j.ebiom.2018.10.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is a fatal disease without effective therapy. Identification of new biomarkers for prognosis would enable more rational selections of strategies to cure patients with GBM and prevent disease relapse. Methods Seven datasets derived from GBM patients using microarray or next generation sequencing in R2 online database (http://r2.amc.nl) were extracted and then analyzed using JMP software. The survival distribution was calculated according to the Kaplan-Meier method and the significance was determined using log-rank statistics. The sensitivity of a panel of GBM cell lines in response to temozolomide (TMZ), salinomycin, celastrol, and triptolide treatments was evaluated using MTS and tumor-sphere formation assay. Findings We identified that CD44, ATP binding cassette subfamily C member 3 (ABCC3), and tumor necrosis factor receptor subfamily member 1A (TNFRSF1A) as highly expressed genes in GBMs are associated with patients' poor outcomes and therapy resistance. Furthermore, these three markers combined with MGMT, a conventional GBM marker, can classify GBM patients into five new subtypes with different overall survival time in response to treatment. The four-gene signature and the therapy response of GBMs to a panel of therapeutic compounds were confirmed in a panel of GBM cell lines. Interpretation The data indicate that the four-gene panel can be used as a therapy response index for GBM patients and potential therapeutic targets. These results provide important new insights into the early diagnosis and the prognosis for GBM patients and introduce potential targets for GBM therapeutics. Fund Baylor Scott & White Health Startup Fund (E.W.); Collaborative Faculty Research Investment Program (CFRIP) of Baylor University, Baylor Scott & White Health, and Baylor College of Medicine (E.W., T.S., J.H.H.); NIH R01 NS067435 (J.H.H.); Scott & White Plummer Foundation Grant (J.H.H.); National Natural Science Foundation of China 816280007 (J.H.H. and Fu.W.).
Collapse
Affiliation(s)
- Fengfei Wang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Neurology, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Surgery, Texas A & M Health Science Center, College of Medicine, Temple, TX 76508, USA.
| | - Zheng Zheng
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Psychology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jitian Guan
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
| | - Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
| | - Shuang Zhou
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
| | - Xin Shen
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Anesthesiology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Fushun Wang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Psychology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14643, USA
| | - David Wenkert
- Department of Medicine, Division of Endocrinology, Baylor Scott & White Health, Temple, TX 76508, USA; Department of Medicine, Texas A & M Health Science Center, College of Medicine, Temple, TX 76508, USA
| | - Batool Kirmani
- Department of Neurology, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Neurology, Texas A & M Health Science Center, College of Medicine, Temple, TX 76508, USA
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706, USA
| | - Ekokobe Fonkem
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Neurology, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Surgery, Texas A & M Health Science Center, College of Medicine, Temple, TX 76508, USA; LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Eric T Wong
- Brain Tumor Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Surgery, Texas A & M Health Science Center, College of Medicine, Temple, TX 76508, USA.
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 76502, USA; Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA; Department of Surgery, Texas A & M Health Science Center, College of Medicine, Temple, TX 76508, USA; LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutical Sciences, Texas A & M Health Science Center, College of Pharmacy, College Station, TX 77843, USA.
| |
Collapse
|
43
|
Milkina E, Ponomarenko A, Korneyko M, Lyakhova I, Zayats Y, Zaitsev S, Mischenko P, Eliseikina M, Khotimchenko Y, Shevchenko V, Sharma H, Bryukhovetskiy I. Interaction of hematopoietic CD34+ CD45+ stem cells and cancer cells stimulated by TGF‑β1 in a model of glioblastoma in vitro. Oncol Rep 2018; 40:2595-2607. [PMID: 30226551 PMCID: PMC6151884 DOI: 10.3892/or.2018.6671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/17/2018] [Indexed: 01/16/2023] Open
Abstract
The majority of modern treatment methods for malignant brain tumors are not sufficiently effective, with a median survival time varying between 9 and 14 months. Metastatic and invasive processes are the principal characteristics of malignant tumors. The most important pathogenic mechanism is epithelial‑mesenchymal transition (EMT), which causes epithelial cells to become more mobile, and capable of invading the surrounding tissues and migrating to distant organs. Transforming growth factor‑β1 (TGF‑β1) serves a key role in EMT‑inducing mechanisms. The current study presented the interaction between hematopoietic stem cells and glioblastoma cells stimulated by TGF‑β1 in vitro. The materials for the study were hematopoietic progenitor cell antigen CD34+ hematopoietic stem cells (HSCs) and U87 glioblastoma cells. Cell culture methods, automated monitoring of cell‑cell interactions, confocal laser microscopy, flow cytometry and electron microscopy were used. It was demonstrated that U87 cells have a complex communication system, including adhesive intercellular contacts, areas of interdigitation with dissolution of the cytoplasm, cell fusion, communication microtubes and microvesicles. TGF‑β1 affected glioblastoma cells by modifying the cell shape and intensifying their exocrine function. HSCs migrated to glioblastoma cells, interacted with them and exchanged fluorescent tags. Stimulation of cancer cells with TGF‑β1 weakened the ability of glioblastoma cells to attract HSCs and exchange a fluorescent tag. This process stimulated cancer cell proliferation, which is an indication of the ability of HSCs to 'switch' the proliferation and invasion processes in glioblastoma cells.
Collapse
Affiliation(s)
- Elena Milkina
- School of Biomedicine of The Far Eastern Federal University, Vladivostok 690091, Russia
| | - Arina Ponomarenko
- School of Biomedicine of The Far Eastern Federal University, Vladivostok 690091, Russia
| | - Maria Korneyko
- School of Biomedicine of The Far Eastern Federal University, Vladivostok 690091, Russia
| | - Irina Lyakhova
- School of Biomedicine of The Far Eastern Federal University, Vladivostok 690091, Russia
| | - Yulia Zayats
- School of Biomedicine of The Far Eastern Federal University, Vladivostok 690091, Russia
| | - Sergey Zaitsev
- School of Biomedicine of The Far Eastern Federal University, Vladivostok 690091, Russia
| | - Polina Mischenko
- School of Biomedicine of The Far Eastern Federal University, Vladivostok 690091, Russia
| | - Marina Eliseikina
- National Scientific Center of Marine Biology FEB RAS, Vladivostok 690041, Russia
| | - Yuri Khotimchenko
- School of Biomedicine of The Far Eastern Federal University, Vladivostok 690091, Russia
| | - Valeryi Shevchenko
- School of Biomedicine of The Far Eastern Federal University, Vladivostok 690091, Russia
| | - Hari Sharma
- International Experimental CNS Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, Uppsala, SE‑75185, Sweden
| | - Igor Bryukhovetskiy
- School of Biomedicine of The Far Eastern Federal University, Vladivostok 690091, Russia
| |
Collapse
|
44
|
Significance of Glioma Stem-Like Cells in the Tumor Periphery That Express High Levels of CD44 in Tumor Invasion, Early Progression, and Poor Prognosis in Glioblastoma. Stem Cells Int 2018; 2018:5387041. [PMID: 30210550 PMCID: PMC6126065 DOI: 10.1155/2018/5387041] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/04/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor and a subpopulation of glioma stem-like cells (GSCs) is likely responsible for the invariable recurrence following maximum resection and chemoradiotherapy. As most GSCs that are located in the perivascular and perinecrotic niches should be removed during tumor resection, it is very important to know where surviving GSCs are localized. Here, we investigated the existence and functions of GSCs in the tumor periphery, which is considered to constitute the invasion niche for GSCs in GBM, by analyzing expression of stem cell markers and stem cell-related molecules and measuring particular activities of cultured GSCs. In addition, the relationship between GSCs expressing particular stem cell markers and pathological features on MRI and prognosis in GBM patients was analyzed. We showed that GSCs that express high levels of CD44 are present in the tumor periphery. We also found that vascular endothelial growth factor (VEGF) is characteristically expressed at a high level in the tumor periphery. Cultured GSCs obtained from the tumor periphery were highly invasive and have enhanced migration phenotype, both of which were markedly inhibited by CD44 knockdown. Higher expression of CD44 in the tumor periphery than in the core was correlated with a highly invasive feature on MRI and was associated with early tumor progression and worse survival, whereas lower expression of CD44 in the tumor periphery corresponded to low invasion and was associated with longer survival. The low invasion type on MRI tended to show high levels of VEGF expression in the tumor periphery, thus presenting the tumor with high proliferative activity. These results imply the significance of GSCs with high levels of CD44 expression in the tumor periphery compared to the core, not only in tumor invasion but also rapid tumor progression and short survival in patients with GBM.
Collapse
|
45
|
Intratumor MAPK and PI3K signaling pathway heterogeneity in glioblastoma tissue correlates with CREB signaling and distinct target gene signatures. Exp Mol Pathol 2018; 105:23-31. [DOI: 10.1016/j.yexmp.2018.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/26/2018] [Indexed: 11/20/2022]
|
46
|
Arnold AE, Malek-Adamian E, Le PU, Meng A, Martínez-Montero S, Petrecca K, Damha MJ, Shoichet MS. Antibody-Antisense Oligonucleotide Conjugate Downregulates a Key Gene in Glioblastoma Stem Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:518-527. [PMID: 29858087 PMCID: PMC5992475 DOI: 10.1016/j.omtn.2018.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/29/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
Glioblastoma stem cells (GSCs) are invasive, treatment-resistant brain cancer cells that express downregulated in renal cell carcinoma (DRR), also called FAM107A, a genetic driver of GSC invasion. We developed antibody-antisense oligonucleotide (AON) conjugates to target and reduce DRR/FAM107A expression. Specifically, we used antibodies against antigens expressed on the GSCs, such as CD44 and EphA2, conjugated to chemically modified AONs against DRR/FAM107A, which were designed as chimeras of DNA and 2'-deoxy-2'-fluoro-beta-D-arabinonucleic acid (FANA) for increased nuclease stability and mRNA affinity. We demonstrate that these therapeutic conjugates successfully internalize, accumulate, and reduce DRR/FAM107A expression in patient-derived GSCs. This is the first example of an antibody-antisense strategy against cancer stem cells.
Collapse
Affiliation(s)
- Amy E Arnold
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Elise Malek-Adamian
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Phuong U Le
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Anika Meng
- Division of Engineering Science, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada
| | - Saúl Martínez-Montero
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.
| | - Molly S Shoichet
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
47
|
Bryukhovetskiy I, Ponomarenko A, Lyakhova I, Zaitsev S, Zayats Y, Korneyko M, Eliseikina M, Mischenko P, Shevchenko V, Shanker Sharma H, Sharma A, Khotimchenko Y. Personalized regulation of glioblastoma cancer stem cells based on biomedical technologies: From theory to experiment (Review). Int J Mol Med 2018; 42:691-702. [PMID: 29749540 PMCID: PMC6034919 DOI: 10.3892/ijmm.2018.3668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive brain tumors. GBM represents >50% of primary tumors of the nervous system and ~20% of intracranial neoplasms. Standard treatment involves surgery, radiation and chemotherapy. However, the prognosis of GBM is usually poor, with a median survival of 15 months. Resistance of GBM to treatment can be explained by the presence of cancer stem cells (CSCs) among the GBM cell population. At present, there are no effective therapeutic strategies for the elimination of CSCs. The present review examined the nature of human GBM therapeutic resistance and attempted to systematize and put forward novel approaches for a personalized therapy of GBM that not only destroys tumor tissue, but also regulates cellular signaling and the morphogenetic properties of CSCs. The CSCs are considered to be an informationally accessible living system, and the CSC proteome should be used as a target for therapy directed at suppressing clonal selection mechanisms and CSC generation, destroying CSC hierarchy, and disrupting the interaction of CSCs with their microenvironment and extracellular matrix. These objectives can be achieved through the use of biomedical cellular products.
Collapse
Affiliation(s)
| | | | - Irina Lyakhova
- Far Eastern Federal University, Vladivostok 690091, Russia
| | - Sergey Zaitsev
- Far Eastern Federal University, Vladivostok 690091, Russia
| | - Yulia Zayats
- Far Eastern Federal University, Vladivostok 690091, Russia
| | - Maria Korneyko
- Far Eastern Federal University, Vladivostok 690091, Russia
| | - Marina Eliseikina
- National Scientific Center of Marine Biology of Far Eastern Branch of The Russian Academy of Sciences, Vladivostok 690059, Russia
| | | | | | - Hari Shanker Sharma
- International Experimental CNS Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, Uppsala SE‑75185, Sweden
| | - Aruna Sharma
- International Experimental CNS Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, Uppsala SE‑75185, Sweden
| | | |
Collapse
|
48
|
Gao YF, Mao XY, Zhu T, Mao CX, Liu ZX, Wang ZB, Li L, Li X, Yin JY, Zhang W, Zhou HH, Liu ZQ. COL3A1 and SNAP91: novel glioblastoma markers with diagnostic and prognostic value. Oncotarget 2018; 7:70494-70503. [PMID: 27655637 PMCID: PMC5342568 DOI: 10.18632/oncotarget.12038] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/26/2016] [Indexed: 01/15/2023] Open
Abstract
Although patients with glioblastoma (GBM) have grave prognosis, significant variability in patient outcome is observed. This study aims to identify novel targets for GBM diagnosis and therapy. Microarray data (GSE4290, GSE7696, and GSE4412) obtained from the Gene Expression Omnibus was used to identify the differentially expressed genes (DEGs) by significant analysis of microarray (SAM). Intersection of the identified DEGs for each profile revealed 46 DEGs in GBM. A subset of common DEGs were validated by real-time reverse transcription quantitative PCR (qPCR). The prognostic value of some of the markers was also studied. We determined that RRM2 and COL3A1 were increased and directly correlated with glioma grade, while SH3GL2 and SNAP91 were decreased in GBM and inversely correlated with glioma grade. Kaplan-Meir analysis of GSE7696 revealed that COL3A1 and SNAP91 correlated with survival, suggesting that COL3A1 and SNAP91 may be suitable biomarkers for diagnostic or therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Yuan-Feng Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Chen-Xue Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhi-Xiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Zhi-Bin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ling Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| |
Collapse
|
49
|
The Urokinase Receptor Induces a Mesenchymal Gene Expression Signature in Glioblastoma Cells and Promotes Tumor Cell Survival in Neurospheres. Sci Rep 2018; 8:2982. [PMID: 29445239 PMCID: PMC5813209 DOI: 10.1038/s41598-018-21358-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/02/2018] [Indexed: 01/10/2023] Open
Abstract
PLAUR encodes the urokinase receptor (uPAR), which promotes cell survival, migration, and resistance to targeted cancer therapeutics in glioblastoma cells in culture and in mouse model systems. Herein, we show that patient survival correlates inversely with PLAUR mRNA expression in gliomas of all grades, in glioblastomas, and in the subset of glioblastomas that demonstrate the mesenchymal gene expression signature. PLAUR clusters with genes that define the more aggressive mesenchymal subtype in transcriptome profiles of glioblastoma tissue and glioblastoma cells in neurospheres, which are enriched for multipotent cells with stem cell-like qualities. When PLAUR was over-expressed or silenced in glioblastoma cells, neurosphere growth and expression of mesenchymal subtype biomarkers correlated with uPAR abundance. uPAR also promoted glioblastoma cell survival in neurospheres. Constitutively-active EGF Receptor (EGFRvIII) promoted neurosphere growth; however, unlike uPAR, EGFRvIII did not induce the mesenchymal gene expression signature. Immunohistochemical analysis of human glioblastomas showed that uPAR is typically expressed by a small sub-population of the cancer cells; it is thus reasonable to conclude that this subpopulation of cells is responsible for the effects of PLAUR on patient survival. We propose that uPAR-expressing glioblastoma cells demonstrate a mesenchymal gene signature, an increased capacity for cell survival, and stem cell-like properties.
Collapse
|
50
|
Wang HH, Liao CC, Chow NH, Huang LLH, Chuang JI, Wei KC, Shin JW. Whether CD44 is an applicable marker for glioma stem cells. Am J Transl Res 2017; 9:4785-4806. [PMID: 29218080 PMCID: PMC5714766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most malignant and aggressive brain tumors with great amount of hyaluronan (HA) secretion and CD44 overexpression (HA receptor). CD44 has been suggested as a cancer stem cells (CSCs) marker. However, several clinical studies have indicated that CD44low glioma cell exhibit CSCs traits. Additionally, our previous study indicated that more CD44 expression was associated with a better prognosis in GBM patients. To determine whether CD44 is an appropriate marker of glioma stem cells (GSCs), we manipulated CD44 expression using intrinsic (CD44 knockdown, CD44kd) and extrinsic (HA supplement, HA+) methods. Our results show that CD44kd suppressed cell proliferation by retarding cell cycle progression from G0/G1 to S phase. Furthermore, it caused GSCs traits, including lower expression of differentiation marker (glial fibrillary acidic protein, GFAP), a higher level of sphere formation and higher expression of stem cell markers (CD133, nestin and Oct4). The reduction of CD44 expression induced by HA+ was accompanied by an increase in GSCs properties. Interestingly, the presence of HA+ in glioma cells with GSC traits conversely facilitated differentiation. Our data indicated that the CD44 low-expressing cells exhibit more GSCs straits, suggesting that CD44 is not an appropriate marker for GSCs. Furthermore, the preferential expression of CD44 at the invasive rim in rat glioma specimen implies that CD44 may be more important for invasion and migration instead of GSCs marker in glioma.
Collapse
Affiliation(s)
- Hsiao-Han Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Chen-Chieh Liao
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung UniversityTainan, Taiwan
| | - Nan-Haw Chow
- Department of Pathology, National Cheng Kung University HospitalTainan, Taiwan
- Graduate Institute of Molecular Medicine, National Cheng Kung University College of MedicineTainan, Taiwan
| | - Lynn Ling-Huei Huang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung UniversityTainan, Taiwan
- Institute of Clinical Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Jih-Ing Chuang
- Department of Physiology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Jyh-Wei Shin
- Department of Parasitology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|