1
|
Lin Y, Lou X, Li S, Cai W, Che T. Identification and Validation of Immune Implication of R-Spondin 1 and an R-Spondin 1-Related Prognostic Signature in Esophagus Cancer. Int J Genomics 2024; 2024:7974277. [PMID: 38962149 PMCID: PMC11222003 DOI: 10.1155/2024/7974277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 07/05/2024] Open
Abstract
R-spondin 1 (RSPO1), which encodes a secretory-activating protein, is a promising therapeutic target for various tumors. The aim of this study was to establish a robust RSPO1-related signature specific to esophageal cancer (ESCA). Our comprehensive study involved meticulous analysis of RSPO1 expression in ESCA tissues and validation across ESCA cell lines and clinical samples using The Cancer Genome Atlas (TCGA) and GTEx databases. Using TCGA-ESCA dataset, we employed single-sample gene set enrichment analysis (ssGSEA) to elucidate the complex interaction between RSPO1 expression and the abundance of 22 specific immune cell types infiltrating ESCA. The biological significance of RSPO1 was further elucidated using KEGG, GO, and GSEA, demonstrating its relevance to pivotal tumor and immune pathways. This study culminated in the construction of prognostic nomograms enriched by calibration curves, facilitating the projection of individual survival probabilities at intervals of one, three, and five years. A substantial decrease in RSPO1 expression was observed within ESCA tissues and cell lines compared to their normal esophageal counterparts, and a significant decrease in the proportion of activated dendritic cells was evident within ESCA, accompanied by an augmented presence of macrophages and naive B cells relative to normal tissue. GSEA and KEGG analyses showed that RSPO1 was associated with tumor and immune pathways. Additionally, an independent prognostic risk score based on the RSPO1-related gene signature was developed and validated for patients with ESCA. Finally, RT-qPCR and western blotting were performed to confirm RSPO1 expression in normal and ESCA cell lines and tissue samples. In summary, our investigation underscores the pivotal role of RSPO1 in orchestrating tumor immunity and proposes RSPO1 as a prospective target for immunotherapeutic interventions in ESCA. Furthermore, the intricate profile of the two RSPO1-related genes has emerged as a promising predictive biomarker with notable potential for application in ESCA.
Collapse
Affiliation(s)
- Yuansheng Lin
- Department of Intensive Care UnitSuzhou HospitalAffiliated Hospital of Medical SchoolNanjing University, Suzhou 215000, China
| | - Xinqi Lou
- Institute of Clinical Medicine ResearchSuzhou HospitalAffiliated Hospital of Medical SchoolNanjing University, Suzhou 215000, China
| | - Shengjun Li
- Department of Emergency and Critical Care MedicineSuzhou HospitalAffiliated Hospital of Medical SchoolNanjing University, Suzhou 215000, China
| | - Wei Cai
- Department of Intensive Care UnitSuzhou HospitalAffiliated Hospital of Medical SchoolNanjing University, Suzhou 215000, China
| | - Tuanjie Che
- The Open Project of Key Laboratory of Functional Genomics and Molecular Diagnosis of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
2
|
Zhang Y, Lim D, Yao Y, Dong C, Feng Z. Global research trends in radiotherapy for gliomas: a systematic bibliometric analysis. World Neurosurg 2022; 161:e355-e362. [DOI: 10.1016/j.wneu.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022]
|
3
|
Xu CF, Liu YJ, Wang Y, Mao YF, Xu DF, Dong WW, Zhu XY, Jiang L. Downregulation of R-Spondin1 Contributes to Mechanical Stretch-Induced Lung Injury. Crit Care Med 2019; 47:e587-e596. [PMID: 31205087 DOI: 10.1097/ccm.0000000000003767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The R-spondin family attenuates tissue damage via tightening endothelium and preventing vascular leakage. This study aims to investigate whether R-spondins protect against mechanical stretch-induced endothelial dysfunction and lung injury and to reveal the underlying mechanisms. DESIGN Randomized controlled study. SETTING University research laboratory. SUBJECTS Patients scheduled to undergo surgery with mechanical ventilation support. Adult male Institute of Cancer Research mice. Primary cultured mouse lung vascular endothelial cells. INTERVENTIONS Patients underwent a surgical procedure with mechanical ventilation support of 3 hours or more. Mice were subjected to mechanical ventilation (6 or 30 mL/kg) for 0.5-4 hours. Another group of mice were intraperitoneally injected with 1 mg/kg lipopolysaccharide, and 12 hours later subjected to mechanical ventilation (10 mL/kg) for 4 hours. Mouse lung vascular endothelial cells were subjected to cyclic stretch for 4 hours. MEASUREMENTS AND MAIN RESULTS R-spondin1 were downregulated in both surgical patients and experimental animals exposed to mechanical ventilation. Intratracheal instillation of R-spondin1 attenuated, whereas knockdown of pulmonary R-spondin1 exacerbated ventilator-induced lung injury and mechanical stretch-induced lung vascular endothelial cell apoptosis. The antiapoptotic effect of R-spondin1 was mediated through the leucine-rich repeat containing G-protein coupled receptor 5 in cyclic stretched mouse lung vascular endothelial cells. We identified apoptosis-stimulating protein of p53 2 as the intracellular signaling protein interacted with leucine-rich repeat containing G-protein coupled receptor 5. R-spondin1 treatment decreased the interaction of apoptosis-stimulating protein of p53 2 with p53 while increased the binding of apoptosis-stimulating protein of p53 2 to leucine-rich repeat containing G-protein coupled receptor 5, therefore resulting in inactivation of p53-mediated proapoptotic pathway in cyclic stretched mouse lung vascular endothelial cells. CONCLUSIONS Mechanical ventilation leads to down-regulation of R-spondin1. R-spondin1 may enhance the interaction of leucine-rich repeat containing G-protein coupled receptor 5 and apoptosis-stimulating protein of p53 2, thus inactivating p53-mediated proapoptotic pathway in cyclic stretched mouse lung vascular endothelial cells. R-spondin1 may have clinical benefit in alleviating mechanical ventilator-induced lung injury.
Collapse
Affiliation(s)
- Chu-Fan Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan-Fei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dun-Feng Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Wen-Wen Dong
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-Yan Zhu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Singh VK, Seed TM, Olabisi AO. Drug discovery strategies for acute radiation syndrome. Expert Opin Drug Discov 2019; 14:701-715. [PMID: 31008662 DOI: 10.1080/17460441.2019.1604674] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: There are at the minimum two major, quite different approaches to advance drug discovery. The first being the target-based drug discovery (TBDD) approach that is commonly referred to as the molecular approach. The second approach is the phenotype-based drug discovery (PBDD), also known as physiology-based drug discovery or empirical approach. Area covered: The authors discuss, herein, the need for developing radiation countermeasure agents for various sub-syndromes of acute radiation syndromes (ARS) following TBDD and PBDD approaches. With time and continuous advances in radiation countermeasure drug development research, the expectation is to have multiple radiation countermeasure agents for each sub-syndrome made available to radiation exposed victims. Expert opinion: The majority of the countermeasures currently being developed for ARS employ the PBDD approach, while the TBDD approach is clearly under-utilized. In the future, an improved drug development strategy might be a 'hybrid' strategy that is more reliant on TBDD for the initial drug discovery via large-scale screening of potential candidate agents, while utilizing PBDD for secondary screening of those candidates, followed by tertiary analytics phase in order to pinpoint efficacious candidates that target the specific sub-syndromes of ARS.
Collapse
Affiliation(s)
- Vijay K Singh
- a Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Scientific Research Department , Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | | | - Ayodele O Olabisi
- b Scientific Research Department , Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
5
|
Liu Q, Zhao Y, Xing H, Li L, Li R, Dai J, Li Q, Fang S. The role of R-spondin 1 through activating Wnt/β-catenin in the growth, survival and migration of ovarian cancer cells. Gene 2018; 689:124-130. [PMID: 30572097 DOI: 10.1016/j.gene.2018.11.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/12/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
Aberrant activation of the Wnt/β-catenin has been shown to promote progression in various cancers, including ovarian cancer. However, the molecular mechanisms involved in Wnt/β-catenin activation are not well elucidated. In the work, we identify that R-spondin 1 is an upstream regulator in Wnt/β-catenin pathway to promote growth, survival and migration in ovarian cancer cells. We observe the upregulation of transcript and protein levels of R-spondin 1 in ovarian cancer cell lines and tissues compared to normal counterparts. R-spondin 1 upregulation via genetic (overexpression) and pharmacological (recombinant protein) approaches facilitates growth and migration of normal ovarian cells. R-spondin 1 downregulation via siRNA knockdown decreases proliferation and migration, and induces apoptosis in ovarian cancer cells. In addition, recombinant R-spondin 1 protects ovarian cancer cell against chemotherapy whereas R-spondin 1 knockdown sensitizes ovarian cancer cell response to chemotherapy. Importantly, increased β-catenin activities and mRNA expression levels of Wnt/β-catenin-targeted genes are detected in normal ovarian cells overexpressing R-spondin 1. In contrast, R-spondin 1 inhibition suppresses Wnt/β-catenin signaling in ovarian cancer cells. We further identify that R-spondin 1 regulates ovarian cancer biological activities via activating Wnt/β-catenin. Our work is the first to highlight the critical roles of R-spondin 1 in ovarian cancer progression and chemoresistance. Our work also provides a proper understanding on the regulation of Wnt/β-catenin pathway in ovarian cancer.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Ying Zhao
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Hui Xing
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Lin Li
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Rongxia Li
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Jie Dai
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Quan Li
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China.
| | - Shanshan Fang
- Department of Oncology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China.
| |
Collapse
|
6
|
Liu ZG, Jiang G, Tang J, Wang H, Feng G, Chen F, Tu Z, Liu G, Zhao Y, Peng MJ, He ZW, Chen XY, Lindsay H, Xia YF, Li XN. c-Fos over-expression promotes radioresistance and predicts poor prognosis in malignant glioma. Oncotarget 2018; 7:65946-65956. [PMID: 27602752 PMCID: PMC5323205 DOI: 10.18632/oncotarget.11779] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022] Open
Abstract
c-Fos is a major component of activator protein (AP)-1 complex. It has been implicated in cell differentiation, proliferation, angiogenesis, invasion, and metastasis. To investigate the role of c-Fos in glioma radiosensitivity and to understand the underlying molecular mechanisms, we downregulated c-Fos gene expression by lentivirus-mediated shRNA in glioma cell lines and subsequently analyzed the radiosensitivity, DNA damage repair capacity, and cell cycle distribution. Finally, we explored its prognostic value in 41 malignant glioma patients by immunohistochemistry. Our results showed that silencing c-Fos sensitized glioma cells to radiation by increasing radiation-induced DNA double strand breaks (DSBs), disturbing the DNA damage repair process, promoting G2/M cell cycle arrest, and enhancing apoptosis. c-Fos protein overexpression correlated with poor prognosis in malignant glioma patients treated with standard therapy. Our findings provide new insights into the mechanism of radioresistance in malignant glioma and identify c-Fos as a potentially novel therapeutic target for malignant glioma patients.
Collapse
Affiliation(s)
- Zhi-Gang Liu
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiotherapy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Guanmin Jiang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Jiao Tang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiotherapy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Hui Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiotherapy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Guokai Feng
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Furong Chen
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Ziwei Tu
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Guiyun Liu
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiotherapy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Yu Zhao
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiotherapy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Ming-Jing Peng
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Zheng-Wen He
- Department of Neurosurgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Xiao-Yan Chen
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 421001, P.R. China
| | - Holly Lindsay
- Laboratory of Molecular Neuro-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston TX, 77030, USA
| | - Yun-Fei Xia
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xiao-Nan Li
- Laboratory of Molecular Neuro-Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston TX, 77030, USA
| |
Collapse
|
7
|
Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies. Cancer Metastasis Rev 2017; 36:375-393. [DOI: 10.1007/s10555-017-9669-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Singh VK, Hanlon BK, Santiago PT, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part III. Countermeasures under early stages of development along with 'standard of care' medicinal and procedures not requiring regulatory approval for use. Int J Radiat Biol 2017; 93:885-906. [PMID: 28657400 DOI: 10.1080/09553002.2017.1332440] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Terrorist attacks, with their intent to maximize psychological and economic damage as well as inflicting sickness and death on given targeted populations, are an ever-growing worldwide concern in government and public sectors as they become more frequent, violent, and sensational. If given the chance, it is likely that terrorists will use radiological or nuclear weapons. To thwart these sinister efforts, both physical and medical countermeasures against these weapons are currently being researched and developed so that they can be utilized by the first responders, military, and medical providers alike. This is the third article of a three-part series in which we have reviewed additional radiation countermeasures that are currently under early preclinical phases of development using largely animal models and have listed and discussed clinical support measures, including agents used for radiation-induced emesis, as well as countermeasures not requiring Food and Drug Administration approval. CONCLUSIONS Despite the significant progress that has been made in this area during the last several years, additional effort is needed in order to push promising new agents, currently under development, through the regulatory pipeline. This pipeline for new promising drugs appears to be unreasonably slow and cumbersome; possible reasons for this inefficiency are briefly discussed. Significant and continued effort needs to be afforded to this research and development area, as to date, there is no approved radioprotector that can be administered prior to high dose radiation exposure. This represents a very significant, unmet medical need and a significant security issue. A large number of agents with potential to interact with different biological targets are under development. In the next few years, several additional radiation countermeasures will likely receive Food and Drug Administration approval, increasing treatment options for victims exposed to unwanted ionizing irradiation.
Collapse
Affiliation(s)
- Vijay K Singh
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Briana K Hanlon
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Paola T Santiago
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | | |
Collapse
|
9
|
Meng X, Cai J, Liu J, Han B, Gao F, Gao W, Zhang Y, Zhang J, Zhao Z, Jiang C. Curcumin increases efficiency of γ-irradiation in gliomas by inhibiting Hedgehog signaling pathway. Cell Cycle 2017; 16:1181-1192. [PMID: 28463091 DOI: 10.1080/15384101.2017.1320000] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It was reported that γ-irradiation had a controversial therapeutic effect on glioma cells. We aimed to investigate the cytotoxic effect on the glioma cells induced by γ-irradiation and explore the treatment to rescue the phenotype alteration of remaining cells. We used transwell assay to detect the glioma cell invasion and migration capacity. Cell proliferation and apoptosis were tested by the CCK-8 assay and flow cytometry respectively. Western Blot was used to detect the activity of Hedgehog signaling pathway and Epithelial-to-Mesenchymal Transition (EMT) status. γ-irradiation showed cytotoxic effect on LN229 cells in vitro, whereas this contribution was limited in U251 cells. However, it could significantly stimulated EMT process in both LN229 and U251. Curcumin (CCM) could rescue EMT process induced by γ-irradiation via the suppression of Gli1 and the upregulation of Sufu. The location and expression of EMT markers were also verified by Immunofluorescence. Immunohistochemistry assay was used on intracranial glioma tissues of nude mice. The capacities of cell migration and invasion were suppressed with combined therapy. This research showed Curcumin could rescue the EMT process induced by γ-irradiation via inhibiting the Hedgehog signaling pathway and potentiate the cell cytotoxic effect in vivo and in vitro.
Collapse
Affiliation(s)
- Xiangqi Meng
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China.,b Chinese Glioma Cooperative Group (CGCG) , Beijing , China
| | - Jinquan Cai
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China.,b Chinese Glioma Cooperative Group (CGCG) , Beijing , China.,c Neuroscience Institute, Heilongjiang Academy of Medical Sciences , Harbin , China
| | - Jichao Liu
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Bo Han
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China.,b Chinese Glioma Cooperative Group (CGCG) , Beijing , China
| | - Fei Gao
- d Department of Laboratory Diagnosis , The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Weida Gao
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China.,b Chinese Glioma Cooperative Group (CGCG) , Beijing , China
| | - Yao Zhang
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China.,b Chinese Glioma Cooperative Group (CGCG) , Beijing , China
| | - Jinwei Zhang
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China.,b Chinese Glioma Cooperative Group (CGCG) , Beijing , China
| | - Zhefeng Zhao
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China.,b Chinese Glioma Cooperative Group (CGCG) , Beijing , China
| | - Chuanlu Jiang
- a Department of Neurosurgery , The Second Affiliated Hospital of Harbin Medical University , Harbin , China.,b Chinese Glioma Cooperative Group (CGCG) , Beijing , China.,c Neuroscience Institute, Heilongjiang Academy of Medical Sciences , Harbin , China
| |
Collapse
|
10
|
Sarver AL, Murray CD, Temiz NA, Tseng YY, Bagchi A. MYC and PVT1 synergize to regulate RSPO1 levels in breast cancer. Cell Cycle 2017; 15:881-5. [PMID: 26889781 DOI: 10.1080/15384101.2016.1149660] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Copy number gain of the 8q24 region including the v-myc avian myelocytomatosis viral oncogene homolog (MYC) oncogene has been observed in many different cancers and is associated with poor outcomes. While the role of MYC in tumor formation has been clearly delineated, we have recently shown that co-operation between adjacent long non-coding RNA plasmacytoma variant transcription 1 (PVT1) and MYC is necessary for tumor promotion. Chromosome engineered mice containing an increased copy of Myc-Pvt1 (Gain Myc-Pvt1) accelerates mammary tumors in MMTV-Neu mice, while single copy increase of each is not sufficient. In addition, mammary epithelium from the Gain Myc-Pvt1 mouse show precancerous phenotypes, notably increased DNA replication, elevated -H2AX phosphorylation and increased ductal branching. In an attempt to capture the molecular signatures in pre-cancerous cells we utilized RNA sequencing to identify potential targets of supernumerary Myc-Pvt1 cooperation in mammary epithelial cells. In this extra view we show that an extra copy of both Myc and Pvt1 leads to increased levels of Rspo1, a crucial regulator of canonical β-catenin signaling required for female development. Human breast cancer tumors with high levels of MYC transcript have significantly more PVT1 transcript and RSPO1 transcript than tumors with low levels of MYC showing that the murine results are relevant to a subset of human tumors. Thus, this work identifies a key mechanism in precancerous and cancerous tissue by which a main player in female differentiation is transcriptionally activated by supernumerary MYC and PVT1, leading to increased premalignant features, and ultimately to tumor formation.
Collapse
Affiliation(s)
- Aaron L Sarver
- a Masonic Cancer Center, University of Minnesota , Minneapolis , MN , USA
| | - Collin D Murray
- b Computer Science Department, University of Minnesota , Minneapolis , MN , USA
| | - Nuri A Temiz
- a Masonic Cancer Center, University of Minnesota , Minneapolis , MN , USA
| | - Yuen-Yi Tseng
- c Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis , MN , USA
| | - Anindya Bagchi
- a Masonic Cancer Center, University of Minnesota , Minneapolis , MN , USA.,c Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
11
|
The role of R-spondins and their receptors in bone metabolism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:93-100. [DOI: 10.1016/j.pbiomolbio.2016.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/27/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
|