1
|
Carpenter V, Saleh T, Chakraborty E, Min Lee S, Murray G, Reed J, Souers A, Faber AC, Harada H, Gewirtz DA. Androgen deprivation-induced senescence confers sensitivity to a senolytic strategy in prostate cancer. Biochem Pharmacol 2024; 226:116385. [PMID: 38909784 DOI: 10.1016/j.bcp.2024.116385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
We have previously demonstrated that androgen-dependent prostate cancer (PCa) cell lines enter a state of senescence following exposure to androgen deprivation therapies (ADT). ADT-induced senescence was found to be transient, as senescent cells develop castration resistance and re-emerge into a proliferative state even under continuous androgen deprivation in vitro. Moreover, the BCL-XL/BCL-2 inhibitor, ABT-263 (navitoclax), an established senolytic agent, promoted apoptosis of senescent PCa cells, suppressing proliferative recovery and subsequent tumor cell outgrowth. As this strategy has not previously been validated in vivo, we used a clinically relevant, syngeneic murine model of PCa, where mice were either castrated or castrated followed by the administration of ABT-263. Our results largely confirm the outcomes previously reported in vitro; specifically, castration alone results in a transient tumor growth suppression with characteristics of senescence, which is prolonged by exposure to ABT-263. Most critically, mice that underwent castration followed by ABT-263 experienced a statistically significant prolongation in survival, with an increase of 14.5 days in median survival time (56 days castration alone vs. 70.5 days castration + ABT-263). However, as is often the case in studies combining the promotion of senescence with a senolytic (the "one-two" punch approach), the suppression of tumor growth by the inclusion of the senolytic agent was transient, allowing for tumor regrowth once the drug treatment was terminated. Nevertheless, the results of this work suggest that the "one-two" punch senolytic strategy in PCa may effectively interfere with, diminish, or delay the development of the lethal castration-resistant phenotype.
Collapse
Affiliation(s)
- Valerie Carpenter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Eesha Chakraborty
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - So Min Lee
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Graeme Murray
- Department of Physics, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason Reed
- Department of Physics, Virginia Commonwealth University, Richmond, VA, USA; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Souers
- AbbVie, 1 North Waukegan Road, North Chicago, IL, USA
| | - Anthony C Faber
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Hisashi Harada
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Erdmann K, Distler F, Gräfe S, Kwe J, Erb HHH, Fuessel S, Pahernik S, Thomas C, Borkowetz A. Transcript Markers from Urinary Extracellular Vesicles for Predicting Risk Reclassification of Prostate Cancer Patients on Active Surveillance. Cancers (Basel) 2024; 16:2453. [PMID: 39001515 PMCID: PMC11240337 DOI: 10.3390/cancers16132453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Serum prostate-specific antigen (PSA), its derivatives, and magnetic resonance tomography (MRI) lack sufficient specificity and sensitivity for the prediction of risk reclassification of prostate cancer (PCa) patients on active surveillance (AS). We investigated selected transcripts in urinary extracellular vesicles (uEV) from PCa patients on AS to predict PCa risk reclassification (defined by ISUP 1 with PSA > 10 ng/mL or ISUP 2-5 with any PSA level) in control biopsy. Before the control biopsy, urine samples were prospectively collected from 72 patients, of whom 43% were reclassified during AS. Following RNA isolation from uEV, multiplexed reverse transcription, and pre-amplification, 29 PCa-associated transcripts were quantified by quantitative PCR. The predictive ability of the transcripts to indicate PCa risk reclassification was assessed by receiver operating characteristic (ROC) curve analyses via calculation of the area under the curve (AUC) and was then compared to clinical parameters followed by multivariate regression analysis. ROC curve analyses revealed a predictive potential for AMACR, HPN, MALAT1, PCA3, and PCAT29 (AUC = 0.614-0.655, p < 0.1). PSA, PSA density, PSA velocity, and MRI maxPI-RADS showed AUC values of 0.681-0.747 (p < 0.05), with accuracies for indicating a PCa risk reclassification of 64-68%. A model including AMACR, MALAT1, PCAT29, PSA density, and MRI maxPI-RADS resulted in an AUC of 0.867 (p < 0.001) with a sensitivity, specificity, and accuracy of 87%, 83%, and 85%, respectively, thus surpassing the predictive power of the individual markers. These findings highlight the potential of uEV transcripts in combination with clinical parameters as monitoring markers during the AS of PCa.
Collapse
Affiliation(s)
- Kati Erdmann
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Florian Distler
- Department of Urology, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany; (F.D.); (S.P.)
| | - Sebastian Gräfe
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Jeremy Kwe
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
| | - Holger H. H. Erb
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Susanne Fuessel
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sascha Pahernik
- Department of Urology, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany; (F.D.); (S.P.)
| | - Christian Thomas
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Angelika Borkowetz
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Krkoška M, Paruch K, Šošolíková T, Vázquez-Gómez G, Herůdková J, Novotný J, Ovesná P, Sova P, Hyršlová Vaculová A. Inhibition of Chk1 stimulates cytotoxic action of platinum-based drugs and TRAIL combination in human prostate cancer cells. Biol Chem 2024; 405:395-406. [PMID: 38452398 DOI: 10.1515/hsz-2023-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Checkpoint kinase 1 (Chk1) plays an important role in regulation of the cell cycle, DNA damage response and cell death, and represents an attractive target in anticancer therapy. Small-molecule inhibitors of Chk1 have been intensively investigated either as single agents or in combination with various chemotherapeutic drugs and they can enhance the chemosensitivity of numerous tumor types. Here we newly demonstrate that pharmacological inhibition of Chk1 using potent and selective inhibitor SCH900776, currently profiled in phase II clinical trials, significantly enhances cytotoxic effects of the combination of platinum-based drugs (cisplatin or LA-12) and TRAIL (tumor necrosis factor-related apoptosis inducing ligand) in human prostate cancer cells. The specific role of Chk1 in the drug combination-induced cytotoxicity was confirmed by siRNA-mediated silencing of this kinase. Using RNAi-based methods we also showed the importance of Bak-dependent mitochondrial apoptotic pathway in the combined anticancer action of SCH900776, cisplatin and TRAIL. The triple drug combination-induced cytotoxicity was partially enhanced by siRNA-mediated Mcl-1 silencing. Our findings suggest that targeting Chk1 may be used as an efficient strategy for sensitization of prostate cancer cells to killing action of platinum-based chemotherapeutic drugs and TRAIL.
Collapse
Affiliation(s)
- Martin Krkoška
- Department of Cytokinetics, 86853 Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, 117204 Masaryk University , Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Kamil Paruch
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, CZ-602 00 Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CaZ-625 00, Brno, Czech Republic
| | - Tereza Šošolíková
- Department of Cytokinetics, 86853 Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, 117204 Masaryk University , Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Gerardo Vázquez-Gómez
- Department of Cytokinetics, 86853 Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Jarmila Herůdková
- Department of Cytokinetics, 86853 Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Jan Novotný
- Department of Cytokinetics, 86853 Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, 117204 Masaryk University , Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Petra Ovesná
- Department of Experimental Biology, Faculty of Science, 117204 Masaryk University , Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Petr Sova
- Platinum Pharmaceuticals, a.s., CZ Brno, Czech Republic
| | - Alena Hyršlová Vaculová
- Department of Cytokinetics, 86853 Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| |
Collapse
|
4
|
Liu S, Tao Y, Wu S, Lin J, Fu S, Lu J, Zhang J, Fu B, Zhang E, Xu J, Wang J, Li L, Zhang L, Wang Z. Sanguinarine chloride induces ferroptosis by regulating ROS/BACH1/HMOX1 signaling pathway in prostate cancer. Chin Med 2024; 19:7. [PMID: 38195593 PMCID: PMC10777654 DOI: 10.1186/s13020-024-00881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Sanguinarine chloride (S.C) is a benzophenanthrine alkaloid derived from the root of sanguinaria canadensis and other poppy-fumaria species. Studies have reported that S.C exhibits antioxidant, anti-inflammatory, proapoptotic, and growth inhibitory effects, which contribute to its anti-cancer properties. Recent studies suggested that the antitumor effect of S.C through inducing ferroptosis in some cancers. Nevertheless, the precise mechanism underlying the regulation of ferroptosis by S.C remains poorly understood. METHODS A small molecule library was constructed based on FDA and CFDA approved small molecular drugs. CCK-8 assay was applied to evaluate the effects of the small molecule compound on tumor cell viability. Prostate cancer cells were treated with S.C and then the cell viability and migration ability were assessed using CCK8, colony formation and wound healing assay. Reactive oxygen species (ROS) and iron accumulation were quantified through flow cytometry analysis. The levels of malondialdehyde (MDA) and total glutathione (GSH) were measured using commercially available kits. RNA-seq analysis was performed to identify differentially expressed genes (DEGs) among the treatment groups. Western blotting and qPCR were utilized to investigate the expression of relevant proteins and genes. In vivo experiments employed a xenograft mice model to evaluate the anti-cancer efficacy of S.C. RESULTS Our study demonstrated that S.C effectively inhibited the viability of various prostate cancer cells. Notably, S.C exhibited the ability to enhance the cytotoxicity of docetaxel in DU145 cells. We found that S.C-induced cell death partially relied on the induction of ferroptosis, which was mediated through up-regulation of HMOX1 protein. Additionally, our investigation revealed that S.C treatment decreased the stability of BACH1 protein, which contributed to HMOX1expression. We further identified that S.C-induced ROS caused BACH1 instability by suppressing USP47expression. Moreover, In DU145 xenograft model, we found S.C significantly inhibited prostate cancer growth, highlighting its potential as a therapeutic strategy. Collectively, these findings provide evidence that S.C could induce regulated cell death (RCD) in prostate cancer cells and effectively inhibit tumor growth via triggering ferroptosis. This study provides evidence that S.C effectively suppresses tumor progression and induces ferroptosis in prostate cancer cells by targeting ROS/USP47/BACH1/HMOX1 axis. CONCLUSION This study provides evidence that S.C effectively suppresses tumor progression and induces ferroptosis in prostate cancer cells by targeting the ROS/USP47/BACH1/HMOX1 axis. These findings offer novel insights into the underlying mechanism by which S.C inhibits the progression of prostate cancer. Furthermore, leveraging the potential of S.C in targeting ferroptosis may present a new therapeutic opportunity for prostate cancer. This study found that S.C induces ferroptosis by targeting the ROS/USP47/BACH1/HMOX1 axis in prostate cancer cells.
Collapse
Affiliation(s)
- Shanhui Liu
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China.
| | - Yan Tao
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Shan Wu
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, 730000, Gansu, China
| | - Jiawei Lin
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shengjun Fu
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Jianzhong Lu
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Jing Zhang
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Beitang Fu
- The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830000, China
| | - Erdong Zhang
- Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jing Xu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jiaxuan Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Lanlan Li
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China.
| | - Lei Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Zhiping Wang
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, Key Laboratory of Urological Disease in Gansu Province, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
5
|
Samy A, Hussein MA, Munirathinam G. Eprinomectin: a derivative of ivermectin suppresses growth and metastatic phenotypes of prostate cancer cells by targeting the β-catenin signaling pathway. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04829-5. [PMID: 37171616 DOI: 10.1007/s00432-023-04829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
PURPOSE Prostate cancer (PCa) is the second leading cause of cancer death among men in the USA. The emergence of resistance to androgen deprivation therapy gives rise to metastatic castration-resistant prostate cancer. Eprinomectin (EP) is a member of a family of drugs called avermectins with parasiticide and anticancer properties. The pupose of this study was to evaluate the anticancer effects of EP against metastatic PCa using cellular models. METHODS: In this study, we have investigated the effect of EP's anticancer properties and delineated the underlying mechanisms in the DU145 cellular model using several assays such as cell viability assay, colony formation assay, wound-healing assay, immunofluorescence, apoptosis assay, cell cycle analysis, and immunoblotting. RESULTS Our results indicate that EP significantly inhibits the cell viability, colony formation, and migration capacities of DU145 cells. EP induces cell cycle arrest at the G0/G1 phase, apoptosis via the activation of different caspases, and autophagy through the increase in the generation of reactive oxygen species and endoplasmic reticulum stress. In addition, EP downregulates the expression of cancer stem cell markers and mediates the translocation of β-catenin from the nucleus to the cytoplasm, indicating its role in inhibiting downstream target genes such as c-Myc and cyclin D1. CONCLUSION Our study shows that EP has tremendous potential to target metastatic PCa cells and provides new avenues for therapeutic approaches for advanced PCa.
Collapse
Affiliation(s)
- Angela Samy
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA
| | - Mohamed Ali Hussein
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA
- Department of Pharmaceutical Services, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA.
| |
Collapse
|
6
|
Ashraf MU, Farwa U, Siddiqa M, Sarfraz A, Azeem N, Sarfraz Z. Has the Landscape of Immunotherapy for Prostate Cancer Changed? A Systematic Review and Post Hoc Analysis. Am J Mens Health 2023; 17:15579883231165140. [PMID: 37002863 PMCID: PMC10069001 DOI: 10.1177/15579883231165140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-causing death in the United States. As the most common malignancy in men, it is pertinent to explore whether novel immunotherapies may improve the quality of life and overall survival (OS) of patient populations. This systematic review and post hoc analysis curates a patient-by-patient pool of evidence adhering to PRISMA Statement 2020 guidelines. In total, 24 patients were analyzed for treatment history and associated variables including prostate-specific antigen (PSA) levels at diagnosis and post-treatment, Gleason score, secondary tumor locations, success/failure of therapy, and post-immunotherapy outcomes including OS. In total, 10 types of immunotherapies were identified with Pembrolizumab (among 8 patients) followed by IMM-101 (among 6 patients) being the most commonly administered. The mean OS for all patients was 27.8 months (24 patients) with the relatively highest mean OS reported with IMM-101 (56 months) followed by tumor-infiltrating lymphocytes (30 months). This research article provides critical insights into the evolving landscape of immunotherapies being tested for PCa and addresses gaps in oncological research to advance the understanding of PCa.
Collapse
Affiliation(s)
| | - Ume Farwa
- University Medical and Dental College, Faisalabad, Pakistan
| | - Maryam Siddiqa
- University Medical and Dental College, Faisalabad, Pakistan
| | | | - Nishwa Azeem
- Schwarzman College, Tsinghua University, Beijing, China
| | | |
Collapse
|
7
|
Sommer U, Ebersbach C, Beier AMK, Baretton GB, Thomas C, Borkowetz A, Erb HHH. Influence of Androgen Deprivation Therapy on the PD-L1 Expression and Immune Activity in Prostate Cancer Tissue. Front Mol Biosci 2022; 9:878353. [PMID: 35836932 PMCID: PMC9273856 DOI: 10.3389/fmolb.2022.878353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/17/2022] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors have become a promising new therapy for cancer treatment. However, due to prostate cancer’s high heterogeneity and immune-suppressive tumour microenvironment, clinical trials with immune checkpoint inhibitors for prostate cancer resulted in low or no response. This descriptive and retrospective study investigates the influence of androgen deprivation therapy (ADT) on PD-L1 expression and CD8+ T-cell tumour infiltration and activity in primary prostate cancer tissue. Therefore, immunohistochemistry was used to assess PD-L1, CD8+ T-cell, and the immune activation marker Granzyme B (GrB) in PCa tissue before and under ADT. In line with previous studies, few prostate cancer tissues showed PD-L1 expression and CD8+ T-cell infiltration. However, PD-L1 expression levels on tumour cells or infiltrating immune cells above 5% generated an immune-suppressive tumour microenvironment harbouring hypofunctional CD8+ T-cells. Moreover, analysis of a longitudinal patient cohort before and under ADT revealed that ADT increased hypofunctional CD8+ T cells in the tumour area suggesting a tumour immune milieu optimal for targeting with immunotherapy.
Collapse
Affiliation(s)
- Ulrich Sommer
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
- National Center for Tumor Diseases Partner Site Dresden and German Cancer Center Heidelberg, Dresden, Germany
- Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Ulrich Sommer, ; Holger H. H. Erb,
| | - Celina Ebersbach
- Department of Urology, Technische Universität Dresden, Dresden, Germany
- Department of Urology, Mildred Scheel Early Career Center, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alicia-Marie K. Beier
- Department of Urology, Technische Universität Dresden, Dresden, Germany
- Department of Urology, Mildred Scheel Early Career Center, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gustavo B. Baretton
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
- National Center for Tumor Diseases Partner Site Dresden and German Cancer Center Heidelberg, Dresden, Germany
- Tumor and Normal Tissue Bank of the University Cancer Center (UCC), University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christian Thomas
- National Center for Tumor Diseases Partner Site Dresden and German Cancer Center Heidelberg, Dresden, Germany
- Department of Urology, Technische Universität Dresden, Dresden, Germany
| | | | - Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Ulrich Sommer, ; Holger H. H. Erb,
| |
Collapse
|
8
|
Alsawalha L, Ahram M, Abdullah MS, Dalmizrak O. Enzalutamide Overcomes Dihydrotestosterone Induced Chemo-Resistance In Triple-Negative Breast Cancer Cells via Apoptosis. Anticancer Agents Med Chem 2022; 22:3038-3048. [DOI: 10.2174/1871520622666220509123505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Background:
Triple-negative breast cancer is challenging to treat due to its heterogeneity and lack of therapeutic targets. Hence, systemic chemotherapy is still the mainstay in TNBC treatment. Unfortunately, patients commonly develop chemo-resistance. Androgen signalling through its receptor is an essential player in breast cancer where it has been shown to confer chemo-resistance to TNBC cells
Objective:
To elucidate the mechanistic effects of enzalutamide in the chemoresponse of TNBC cells to doxorubicin through the apoptosis pathway.
Results:
Enzalutamide decreased the viability of MDA-MB-231 and MDA-MB- 453 cells and reduced DHT-induced chemo-resistance of both cell lines. It also increased the chemo-sensitivity towards doxorubicin in MDA-MB-231 cells. Increasing DNA degradation and caspase 3/7 activity were concomitant with these outcomes. Moreover, enzalutamide downregulated the expression of the anti-apoptosis genes, mcl1 and bcl2, in MDA-MB-231 cells. Moreover, increase the pro-apoptotic gene bid. On the other hand, DHT upregulated the expression of the anti-apoptosis genes, mcl1 and bcl2, in both cell lines.
Conclusion:
DHT increases the expression of the anti-apoptosis mcl1 and bcl2 in the TNBC cells, presumably leading to cell survival via the prevention of doxorubicin-induced apoptosis. On the other hand, enzalutamide may sensitize the cells to doxorubicin through downregulation of the bid/bcl2/mcl1 axis that normally activates the executive caspases, caspase 3/7. The activities of the latter enzymes were apparent in DNA degradation at the late stages of
Collapse
Affiliation(s)
| | - Mamoun Ahram
- School of Medicine, The University of Jordan, Amman
| | | | | |
Collapse
|
9
|
Westaby D, Jimenez-Vacas JM, Padilha A, Varkaris A, Balk SP, de Bono JS, Sharp A. Targeting the Intrinsic Apoptosis Pathway: A Window of Opportunity for Prostate Cancer. Cancers (Basel) 2021; 14:51. [PMID: 35008216 PMCID: PMC8750516 DOI: 10.3390/cancers14010051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Despite major improvements in the management of advanced prostate cancer over the last 20 years, the disease remains invariably fatal, and new effective therapies are required. The development of novel hormonal agents and taxane chemotherapy has improved outcomes, although primary and acquired resistance remains problematic. Inducing cancer cell death via apoptosis has long been an attractive goal in the treatment of cancer. Apoptosis, a form of regulated cell death, is a highly controlled process, split into two main pathways (intrinsic and extrinsic), and is stimulated by a multitude of factors, including cellular and genotoxic stress. Numerous therapeutic strategies targeting the intrinsic apoptosis pathway are in clinical development, and BH3 mimetics have shown promising efficacy for hematological malignancies. Utilizing these agents for solid malignancies has proved more challenging, though efforts are ongoing. Molecular characterization and the development of predictive biomarkers is likely to be critical for patient selection, by identifying tumors with a vulnerability in the intrinsic apoptosis pathway. This review provides an up-to-date overview of cell death and apoptosis, specifically focusing on the intrinsic pathway. It summarizes the latest approaches for targeting the intrinsic apoptosis pathway with BH3 mimetics and discusses how these strategies may be leveraged to treat prostate cancer.
Collapse
Affiliation(s)
- Daniel Westaby
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Juan M. Jimenez-Vacas
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Ana Padilha
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
| | - Andreas Varkaris
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Steven P. Balk
- Hematology-Oncology Division, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (A.V.); (S.P.B.)
| | - Johann S. de Bono
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| | - Adam Sharp
- Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK; (D.W.); (J.M.J.-V.); (A.P.) (J.S.d.B.)
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London SM2 5PT, UK
| |
Collapse
|
10
|
Evasion of cell death: A contributory factor in prostate cancer development and treatment resistance. Cancer Lett 2021; 520:213-221. [PMID: 34343635 DOI: 10.1016/j.canlet.2021.07.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
Cell death is a natural process in organismal development, homeostasis and response to disease or infection that eliminates unnecessary or potentially dangerous cells and acts as an innate barrier to oncogenesis. Inactivation of cell death is a key step in tumour development and also impedes effective response to cancer therapy. Precise execution of unwanted cells is achieved through regulated cell death processes including the intrinsic apoptotic pathway that is governed by the BCL-2 (B-cell lymphoma 2) protein family. There is compelling evidence that intrinsic apoptosis is defective in prostate cancer, particularly in metastatic and castration resistant advanced disease, currently a lethal diagnosis. New therapeutics have been developed to target pro-survival BCL-2 proteins (including BCL-2, BCL-XL and MCL-1) and show promise in reinstating apoptosis to destroy tumour cells in haematological cancers. Here we discuss perturbation of cell death in prostate cancer and how new therapeutics could improve treatment outcome in prostate cancer.
Collapse
|
11
|
Anshabo AT, Milne R, Wang S, Albrecht H. CDK9: A Comprehensive Review of Its Biology, and Its Role as a Potential Target for Anti-Cancer Agents. Front Oncol 2021; 11:678559. [PMID: 34041038 PMCID: PMC8143439 DOI: 10.3389/fonc.2021.678559] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are proteins pivotal to a wide range of cellular functions, most importantly cell division and transcription, and their dysregulations have been implicated as prominent drivers of tumorigenesis. Besides the well-established role of cell cycle CDKs in cancer, the involvement of transcriptional CDKs has been confirmed more recently. Most cancers overtly employ CDKs that serve as key regulators of transcription (e.g., CDK9) for a continuous production of short-lived gene products that maintain their survival. As such, dysregulation of the CDK9 pathway has been observed in various hematological and solid malignancies, making it a valuable anticancer target. This therapeutic potential has been utilized for the discovery of CDK9 inhibitors, some of which have entered human clinical trials. This review provides a comprehensive discussion on the structure and biology of CDK9, its role in solid and hematological cancers, and an updated review of the available inhibitors currently being investigated in preclinical and clinical settings.
Collapse
Affiliation(s)
- Abel Tesfaye Anshabo
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Robert Milne
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shudong Wang
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hugo Albrecht
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
12
|
Signaling Pathways That Control Apoptosis in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13050937. [PMID: 33668112 PMCID: PMC7956765 DOI: 10.3390/cancers13050937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the second most common malignancy and the fifth leading cancer-caused death in men worldwide. Therapies that target the androgen receptor axis induce apoptosis in normal prostates and provide temporary relief for advanced disease, yet prostate cancer that acquired androgen independence (so called castration-resistant prostate cancer, CRPC) invariably progresses to lethal disease. There is accumulating evidence that androgen receptor signaling do not regulate apoptosis and proliferation in prostate epithelial cells in a cell-autonomous fashion. Instead, androgen receptor activation in stroma compartments induces expression of unknown paracrine factors that maintain homeostasis of the prostate epithelium. This paradigm calls for new studies to identify paracrine factors and signaling pathways that control the survival of normal epithelial cells and to determine which apoptosis regulatory molecules are targeted by these pathways. This review summarizes the recent progress in understanding the mechanism of apoptosis induced by androgen ablation in prostate epithelial cells with emphasis on the roles of BCL-2 family proteins and "druggable" signaling pathways that control these proteins. A summary of the clinical trials of inhibitors of anti-apoptotic signaling pathways is also provided. Evidently, better knowledge of the apoptosis regulation in prostate epithelial cells is needed to understand mechanisms of androgen-independence and implement life-extending therapies for CRPC.
Collapse
|
13
|
Momeny M, Sankanian G, Hamzehlou S, Yousefi H, Esmaeili F, Alishahi Z, Karimi B, Zandi Z, Shamsaiegahkani S, Sabourinejad Z, Kashani B, Nasrollahzadeh A, Mousavipak SH, Mousavi SA, Ghaffari SH. Cediranib, an inhibitor of vascular endothelial growth factor receptor kinases, inhibits proliferation and invasion of prostate adenocarcinoma cells. Eur J Pharmacol 2020; 882:173298. [PMID: 32593665 DOI: 10.1016/j.ejphar.2020.173298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/29/2022]
Abstract
Prostate Cancer is the second cause of cancer-related death in men and development of metastatic castration-resistant prostate cancer (mCRPC) is the major reason for its high mortality rate. Despite various treatments, all patients succumb to resistant disease, suggesting that there is a pressing need for novel and more efficacious treatments. Members of the vascular endothelial growth factor (VEGF) family play key roles in the tumorigenesis of mCRPC, indicating that VEGF-targeted therapies may have potential anti-tumor efficacy in this malignancy. However, due to compensatory activation of other family members, clinical trials with single-targeted VEGF inhibitors were discouraging. Here, we determined the anti-neoplastic activity of Cediranib, a pan-VEGF receptor inhibitor, in the mCRPC cell lines. Anti-growth effects of Cediranib were studied by MTT and BrdU cell proliferation assays and crystal violet staining. Annexin V/PI, radiation therapy and cell motility assays were carried out to examine the effects of Cediranib on apoptosis, radio-sensitivity and cell motility. Quantitative reverse transcription-PCR (qRT-PCR) and Western blot analyses were conducted to determine the molecular mechanisms underlying the anti-tumor activity of Cediranib. Cediranib decreased cell viability and induced apoptosis via inhibition of the anti-apoptotic proteins. Combination with Cediranib synergistically increased Docetaxel sensitivity and potentiated the effects of radiation therapy. Furthermore, Cediranib impaired cell motility via decrease in the expression of the epithelial-to-mesenchymal transition markers. These findings suggest that Cediranib may have anti-tumor activity in mCRPC cells and warrant further investigation on the therapeutic activity of this pan-VEGF receptor inhibitor in mCRPC.
Collapse
Affiliation(s)
- Majid Momeny
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| | - Ghazaleh Sankanian
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Fatemeh Esmaeili
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zivar Alishahi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Karimi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Shamsaiegahkani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Sabourinejad
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Kashani
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Nasrollahzadeh
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyedeh H Mousavipak
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed A Mousavi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Samy ALPA, Bakthavachalam V, Vudutha M, Vinjamuri S, Chinnapaka S, Munirathinam G. Eprinomectin, a novel semi-synthetic macrocylic lactone is cytotoxic to PC3 metastatic prostate cancer cells via inducing apoptosis. Toxicol Appl Pharmacol 2020; 401:115071. [PMID: 32454055 PMCID: PMC7716802 DOI: 10.1016/j.taap.2020.115071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 12/25/2022]
Abstract
Prostate Cancer (PCa) is the second most common cancer among men in United States after skin cancer. Conventional chemotherapeutic drugs available for PCa treatment are limited due to toxicity and resistance issues. Therefore, there is an urgent need to develop more effective treatment for advanced PCa. In this current study, we focused on evaluating the anti-cancer efficacy of Eprinomectin (EP), a novel avermectin analog against PC3 metastatic PCa cells. EP displayed robust inhibition of cell viability of PC3 cells in addition to suppressing the colony formation and wound healing capabilities. Our study showed that EP targets PC3 cells via inducing ROS and apoptosis activation. EP treatment enforces cell cycle arrest at G0/G1 phase via targeting cyclin-dependent kinase 4 (CDK4) and subsequent induction of apoptosis in PC3 cells. At the molecular level, EP effectively inhibited the expression of various cancer stem cell markers such as ALDH1, Sox-2, Nanog, Oct3/4 and CD44. Interestingly, EP also inhibited the activity of alkaline phosphatase, a maker of pluripotent stem cells. Of note, EP treatment resulted in the translocation of β-catenin from the nucleus to the cytoplasm indicating that EP antagonizes Wnt/β-catenin signaling pathway. Western blotting analysis revealed that EP downregulated the expression of key cell cycle markers such as cyclin D1, cyclin D3, CDK4, and c-Myc. In addition, EP inhibited the anti-apoptotic markers such as Mcl-1, XIAP, c-IAP1 and survivin in PC3 cells. On the other hand, EP treatment resulted in the activation of pH2A.X, Bad, caspase-9, caspase-3 and cleavage of PARP1. Taken together, our data suggests that EP is a potential agent to treat advanced PCa cells via modulating apoptosis signaling.
Collapse
Affiliation(s)
| | - Velavan Bakthavachalam
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States of America
| | - Mona Vudutha
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States of America
| | - Smita Vinjamuri
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States of America
| | - Somaiah Chinnapaka
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States of America
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois, Rockford, IL, United States of America.
| |
Collapse
|
15
|
Arai S, Varkaris A, Nouri M, Chen S, Xie L, Balk SP. MARCH5 mediates NOXA-dependent MCL1 degradation driven by kinase inhibitors and integrated stress response activation. eLife 2020; 9:54954. [PMID: 32484436 PMCID: PMC7297531 DOI: 10.7554/elife.54954] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
MCL1 has critical antiapoptotic functions and its levels are tightly regulated by ubiquitylation and degradation, but mechanisms that drive this degradation, particularly in solid tumors, remain to be established. We show here in prostate cancer cells that increased NOXA, mediated by kinase inhibitor activation of an integrated stress response, drives the degradation of MCL1, and identify the mitochondria-associated ubiquitin ligase MARCH5 as the primary mediator of this NOXA-dependent MCL1 degradation. Therapies that enhance MARCH5-mediated MCL1 degradation markedly enhance apoptosis in response to a BH3 mimetic agent targeting BCLXL, which may provide for a broadly effective therapy in solid tumors. Conversely, increased MCL1 in response to MARCH5 loss does not strongly sensitize to BH3 mimetic drugs targeting MCL1, but instead also sensitizes to BCLXL inhibition, revealing a codependence between MARCH5 and MCL1 that may also be exploited in tumors with MARCH5 genomic loss.
Collapse
Affiliation(s)
- Seiji Arai
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States.,Department of Urology, Gunma University Hospital, Maebashi, Japan
| | - Andreas Varkaris
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Mannan Nouri
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Sen Chen
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Lisha Xie
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| |
Collapse
|
16
|
Drivers of AR indifferent anti-androgen resistance in prostate cancer cells. Sci Rep 2019; 9:13786. [PMID: 31551480 PMCID: PMC6760229 DOI: 10.1038/s41598-019-50220-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/31/2019] [Indexed: 12/01/2022] Open
Abstract
Inhibition of the androgen receptor (AR) by second-generation anti-androgens is a standard treatment for metastatic castration resistant prostate cancer (mCRPC), but it inevitably leads to the development of resistance. Since the introduction of highly efficient AR signalling inhibitors, approximately 20% of mCRPC patients develop disease with AR independent resistance mechanisms. In this study, we generated two anti-androgen and castration resistant prostate cancer cell models that do not rely on AR activity for growth despite robust AR expression (AR indifferent). They are thus resistant against all modern AR signalling inhibitors. Both cell lines display cross-resistance against the chemotherapeutic drug docetaxel due to MCL1 upregulation but remain sensitive to the PARP inhibitor olaparib and the pan-BCL inhibitor obatoclax. RNA-seq analysis of the anti-androgen resistant cell lines identified hyper-activation of the E2F cell-cycle master regulator as driver of AR indifferent growth, which was caused by deregulation of cyclin D/E, E2F1, RB1, and increased Myc activity. Importantly, mCRPC tissue samples with low AR activity displayed the same alterations and increased E2F activity. In conclusion, we describe two cellular models that faithfully mimic the acquisition of a treatment induced AR independent phenotype that is cross-resistant against chemotherapy and driven by E2F hyper-activation.
Collapse
|
17
|
Kulik G. ADRB2-Targeting Therapies for Prostate Cancer. Cancers (Basel) 2019; 11:E358. [PMID: 30871232 PMCID: PMC6468358 DOI: 10.3390/cancers11030358] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
There is accumulating evidence that β-2 adrenergic receptor (ADRB2) signaling contributes to the progression and therapy resistance of prostate cancer, whereas availability of clinically tested β-blocker propranolol makes this pathway especially attractive as potential therapeutic target. Yet even in tumors with active ADRB2 signaling propranolol may be ineffective. Inhibition of apoptosis is one of the major mechanisms by which activation of ADRB2 contributes to prostate cancer pathophysiology. The signaling network that controls apoptosis in prostate tumors is highly redundant, with several signaling pathways targeting a few critical apoptosis regulatory molecules. Therefore, a comprehensive analysis of ADRB2 signaling in the context of other signaling mechanisms is necessary to identify patients who will benefit from propranolol therapy. This review discusses how information on the antiapoptotic mechanisms activated by ADRB2 can guide clinical trials of ADRB2 antagonist propranolol as potential life-extending therapy for prostate cancer. To select patients for clinical trials of propranolol three classes of biomarkers are proposed. First, biomarkers of ADRB2/cAMP-dependent protein kinase (PKA) pathway activation; second, biomarkers that inform about activation of other signaling pathways unrelated to ADRB2; third, apoptosis regulatory molecules controlled by ADRB2 signaling and other survival signaling pathways.
Collapse
Affiliation(s)
- George Kulik
- Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Blvd, Winston-Salem, NC 27157, USA.
- Department of Life Sciences, Alfaisal University, Riyadh 11533, Saudi Arabia.
| |
Collapse
|
18
|
Arai S, Jonas O, Whitman MA, Corey E, Balk SP, Chen S. Tyrosine Kinase Inhibitors Increase MCL1 Degradation and in Combination with BCLXL/BCL2 Inhibitors Drive Prostate Cancer Apoptosis. Clin Cancer Res 2018; 24:5458-5470. [PMID: 30021909 PMCID: PMC6214713 DOI: 10.1158/1078-0432.ccr-18-0549] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/18/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Clinically available BH3 mimetic drugs targeting BCLXL and/or BCL2 (navitoclax and venetoclax, respectively) are effective in some hematologic malignancies, but have limited efficacy in solid tumors. This study aimed to identify combination therapies that exploit clinical BH3 mimetics for prostate cancer.Experimental Design: Prostate cancer cells or xenografts were treated with BH3 mimetics as single agents or in combination with other agents, and effects on MCL1 and apoptosis were assessed. MCL1 was also targeted directly using RNAi, CRISPR, or an MCL1-specific BH3 mimetic, S63845.Results: We initially found that MCL1 depletion or inhibition markedly sensitized prostate cancer cells to apoptosis mediated by navitoclax, but not venetoclax, in vitro and in vivo, indicating that they are primed to undergo apoptosis and protected by MCL1 and BCLXL. Small-molecule EGFR kinase inhibitors (erlotinib, lapatinib) also dramatically sensitized to navitoclax-mediated apoptosis, and this was associated with markedly increased proteasome-dependent degradation of MCL1. This increased MCL1 degradation appeared to be through a novel mechanism, as it was not dependent upon GSK3β-mediated phosphorylation and subsequent ubiquitylation by the ubiquitin ligases βTRCP and FBW7, or through other previously identified MCL1 ubiquitin ligases or deubiquitinases. Inhibitors targeting additional kinases (cabozantinib and sorafenib) similarly caused GSK3β-independent MCL1 degradation, and in combination with navitoclax drove apoptosis in vitro and in vivo Conclusions: These results show that prostate cancer cells are primed to undergo apoptosis and that cotargeting BCLXL and MCL1, directly or indirectly through agents that increase MCL1 degradation, can induce dramatic apoptotic responses. Clin Cancer Res; 24(21); 5458-70. ©2018 AACR.
Collapse
Affiliation(s)
- Seiji Arai
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
- Department of Urology, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Oliver Jonas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Matthew A Whitman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Eva Corey
- Department of Urology, University of Washington School of Medicine, Seattle, Washington
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.
| | - Sen Chen
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
19
|
Handle F, Puhr M, Schaefer G, Lorito N, Hoefer J, Gruber M, Guggenberger F, Santer FR, Marques RB, van Weerden WM, Claessens F, Erb HHH, Culig Z. The STAT3 Inhibitor Galiellalactone Reduces IL6-Mediated AR Activity in Benign and Malignant Prostate Models. Mol Cancer Ther 2018; 17:2722-2731. [PMID: 30254184 DOI: 10.1158/1535-7163.mct-18-0508] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 08/23/2018] [Accepted: 09/20/2018] [Indexed: 11/16/2022]
Abstract
IL6/STAT3 signaling is associated with endocrine therapy resistance in prostate cancer, but therapies targeting this pathway in prostate cancer were unsuccessful in clinical trials so far. The mechanistic explanation for this phenomenon is currently unclear; however, IL6 has pleiotropic effects on a number of signaling pathways, including the androgen receptor (AR). Therefore, we investigated IL6-mediated AR activation in prostate cancer cell lines and ex vivo primary prostate tissue cultures in order to gain a better understanding on how to inhibit this process for future clinical trials. IL6 significantly increased androgen-dependent AR activity in LNCaP cells but importantly did not influence AR activity at castrate androgen levels. To identify the underlying mechanism, we investigated several signaling pathways but only found IL6-dependent changes in STAT3 signaling. Biochemical inhibition of STAT3 with the small-molecule inhibitor galiellalactone significantly reduced AR activity in several prostate and breast cancer cell lines. We confirmed the efficacy of galiellalactone in primary tissue slice cultures from radical prostatectomy samples. Galiellalactone significantly reduced the expression of the AR target genes PSA (P < 0.001), TMPRSS2 (P < 0.001), and FKBP5 (P = 0.003) in benign tissue cultures (n = 24). However, a high heterogeneity in the response of the malignant samples was discovered, and only a subset of tissue samples (4 out of 10) had decreased PSA expression upon galiellalactone treatment. Taken together, this finding demonstrates that targeting the IL6/STAT3 pathway with galiellalactone is a viable option to decrease AR activity in prostate tissue that may be applied in a personalized medicine approach.
Collapse
Affiliation(s)
- Florian Handle
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.,Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Martin Puhr
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Schaefer
- Department of Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nicla Lorito
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Hoefer
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martina Gruber
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Fabian Guggenberger
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Frédéric R Santer
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Rute B Marques
- Department of Urology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Holger H H Erb
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Mainz, Germany
| | - Zoran Culig
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
20
|
Urbiola C, Santer FR, Petersson M, van der Pluijm G, Horninger W, Erlmann P, Wollmann G, Kimpel J, Culig Z, von Laer D. Oncolytic activity of the rhabdovirus VSV-GP against prostate cancer. Int J Cancer 2018; 143:1786-1796. [PMID: 29696636 PMCID: PMC6712949 DOI: 10.1002/ijc.31556] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/08/2018] [Accepted: 04/10/2018] [Indexed: 12/28/2022]
Abstract
Oncolytic viruses, including the oncolytic rhabdovirus VSV-GP tested here, selectively infect and kill cancer cells and are a promising new therapeutic modality. Our aim was to study the efficacy of VSV-GP, a vesicular stomatitis virus carrying the glycoprotein of lymphocytic choriomeningitis virus, against prostate cancer, for which current treatment options still fail to cure metastatic disease. VSV-GP was found to infect 6 of 7 prostate cancer cell lines with great efficacy. However, susceptibility was reduced in one cell line with low virus receptor expression and in 3 cell lines after interferon alpha treatment. Four cell lines had developed resistance to interferon type I at different levels of the interferon signaling pathway, resulting in a deficient antiviral response. In prostate cancer mouse models, long-term remission was achieved upon intratumoral and, remarkably, also upon intravenous treatment of subcutaneous tumors and bone metastases. These promising efficacy data demonstrate that treatment of prostate cancer with VSV-GP is feasible and safe in preclinical models and encourage further preclinical and clinical development of VSV-GP for systemic treatment of metastatic prostate cancer.
Collapse
Affiliation(s)
- Carles Urbiola
- Division of VirologyMedical University of InnsbruckInnsbruckAustria
- Christian Doppler Laboratory for Viral Immunotherapy of CancerMedical University of InnsbruckInnsbruckAustria
| | - Frédéric R. Santer
- Division of Experimental UrologyMedical University of InnsbruckInnsbruckAustria
| | - Monika Petersson
- Division of VirologyMedical University of InnsbruckInnsbruckAustria
- ViraTherapeutics GmbHInnsbruckAustria
| | | | - Wolfgang Horninger
- Division of Experimental UrologyMedical University of InnsbruckInnsbruckAustria
| | | | - Guido Wollmann
- Division of VirologyMedical University of InnsbruckInnsbruckAustria
- Christian Doppler Laboratory for Viral Immunotherapy of CancerMedical University of InnsbruckInnsbruckAustria
| | - Janine Kimpel
- Division of VirologyMedical University of InnsbruckInnsbruckAustria
| | - Zoran Culig
- Division of Experimental UrologyMedical University of InnsbruckInnsbruckAustria
| | | |
Collapse
|
21
|
Wolf P. BH3 Mimetics for the Treatment of Prostate Cancer. Front Pharmacol 2017; 8:557. [PMID: 28868037 PMCID: PMC5563364 DOI: 10.3389/fphar.2017.00557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022] Open
Abstract
Despite improved diagnostic and therapeutic intervention, advanced prostate cancer (PC) remains incurable. The acquired resistance of PC cells to current treatment protocols has been traced to apoptosis resistance based on the upregulation of anti-apoptotic proteins of the Bcl-2 family. The use of BH3 mimetics, mimicking pro-apoptotic activator or sensitizer proteins of the intrinsic apoptotic pathway, is therefore a promising treatment strategy. The present review gives an overview of preclinical and clinical studies with pan- and specific BH3 mimetics as sensitizers for cell death and gives an outlook how they could be effectively used for the therapy of advanced PC in future.
Collapse
Affiliation(s)
- Philipp Wolf
- Department of Urology, Medical Center - University of Freiburg, Faculty of Medicine, University of FreiburgFreiburg, Germany
| |
Collapse
|
22
|
Tonry C, Armstrong J, Pennington S. Probing the prostate tumour microenvironment II: Impact of hypoxia on a cell model of prostate cancer progression. Oncotarget 2017; 8:15307-15337. [PMID: 28410543 PMCID: PMC5362488 DOI: 10.18632/oncotarget.14574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Approximately one in six men are diagnosed with Prostate Cancer every year in the Western world. Although it can be well managed and non-life threatening in the early stages, over time many patients cease to respond to treatment and develop castrate resistant prostate cancer (CRPC). CRPC represents a clinically challenging and lethal form of prostate cancer. Progression of CRPC is, in part, driven by the ability of cancer cells to alter their metabolic profile during the course of tumourgenesis and metastasis so that they can survive in oxygen and nutrient-poor environments and even withstand treatment. This work was carried out as a continuation of a study aimed towards gaining greater mechanistic understanding of how conditions within the tumour microenvironment impact on both androgen sensitive (LNCaP) and androgen independent (LNCaP-abl and LNCaP-abl-Hof) prostate cancer cell lines. Here we have applied technically robust and reproducible label-free liquid chromatography mass spectrometry analysis for comprehensive proteomic profiling of prostate cancer cell lines under hypoxic conditions. This led to the identification of over 4,000 proteins - one of the largest protein datasets for prostate cancer cell lines established to date. The biological and clinical significance of proteins showing a significant change in expression as result of hypoxic conditions was established. Novel, intuitive workflows were subsequently implemented to enable robust, reproducible and high throughput verification of selected proteins of interest. Overall, these data suggest that this strategy supports identification of protein biomarkers of prostate cancer progression and potential therapeutic targets for CRPC.
Collapse
Affiliation(s)
- Claire Tonry
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | | | - Stephen Pennington
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
23
|
Rahaman MH, Kumarasiri M, Mekonnen LB, Yu M, Diab S, Albrecht H, Milne RW, Wang S. Targeting CDK9: a promising therapeutic opportunity in prostate cancer. Endocr Relat Cancer 2016; 23:T211-T226. [PMID: 27582311 DOI: 10.1530/erc-16-0299] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9) is a key transcriptional regulator and a lucrative target for cancer treatment. Targeting CDK9 can effectively confine the hyperactivity of androgen receptor and the constitutive expression of anti-apoptotic proteins; both being main causes of prostate cancer (PCa) development and progression. In castrate-resistant PCa, traditional therapies that only target androgen receptor (AR) have become obsolete due to reprograming in AR activity to make the cells independent of androgen. CDK9 inhibitors may provide a new and better therapeutic opportunity over traditional treatment options by targeting both androgen receptor activity and anti-apoptotic proteins, improving the chances of positive outcomes, especially in patients with the advanced disease. This review focuses on biological functions of CDK9, its involvement with AR and the potential for therapeutic opportunities in PCa treatment.
Collapse
Affiliation(s)
| | | | - Laychiluh B Mekonnen
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Sarah Diab
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Hugo Albrecht
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Robert W Milne
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Shudong Wang
- Centre for Drug Discovery and DevelopmentSansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
24
|
Culig Z. Androgen Receptor Coactivators in Regulation of Growth and Differentiation in Prostate Cancer. J Cell Physiol 2016. [PMID: 26201947 DOI: 10.1002/jcp.25099] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Androgen receptor (AR) is a key factor in regulation of growth and differentiation in normal and malignant prostate. Endocrine therapies for prostate cancer include inhibition of androgen production either by analogs of luteinizing hormone releasing hormone or abiraterone acetate and/or use of anti-androgens such as hydroxyflutamide, bicalutamide, and enzalutamide. Castration therapy-resistant cancer develops inevitably in patients who undergo treatment. AR coactivators are proteins which interact with one or more regions of the AR thus enhancing its function. Although several functions of AR coactivators may be redundant, specific functions have been identified and analyzed. The p160 group of coactivators, SRC-1, -2, and -3 not only potentiate the activation of the AR, but are also implicated in potentiation of function of insulin-like growth factor-I and activation of the Akt pathway. Transcriptional integrators p300 and CBP are up-regulated by androgen ablation and may influence antagonist/agonist balance of non-steroidal anti-androgens. A therapy approach designed to target p300 in prostate cancer revealed its role in regulation of proliferation of migration of androgen-sensitive and -insensitive prostate cancer cells. Coactivators p300 and SRC-1 are required for AR activation by interleukin-6 (IL-6), a cytokine that is overexpressed in castration therapy-resistant prostate cancer. Some coactivators, such as Vav3, are involved in regulation of transcriptional activity of truncated AR, which emerge during endocrine thrapy. Stimulation of cellular migration and invasion by AR coactivators has also been described. Translational studies with aim to introduce anti-AR coactivator therapy have not been successfully implemented in the clinic so far.
Collapse
Affiliation(s)
- Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
Ofer P, Heidegger I, Eder IE, Schöpf B, Neuwirt H, Geley S, Klocker H, Massoner P. Both IGF1R and INSR Knockdown Exert Antitumorigenic Effects in Prostate Cancer In Vitro and In Vivo. Mol Endocrinol 2015; 29:1694-707. [PMID: 26452103 PMCID: PMC4669362 DOI: 10.1210/me.2015-1073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The IGF network with its main receptors IGF receptor 1 (IGF1R) and insulin receptor (INSR) is of major importance for cancer initiation and progression. To date, clinical studies targeting this network were disappointing and call for thorough analysis of the IGF network in cancer models. We highlight the oncogenic effects controlled by IGF1R and INSR in prostate cancer cells and show similarities as well as differences after receptor knockdown (KD). In PC3 prostate cancer cells stably transduced with inducible short hairpin RNAs, targeting IGF1R or INSR attenuated cell growth and proliferation ultimately driving cells into apoptosis. IGF1R KD triggered rapid and strong antiproliferative and proapoptotic responses, whereas these effects were less pronounced and delayed after INSR KD. Down-regulation of the antiapoptotic proteins myeloid cell leukemia-1 and survivin was observed in both KDs, whereas IGF1R KD also attenuated expression of prosurvival proteins B cell lymphoma-2 and B cell lymphoma-xL. Receptor KD induced cell death involved autophagy in particular upon IGF1R KD; however, no difference in mitochondrial energy metabolism was observed. In a mouse xenograft model, induction of IGF1R or INSR KD after tumor establishment eradicated most of the tumors. After 20 days of receptor KD, tumor cells were found only in 1/14 IGF1R and 3/14 INSR KD tumor remnants. Collectively, our data underline the oncogenic functions of IGF1R and INSR in prostate cancer namely growth, proliferation, and survival in vitro as well as in vivo and identify myeloid cell leukemia-1 and survivin as important mediators of inhibitory and apoptotic effects.
Collapse
Affiliation(s)
- Philipp Ofer
- Division of Experimental Urology (P.O., I.H., I.E.E., H.K., P.M.), Department of Urology, Medical University, 6020 Innsbruck, Austria; Division of Genetic Epidemiology (B.S.), Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University, 6020 Innsbruck, Austria; Department of Internal Medicine IV (N.H.), Medical University, 6020 Innsbruck, Austria; and Division of Molecular Pathophysiology (S.G.), Biocenter, Medical University, 6020 Innsbruck, Austria
| | - Isabel Heidegger
- Division of Experimental Urology (P.O., I.H., I.E.E., H.K., P.M.), Department of Urology, Medical University, 6020 Innsbruck, Austria; Division of Genetic Epidemiology (B.S.), Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University, 6020 Innsbruck, Austria; Department of Internal Medicine IV (N.H.), Medical University, 6020 Innsbruck, Austria; and Division of Molecular Pathophysiology (S.G.), Biocenter, Medical University, 6020 Innsbruck, Austria
| | - Iris E Eder
- Division of Experimental Urology (P.O., I.H., I.E.E., H.K., P.M.), Department of Urology, Medical University, 6020 Innsbruck, Austria; Division of Genetic Epidemiology (B.S.), Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University, 6020 Innsbruck, Austria; Department of Internal Medicine IV (N.H.), Medical University, 6020 Innsbruck, Austria; and Division of Molecular Pathophysiology (S.G.), Biocenter, Medical University, 6020 Innsbruck, Austria
| | - Bernd Schöpf
- Division of Experimental Urology (P.O., I.H., I.E.E., H.K., P.M.), Department of Urology, Medical University, 6020 Innsbruck, Austria; Division of Genetic Epidemiology (B.S.), Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University, 6020 Innsbruck, Austria; Department of Internal Medicine IV (N.H.), Medical University, 6020 Innsbruck, Austria; and Division of Molecular Pathophysiology (S.G.), Biocenter, Medical University, 6020 Innsbruck, Austria
| | - Hannes Neuwirt
- Division of Experimental Urology (P.O., I.H., I.E.E., H.K., P.M.), Department of Urology, Medical University, 6020 Innsbruck, Austria; Division of Genetic Epidemiology (B.S.), Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University, 6020 Innsbruck, Austria; Department of Internal Medicine IV (N.H.), Medical University, 6020 Innsbruck, Austria; and Division of Molecular Pathophysiology (S.G.), Biocenter, Medical University, 6020 Innsbruck, Austria
| | - Stephan Geley
- Division of Experimental Urology (P.O., I.H., I.E.E., H.K., P.M.), Department of Urology, Medical University, 6020 Innsbruck, Austria; Division of Genetic Epidemiology (B.S.), Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University, 6020 Innsbruck, Austria; Department of Internal Medicine IV (N.H.), Medical University, 6020 Innsbruck, Austria; and Division of Molecular Pathophysiology (S.G.), Biocenter, Medical University, 6020 Innsbruck, Austria
| | - Helmut Klocker
- Division of Experimental Urology (P.O., I.H., I.E.E., H.K., P.M.), Department of Urology, Medical University, 6020 Innsbruck, Austria; Division of Genetic Epidemiology (B.S.), Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University, 6020 Innsbruck, Austria; Department of Internal Medicine IV (N.H.), Medical University, 6020 Innsbruck, Austria; and Division of Molecular Pathophysiology (S.G.), Biocenter, Medical University, 6020 Innsbruck, Austria
| | - Petra Massoner
- Division of Experimental Urology (P.O., I.H., I.E.E., H.K., P.M.), Department of Urology, Medical University, 6020 Innsbruck, Austria; Division of Genetic Epidemiology (B.S.), Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University, 6020 Innsbruck, Austria; Department of Internal Medicine IV (N.H.), Medical University, 6020 Innsbruck, Austria; and Division of Molecular Pathophysiology (S.G.), Biocenter, Medical University, 6020 Innsbruck, Austria
| |
Collapse
|
26
|
Reiner T, de Las Pozas A, Parrondo R, Palenzuela D, Cayuso W, Rai P, Perez-Stable C. Mcl-1 protects prostate cancer cells from cell death mediated by chemotherapy-induced DNA damage. Oncoscience 2015; 2:703-15. [PMID: 26425662 PMCID: PMC4580064 DOI: 10.18632/oncoscience.231] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/30/2015] [Indexed: 01/02/2023] Open
Abstract
The anti-apoptotic protein Mcl-1 is highly expressed in castration-resistant prostate cancer (CRPC), resulting in resistance to apoptosis and association with poor prognosis. Although predominantly localized in the cytoplasm, there is evidence that Mcl-1 exhibits nuclear localization where it is thought to protect against DNA damage-induced cell death. The role of Mcl-1 in mediating resistance to chemotherapy-induced DNA damage in prostate cancer (PCa) is not known. We show in human PCa cell lines and in TRAMP, a transgenic mouse model of PCa, that the combination of the antimitotic agent ENMD-1198 (analog of 2-methoxyestradiol) with betulinic acid (BA, increases proteotoxic stress) targets Mcl-1 by increasing its proteasomal degradation, resulting in increased γH2AX (DNA damage) and apoptotic/necrotic cell death. Knockdown of Mcl-1 in CRPC cells leads to elevated γH2AX, DNA strand breaks, and cell death after treatment with 1198 + BA- or doxorubicin. Additional knockdowns in PC3 cells suggests that cytoplasmic Mcl-1 protects against DNA damage by blocking the mitochondrial release of apoptosis-inducing factor and thereby preventing its nuclear translocation and subsequent interaction with the cyclophilin A endonuclease. Overall, our results suggest that chemotherapeutic agents that target Mcl-1 will promote cell death in response to DNA damage, particularly in CRPC.
Collapse
Affiliation(s)
- Teresita Reiner
- Geriatric Research, Education, and Clinical Center and Research Service, Bruce W. Carter Veterans Affairs Medical Center, Miami, FL, USA
| | - Alicia de Las Pozas
- Geriatric Research, Education, and Clinical Center and Research Service, Bruce W. Carter Veterans Affairs Medical Center, Miami, FL, USA ; Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami FL, USA
| | - Ricardo Parrondo
- Geriatric Research, Education, and Clinical Center and Research Service, Bruce W. Carter Veterans Affairs Medical Center, Miami, FL, USA
| | - Deanna Palenzuela
- Geriatric Research, Education, and Clinical Center and Research Service, Bruce W. Carter Veterans Affairs Medical Center, Miami, FL, USA
| | - William Cayuso
- Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami FL, USA
| | - Priyamvada Rai
- Geriatric Research, Education, and Clinical Center and Research Service, Bruce W. Carter Veterans Affairs Medical Center, Miami, FL, USA ; Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami FL, USA ; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami FL, USA
| | - Carlos Perez-Stable
- Geriatric Research, Education, and Clinical Center and Research Service, Bruce W. Carter Veterans Affairs Medical Center, Miami, FL, USA ; Division of Gerontology & Geriatric Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami FL, USA ; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami FL, USA
| |
Collapse
|
27
|
Therapy escape mechanisms in the malignant prostate. Semin Cancer Biol 2015; 35:133-44. [PMID: 26299608 DOI: 10.1016/j.semcancer.2015.08.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 12/28/2022]
Abstract
Androgen receptor (AR) is the main target for prostate cancer therapy. Clinical approaches for AR inactivation include chemical castration, inhibition of androgen synthesis and AR antagonists (anti-androgens). However, treatment resistance occurs for which an important number of therapy escape mechanisms have been identified. Herein, we summarise the current knowledge of molecular mechanisms underlying therapy resistance in prostate cancer. Moreover, the tumour escape mechanisms are arranged into the concepts of target modification, bypass signalling, histologic transformation, cancer stem cells and miscellaneous mechanisms. This may help researchers to compare and understand same or similar concepts of therapy resistance in prostate cancer and other cancer types.
Collapse
|
28
|
Pasqualini L, Bu H, Puhr M, Narisu N, Rainer J, Schlick B, Schäfer G, Angelova M, Trajanoski Z, Börno ST, Schweiger MR, Fuchsberger C, Klocker H. miR-22 and miR-29a Are Members of the Androgen Receptor Cistrome Modulating LAMC1 and Mcl-1 in Prostate Cancer. Mol Endocrinol 2015; 29:1037-54. [PMID: 26052614 DOI: 10.1210/me.2014-1358] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The normal prostate as well as early stages and advanced prostate cancer (PCa) require a functional androgen receptor (AR) for growth and survival. The recent discovery of microRNAs (miRNAs) as novel effector molecules of AR disclosed the existence of an intricate network between AR, miRNAs and downstream target genes. In this study DUCaP cells, characterized by high content of wild-type AR and robust AR transcriptional activity, were chosen as the main experimental model. By integrative analysis of chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray expression profiling data, miRNAs putatively bound and significantly regulated by AR were identified. A direct AR regulation of miR-22, miR-29a, and miR-17-92 cluster along with their host genes was confirmed. Interestingly, endogenous levels of miR-22 and miR-29a were found to be reduced in PCa cells expressing AR. In primary tumor samples, miR-22 and miR-29a were less abundant in the cancerous tissue compared with the benign counterpart. This specific expression pattern was associated with a differential DNA methylation of the genomic AR binding sites. The identification of laminin gamma 1 (LAMC1) and myeloid cell leukemia 1 (MCL1) as direct targets of miR-22 and miR-29a, respectively, suggested a tumor-suppressive role of these miRNAs. Indeed, transfection of miRNA mimics in PCa cells induced apoptosis and diminished cell migration and viability. Collectively, these data provide additional information regarding the complex regulatory machinery that guides miRNAs activity in PCa, highlighting an important contribution of miRNAs in the AR signaling.
Collapse
Affiliation(s)
- Lorenza Pasqualini
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Huajie Bu
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Martin Puhr
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Narisu Narisu
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Johannes Rainer
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Bettina Schlick
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Georg Schäfer
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Mihaela Angelova
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Zlatko Trajanoski
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Stefan T Börno
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Michal R Schweiger
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Christian Fuchsberger
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| | - Helmut Klocker
- Department of Urology (L.P., H.B., M.P., B.S., G.S., H.K.), Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Research Institute for Biomedical Aging Research (H.B.), University of Innsbruck, 6020 Innsbruck, Austria; Medical Genomics and Metabolic Genetics Branch (N.N.), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892; Biocenter Innsbruck (J.R.), Section for Molecular Pathophysiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Center for Biomedicine (J.R., C.F.), EURAC Bolzano, 39100 Bolzano, Italy; Oncotyrol (B.S.), Center for Personalized Cancer Medicine, 6020 Innsbruck, Austria; Department of Pathology (G.S.), Medical University of Innsbruck, 6020 Innsbruck, Austria; Biocenter Innsbruck (M.A., Z.T.), Division of Bioinformatics, Medical University of Innsbruck, 6020 Innsbruck, Austria; Max Planck Institute for Molecular Genetics (S.T.B., M.R.S.), 14195 Berlin, Germany; Cologne Center for Genomics (M.R.S.), University of Cologne, 50931 Cologne, Germany; and Department of Biostatistic (C.F.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|