1
|
Losada DM, Etchebehere M, Cintra FF, Amstalden EMI. IMP3, CDK4, MDM2 and β-catenin expression in Enchondroma and Central Chondrosarcoma: Diagnostic and prognostic utility. Clinics (Sao Paulo) 2024; 79:100483. [PMID: 39368400 PMCID: PMC11490761 DOI: 10.1016/j.clinsp.2024.100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 06/09/2024] [Accepted: 08/18/2024] [Indexed: 10/07/2024] Open
Abstract
INTRODUCTION The role of IMP3, CDK4, MDM2 and β-catenin proteins in Enchondroma and Central Chondrosarcoma is not totally understood. The aim of this study is to evaluate the immunoexpression of these proteins, associating histological grade, clinical data and prognosis to these tumors. METHODS This is a retrospective-analytical study of 32 Enchondroma and 70 Central Chondrosarcoma. RESULTS IMP3, CDK4, MDM2 and β-catenin expression was observed in 22.82 %, 13.82 %, 17.17 % and in 8.8 % of cases, respectively. All Enchondromas positive for these immunomarkers were located in short tubular bones. The positivity for these antibodies is directly proportional to Chondrosarcoma's histological grade increase. No difference was found between Enchondroma and Chondrosarcoma, Grade 1 for IMP3, CDK4 and ß-catenin positivity. Significant metastasis outcome was observed for IMP3, CDK4, MDM2 and death for MDM2 expression. CONCLUSION IMP3, CDK4, MDM2 and β-catenin expression in Enchondromas of short bones phenotypically characterizes these tumors. Their expression has not proven to be useful either as diagnostic markers of these neoplasms or in distinguishing between Enchondroma and Chondrosarcoma, Grade 1. The significant immunoexpression of IMP3, CDK4 and MDM2 in metastatic Chondrosarcoma and the lower survival in those with positivity for MDM2 suggest a possible association of these proteins with tumor aggressiveness.
Collapse
Affiliation(s)
- Daniele Moraes Losada
- Department of Pathology, Universidade Estatual de Campinas (Unicamp), Campinas, SP, Brazil.
| | - Maurício Etchebehere
- Hospital de Clínicas da Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | | | | |
Collapse
|
2
|
Markovic J, Li R, Khanal R, Peng Q, Möbus S, Yuan Q, Engel B, Taubert R, Vondran FWR, Bantel H, Singh MK, Cantz T, Büning H, Wedemeyer H, Ott M, Balakrishnan A, Sharma AD. Identification and functional validation of miR-190b-5p and miR-296-3p as novel therapeutic attenuators of liver fibrosis. J Hepatol 2024:S0168-8278(24)02492-9. [PMID: 39218230 DOI: 10.1016/j.jhep.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND & AIMS Liver fibrosis and its end-stage form known as cirrhosis contributes to millions of deaths annually. The lack of robust anti-fibrotic molecules is in part attributed to absence of any functional screens to identify molecular regulators using patient-derived primary human hepatic myofibroblasts, which are key drivers of fibrosis. METHODS Here, to identify robust regulators of fibrosis, we performed functional microRNA screenings in primary human hepatic myofibroblasts followed by in vivo validation in three independent mouse models of fibrosis (toxin, cholestasis and MASH). RESULTS We identified miR-190b-5p and miR-296-3p as robust anti-fibrotic miRNAs that suppress liver fibrosis. Notably, the expression of miR-190b-5p and miR-296-3p was found significantly reduced in human livers with fibrosis. Mechanistically, we discovered hyaluronan synthase 2 (HAS2) and integrin alpha-6 (ITGA6) as novel targets of miR-190b-5p and miR-296-3p, respectively. Furthermore, we demonstrated that the anti-fibrotic properties of miR-190b-5p and miR-296-3p are, at least in part, dependent on HAS2 and ITGA6. Finally, we showed the anti-fibrotic function of both miRNAs in a human liver bud model, which mimics multiple features of human liver. CONCLUSIONS Collectively, in our study we discovered miR-190b-5p and miR-296-3p as two novel anti-fibrotic miRNAs, and that HAS2 and ITGA6 contribute to miR-190b-5p- and miR-296-3p-mediated inhibition of liver fibrosis. These results provide a foundation for future research to explore the clinical utility of miR-190b-5p and miR-296-3p in liver injuries with fibrosis. IMPACT AND IMPLICATIONS Liver fibrosis and cirrhosis contribute to millions of deaths world-wide and, till date, remain as unmet medical needs. In this study, we discovered two microRNAs, miR-190b-5p and miR-296-3p, which suppress liver fibrosis in preclinical mouse models and a human liver bud model. Our promising results encourage further studies that aim to develop both miRNAs for the treatment of liver fibrosis in patients.
Collapse
Affiliation(s)
- Jovana Markovic
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Ruomeng Li
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Rajendra Khanal
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Qi Peng
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Selina Möbus
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Qinggong Yuan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Bastian Engel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian W R Vondran
- Department of General, Visceral, Pediatric and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Heike Bantel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Manvendra K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Office 08-15, Singapore 169857, Singapore
| | - Tobias Cantz
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Hildegard Büning
- Laboratory for Infection Biology and Gene Transfer, Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Asha Balakrishnan
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany; Research Group RNA Therapeutics & Liver Regeneration, REBIRTH-Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Wu YY, Law YY, Huang YW, Tran NB, Lin CY, Lai CY, Huang YL, Tsai CH, Ko CY, Chou MC, Huang WC, Cheng FJ, Fong YC, Tang CH. Glutamine metabolism controls amphiregulin-facilitated chemoresistance to cisplatin in human chondrosarcoma. Int J Biol Sci 2023; 19:5174-5186. [PMID: 37928274 PMCID: PMC10620823 DOI: 10.7150/ijbs.86116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
Chondrosarcoma is the second most common type of bone cancer. At present, the most effective clinical course of action is surgical resection. Cisplatin is the chemotherapeutic medication most widely used for the treatment of chondrosarcoma; however, its effectiveness is severely hampered by drug resistance. In the current study, we compared cisplatin-resistant chondrosarcoma SW1353 cells with their parental cells via RNA sequencing. Our analysis revealed that glutamine metabolism is highly activated in resistant cells but glucose metabolism is not. Amphiregulin (AR), a ligand of the epidermal growth factor receptor, enhances glutamine metabolism and supports cisplatin resistance in human chondrosarcoma by promoting NADPH production and inhibiting reactive oxygen species (ROS) accumulation. The MEK, ERK, and NrF2 signaling pathways were shown to regulate AR-mediated alanine-serine-cysteine transporter 2 (ASCT2; also called SLC1A5) and glutaminase (GLS) expression as well as glutamine metabolism in cisplatin-resistant chondrosarcoma. The knockdown of AR expression in cisplatin-resistant chondrosarcoma cells was shown to reduce the expression of SLC1A5 and GLS in vivo. These results indicate that AR and glutamine metabolism are worth pursuing as therapeutic targets in dealing with cisplatin-resistant human chondrosarcoma.
Collapse
Affiliation(s)
- Yu-Ying Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Orthopedics, Penghu Hospital, Ministry of Health and Welfare, Penghu, Taiwan
| | - Yat-Yin Law
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Wen Huang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Nguyen Bao Tran
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chih-Yang Lin
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chao-Yang Lai
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yuan Ko
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Fang-Ju Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| |
Collapse
|
4
|
Pharmacology Mechanism of Polygonum Bistorta in Treating Ulcerative Colitis Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022. [DOI: 10.1155/2022/6461560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aim. Ulcerative colitis (UC) is a refractory gastrointestinal disease. The study aimed to expound the mechanism of Polygonum bistorta (PB) in treating UC by network pharmacology, molecular docking, and experiment verification. Methods. The compositions and targets of PB and UC-associated targets were obtained by searching the websites and the literature. The potential mechanism of PB in the treatment of UC was predicted by protein-protein interaction network construction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecule docking was performed by AutoDock. In vitro experiments explored the mechanism of quercetin (Que), the main active composition of PB, in treating UC. Results. Six compositions, 139 PB targets, and 934 UC-associated targets were obtained. 93 overlapping targets between PB and UC were identified, and 18 of them were the core targets. 467 biological processes, 10 cell components, and 30 molecular functions were obtained by GO analysis. 102 pathways were enriched through KEGG analysis. Among them, the IL-17 signaling pathway had high importance. The core targets FOS, JUN, IL-1β, CCL2, CXCL8, and MMP9 could dock with Que successfully. Act1, TRAF6, FOS, and JUN were identified by KEGG as the key proteins of the IL-17 signaling pathway. The expressions of the abovementioned proteins were increased in Caco-2 cells stimulated by Dextran sulfate sodium and decreased after being treated by Que. Conclusion. PB might treat UC by downregulating the IL-17 signaling pathway. It is worth doing further research on PB treating UC in vivo.
Collapse
|
5
|
Krzysiek-Maczka G, Targosz A, Wrobel T, Paw M, Szczyrk U, Opila J, Strzalka M, Wierdak M, Major P, Brzozowski T, Czyz J, Ptak-Belowska A. Time-extended exposure of gastric epithelial cells to secretome of Helicobacter pylori-activated fibroblasts induces reprogramming of gastric epithelium towards pre-cancerogenic and pro-invasive phenotype. Am J Cancer Res 2022; 12:1337-1371. [PMID: 35411238 PMCID: PMC8984895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023] Open
Abstract
Despite of the improvement in gastric cancer (GC) therapies patients still suffer from cancer recurrence and metastasis. Recently, the high ratio of these events combined with increased chemoresistance has been related to the asymptomatic Helicobacter pylori (Hp) infections. The limited efficiency of GC treatment strategies is also increasingly attributed to the activity of tumor stroma with the key role of cancer-associated fibroblasts (CAFs). In order to investigate the influence of Hp infection within stromal gastric tissue on cancer initiation and progression, we have exposed normal gastric epithelial cells to long-term influence of Hp-activated gastric fibroblast secretome. We have referred obtained results to this secretome influence on cancer cell lines. The invasive properties of cells were checked by time-lapse video microscopy and basement membrane assays. The expression of invasion-related factors was checked by RT-PCR, Western Blot, immunofluorescence and Elisa. Hp-activated gastric fibroblast secretome induced EMT type 3-related shifts of RGM1 cell phenotype; in particular it augmented their motility, cytoskeletal plasticity and invasiveness. These effects were accompanied by Snail1/Twist activation, the up-regulation of cytokeratin19/FAP/TNC/Integrin-β1 and MMPs, and by the induction of cMethigh/pEGFRhigh phenotype. Mechanistic studies suggest that this microevolution next to TGFβ relies also on c-Met/EGFR signaling interplay and engages HGF-Integrin-Ras-dependent Twist activation leading to MMP and TNC upregulation with subsequent positive auto- and paracrine feedback loops intensifying this process. Similar shifts were detected in cancer cells exposed to this secretome. Collectively, we show that the secretome of Hp-infected fibroblasts induces reprogramming/microevolution of epithelial and cancer cells towards type 3 EMT-related invasive phenotype in a manner reciprocally reliant next to TGFβ on cMet/Integrin-β1/p-EGFR-dependent axis. Apparently, the phenotypical plasticity of Hp-activated fibroblast reprogrammed gastric epithelial cells determines their susceptibility to the pro-invasive signaling, which results in re-organization of gastric niches and provides the cues for GC promotion/progression.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| | - Aneta Targosz
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| | - Tomasz Wrobel
- Department of Cell Biology, The Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University30-387 Cracow, Poland
| | - Milena Paw
- Department of Cell Biology, The Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University30-387 Cracow, Poland
| | - Urszula Szczyrk
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| | - Janusz Opila
- Department of Applied Computer Sciences, The Faculty of Management, AGH University of Science and Technology30-059 Cracow, Poland
| | - Malgorzata Strzalka
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| | - Mateusz Wierdak
- Clinic of General, Oncological and Metabolic Surgery, 2nd Department of General Surgery, The Faculty of Medicine, Jagiellonian University Medical College30-688 Cracow, Poland
| | - Piotr Major
- Clinic of General, Oncological and Metabolic Surgery, 2nd Department of General Surgery, The Faculty of Medicine, Jagiellonian University Medical College30-688 Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| | - Jarosław Czyz
- Department of Cell Biology, The Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University30-387 Cracow, Poland
| | - Agata Ptak-Belowska
- Department of Physiology, The Faculty of Medicine, Jagiellonian University Medical College31-531 Cracow, Poland
| |
Collapse
|
6
|
Palmini G, Brandi ML. microRNAs and bone tumours: Role of tiny molecules in the development and progression of chondrosarcoma, of giant cell tumour of bone and of Ewing's sarcoma. Bone 2021; 149:115968. [PMID: 33892177 DOI: 10.1016/j.bone.2021.115968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
The increasing interest on microRNAs (miRNAs), small non-coding RNA molecules containing about 22 nucleotides, about their biological functions led researchers to discover that they are actively involved in several biological processes. In the last decades, miRNAs become one of the most topic of cancer research. miRNAs, thanks to their function, are the perfect molecules to modulate multiple signaling pathways and gene expression in cancer, with the consequent capacity to modulate cancerous processes, such as cellular proliferation, invasion, metastasis and chemoresistance in various tumours. In the last years, several studies have demonstrated the role of miRNAs in their pathophysiology, but little we know about the underlying mechanism that lead to bone tumours like chondrosarcoma (COS), giant cell tumour of bone (GCTB) and Ewing sarcoma (EWS) to still be highly aggressive and resistant tumours. An exploration of the role of miRNAs in the biology of them will permit to researchers to find new molecular mechanisms that can be used to develop new and more effective therapies against these bone tumours. Here we present a comprehensive study of the latest discoveries which have been performed in relation to the role of miRNAs in the neoplastic processes which characterize COS, EWS and GCTB, demonstrating how these tiny molecules can act as tumour promoters or as tumour suppressors and how they can be used for improving therapeutic approaches.
Collapse
Affiliation(s)
- Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Fondazione Italiana Ricerca sulle Malattie dell'Osso, F.I.R.M.O Onlus, Florence, Italy.
| |
Collapse
|
7
|
Losada DM, Ribeiro ALDC, Cintra FF, de Mendonça GRA, Etchebehere M, Amstalden EMI. Expression of Amphiregulin in Enchondromas and Central Chondrosarcomas. Clinics (Sao Paulo) 2021; 76:e2914. [PMID: 34468540 PMCID: PMC8366900 DOI: 10.6061/clinics/2021/e2914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/01/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the role of amphiregulin protein, an epidermal growth factor receptor ligand, in cartilaginous tumors. METHODS Amphiregulin expression was examined in 31 enchondromas and 67 chondrosarcomas using immunohistochemistry analysis. RESULTS Overall, 15 enchondromas (48.40%) and 24 chondrosarcomas (35.82%) were positive for amphiregulin. According to the receiver operating characteristic curve test, no difference in amphiregulin expression was observed between enchondromas and low-grade chondrosarcomas (p=0.0880). Additionally, 39 lesions (16 in short bones, 13 in long bones, and 10 in flat bones) were positive for amphiregulin, exhibiting a higher percentage of positive cells (p=0.0030) and intensity of immunohistochemical expression (p=0.0055) in short bone lesions than in others. Among 25 enchondromas localized in short bones, 15 expressed amphiregulin; however, all 6 cases localized in long bones were negative for this marker (p=0.0177). CONCLUSIONS Amphiregulin did not help in distinguishing enchondromas from low-grade chondrosarcomas. The present study is the first to document the expression of this immunohistochemical marker in enchondromas. Furthermore, amphiregulin expression in enchondromas was localized in short bones, indicating a phenotypic distinction from that in long bones. This distinction may contribute to an improved understanding of the pathogenesis of these lesions.
Collapse
Affiliation(s)
- Daniele Moraes Losada
- Departamento de Patologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, BR
- Corresponding author. E-mail:
| | | | | | | | - Maurício Etchebehere
- Departamento de Ortopedia e Traumatologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, BR
| | | |
Collapse
|
8
|
Wang CQ, Lin CY, Huang YL, Wang SW, Wang Y, Huang BF, Lai YW, Weng SL, Fong YC, Tang CH, Lv Z. Sphingosine-1-phosphate promotes PDGF-dependent endothelial progenitor cell angiogenesis in human chondrosarcoma cells. Aging (Albany NY) 2019; 11:11040-11053. [PMID: 31809267 PMCID: PMC6932882 DOI: 10.18632/aging.102508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
The malignant bone tumors that are categorized as chondrosarcomas display a high potential for metastasis in late-stage disease. Higher-grade chondrosarcomas contain higher levels of expression of platelet-derived growth factor (PDGF) and its receptor. The phosphorylation of sphingosine by sphingosine kinase enzymes SphK1 and SphK2 generates sphingosine-1-phosphate (S1P), which inhibits human chondrosarcoma cell migration, while SphK1 overexpression suppresses lung metastasis of chondrosarcoma. We sought to determine whether S1P mediates levels of PDGF-A expression and angiogenesis in chondrosarcoma. Surprisingly, our investigations found that treatment of chondrosarcoma cells with S1P and transfecting them with SphK1 cDNA increased PDGF-A expression and induced angiogenesis of endothelial progenitor cells (EPCs). Ras, Raf, MEK, ERK and AP-1 inhibitors and their small interfering RNAs (siRNAs) inhibited S1P-induced PDGF-A expression and EPC angiogenesis. Our results indicate that S1P promotes the expression of PDGF-A in chondrosarcoma via the Ras/Raf/MEK/ERK/AP-1 signaling cascade and stimulates EPC angiogenesis.
Collapse
Affiliation(s)
- Chao-Qun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Yang Lin
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan Wang
- Department of Medical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Bi-Fei Huang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yu-Wei Lai
- Division of Urology, Taipei Hospital Renai Branch, Taipei, Taiwan.,Department of Urology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shun-Long Weng
- Department of Obstetrics and Gynaecology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Zhong Lv
- Department of General Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| |
Collapse
|
9
|
MacDonald IJ, Lin CY, Kuo SJ, Su CM, Tang CH. An update on current and future treatment options for chondrosarcoma. Expert Rev Anticancer Ther 2019; 19:773-786. [PMID: 31462102 DOI: 10.1080/14737140.2019.1659731] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Human chondrosarcomas (CS; a malignant cartilage-forming bone tumor) respond poorly to chemotherapy and radiation treatment, resulting in high morbidity and mortality rates. Expanded treatment options are urgently needed. Areas covered: This article updates our 2014 review, in which we evaluated the CS treatments available at that time and potential treatment options under investigation. Since then, advances in research findings, particularly from Chinese herbal medicines, may be bringing us closer to more effective therapies for CS. In particular, promising findings have been reported from research targeting platelet-derived growth factor receptor. Expert opinion: Few treatment options exist for CS; chemotherapy is not even an option for unresectable disease, in which 5-year survival rates are just 2%. New information about the multitude of genes and signaling pathways that encourage CS growth, invasion and metastasis are clarifying how certain signaling pathways and plant-derived active compounds, especially molecularly-targeted therapies that inhibit the PDGF receptor, interfering with these biological processes. This review summarizes discoveries from the last 5 years and discusses how these findings are fueling ongoing work into effectively dealing with the disease process and improving the treatment of CS.
Collapse
Affiliation(s)
- Iona J MacDonald
- Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan
| | - Chih-Yang Lin
- Department of Medicine, Mackay Medical College , New Taipei City , Taiwan
| | - Shu-Jui Kuo
- Graduate Institute of Clinical Medical Science, China Medical University , Taichung , Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital , Taichung , Taiwan
| | - Chen-Ming Su
- Department of Sports Medicine, College of Health Care, China Medical University , Taichung , Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University , Taichung , Taiwan.,Department of Pharmacology, School of Medicine, China Medical University , Taichung , Taiwan.,Chinese Medicine Research Center, China Medical University , Taichung , Taiwan.,Department of Biotechnology, College of Health Science, Asia University , Taichung , Taiwan
| |
Collapse
|
10
|
Hsieh MJ, Chen YH, Lee IN, Huang C, Ku YJ, Chen JC. Secreted amphiregulin promotes vincristine resistance in oral squamous cell carcinoma. Int J Oncol 2019; 55:949-959. [PMID: 31485602 DOI: 10.3892/ijo.2019.4866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/01/2019] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. Despite advances in surgery, radiotherapy and chemotherapy, the overall 5‑year survival rate of patients with OSCC has not significantly improved. In addition, the prognosis of patients with advanced‑stage OSCC remains poor. Therefore, it is necessary to develop novel therapeutic modalities. Vincristine (VCR), a naturally occurring vinca alkaloid, is a classical microtubule‑destabilizing agent and is widely used in the treatment of a number of cancers. Despite the proven antitumor benefits of VCR treatment, one of the major reasons for the failure of treatment is drug resistance. Changes in the tumor microenvironment are responsible for cross‑talk between cells, which may facilitate drug resistance in cancers; secreted proteins may promote communication between cancer cells to induce the development of resistance. To identify the secreted proteins involved in VCR resistance, conditioned media was obtained, and an antibody array was conducted to screen a comprehensive secretion profile between VCR‑resistant (SAS‑VCR) and parental (SAS) OSCC cell lines. The results showed that amphiregulin (AREG) was highly expressed and secreted in SAS‑VCR cells. Pretreatment with exogenous recombinant AREG markedly increased drug resistance against VCR in OSCC cells, as assessed by an MTT assay. Colony formation, MTT and western blot assays were performed to investigate the effects of AREG knockdown on VCR sensitivity. The results indicated that AREG expression can regulate VCR resistance in OSCC cells; overexpression of AREG increased VCR resistance in parental cells, whereas AREG knockdown decreased the VCR resistance of resistant cells. In addition, it was also demonstrated that the glycogen synthase kinase‑3β pathway may be involved in AREG‑induced VCR resistance. These findings may provide rationale to combine VCR with blockade of AREG‑related pathways for the effective treatment of OSCC.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Yin-Hong Chen
- Department of Otorhinolaryngology‑Head and Neck Surgery, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - I-Neng Lee
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, R.O.C
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang‑Ming University, Taipei 112, Taiwan, R.O.C
| | - Yu-Ju Ku
- The Center for General Education of China Medical University, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, R.O.C
| |
Collapse
|
11
|
Resistin facilitates VEGF-A-dependent angiogenesis by inhibiting miR-16-5p in human chondrosarcoma cells. Cell Death Dis 2019; 10:31. [PMID: 30631040 PMCID: PMC6328541 DOI: 10.1038/s41419-018-1241-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
Resistin is an adipokine that is associated with obesity, inflammation, and various cancers. Chondrosarcomas are primary malignant bone tumors that have a poor prognosis. VEGF-A is a critical angiogenic factor that is known to promote angiogenesis and metastasis in chondrosarcoma. It is unknown as to whether resistin affects human chondrosarcoma angiogenesis. In this study, we show how resistin promotes VEGF-A expression and subsequently induces angiogenesis of endothelial progenitor cells (EPCs). Resistin treatment activated the phosphatidylinositol-3-kinase (PI3K) and Akt signaling pathways, while PI3K and Akt inhibitors or siRNA diminished resistin-induced VEGF-A expression. In vitro and in vivo studies revealed the downregulation of micro RNA (miR)-16-5p in resistin-induced VEGF-A expression and EPCs angiogenesis. We also found a positive correlation between resistin and VEGF-A expression, and a negative correlation between resistin and VEGF-A with miR-16-5p in chondrosarcoma patients. These findings reveal that resistin facilitates VEGF-A expression and angiogenesis through the inhibition of miR-16-5p expression via PI3K/Akt signaling cascades. Resistin may be a promising target in chondrosarcoma angiogenesis.
Collapse
|
12
|
Chen JC, Huang C, Lee IN, Wu YP, Tang CH. Amphiregulin enhances cell migration and resistance to doxorubicin in chondrosarcoma cells through the MAPK pathway. Mol Carcinog 2018; 57:1816-1824. [DOI: 10.1002/mc.22899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Jui-Chieh Chen
- Department of Biochemical Science and Technology; National Chiayi University; Chiayi City Taiwan
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine; National Yang-Ming University; Taipei Taiwan
- Department of Earth and Life Sciences; University of Taipei; Taipei Taiwan
| | - I-Neng Lee
- Department of Medical Research; Chang Gung Memorial Hospital; Chiayi Taiwan
| | - Yu-Ping Wu
- Department of Biochemical Science and Technology; National Chiayi University; Chiayi City Taiwan
- Department of Medical Research; Chang Gung Memorial Hospital; Chiayi Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology; School of Medicine; China Medical University; Taichung Taiwan
- Chinese Medicine Research Center; China Medical University; Taichung Taiwan
- Department of Biotechnology; College of Medical and Health Science; Asia University; Taichung Taiwan
| |
Collapse
|
13
|
Tzeng HE, Tang CH, Wu SH, Chen HT, Fong YC, Lu YC, Chen WC, Huang HD, Lin CY, Wang SW. CCN6-mediated MMP-9 activation enhances metastatic potential of human chondrosarcoma. Cell Death Dis 2018; 9:955. [PMID: 30237403 PMCID: PMC6147788 DOI: 10.1038/s41419-018-1008-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/31/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022]
Abstract
Chondrosarcomas are primary malignant bone tumors that have a poor prognosis. WNT1-inducible signaling pathway protein-3 (WISP-3, also termed CCN6) belongs to the CCN family of proteins and is implicated in the regulation of various cellular functions, such as cell proliferation, differentiation, and migration. It is unknown as to whether CCN6 affects human chondrosarcoma metastasis. We show how CCN6 promotes chondrosarcoma cell migration and invasion via matrix metallopeptidase-9 (MMP)-9 expression. These effects were abolished by pretreatment of chondrosarcoma cells with PI3K, Akt, mTOR, and NF-κB inhibitors or short interfering (si)RNAs. Our investigations indicate that CCN6 facilitates metastasis through the PI3K/Akt/mTOR/NF-κB signaling pathway. CCN6 and MMP-9 expression was markedly increased in the highly migratory JJ012(S10) cell line compared with the primordial cell line (JJ012) in both in vitro and in vivo experiments. CCN6 knockdown suppressed MMP-9 production in JJ012(S10) cells and attenuated cell migration and invasion ability. Importantly, CCN6 knockdown profoundly inhibited chondrosarcoma cell metastasis to lung. Our findings reveal an important mechanism underlying CCN6-induced metastasis and they highlight the clinical significance between CCN6 and MMP-9 in regard to human chondrosarcoma. CCN6 appears to be a promising therapeutic target in chondrosarcoma metastasis.
Collapse
Affiliation(s)
- Huey-En Tzeng
- Taipei Cancer Center, Taipei Medical University, Taipei, 110, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Division of Hematology/Oncology, Department of Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 235, Taiwan
| | - Chih-Hsin Tang
- Chinese Medicine Research Center, China Medical University, Taichung, 404, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, 404, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, 404, Taiwan
| | - Sz-Hua Wu
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Hsien-Te Chen
- School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, 404, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, 404, Taiwan.,Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yun-Lin County, 651, Taiwan
| | - Yung-Chang Lu
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.,Department of Orthopaedics, MacKay Memorial Hospital, Taipei, 104, Taiwan
| | - Wei-Cheng Chen
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei, 104, Taiwan.,Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Hsien-Da Huang
- Degree Program of Biomedical Science and Engineering, National Chiao Tung University, Hsinchu, 300, Taiwan.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 300, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chih-Yang Lin
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan. .,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
14
|
Chen X, Hu X, Li Y, Zhu C, Dong X, Zhang R, Ma J, Huang S, Chen L. Resveratrol inhibits Erk1/2-mediated adhesion of cancer cells via activating PP2A-PTEN signaling network. J Cell Physiol 2018; 234:2822-2836. [PMID: 30066962 DOI: 10.1002/jcp.27100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
Resveratrol, a natural polyphenol compound, has been shown to possess anticancer activity. However, how resveratrol inhibits cancer cell adhesion has not been fully elucidated. Here, we show that resveratrol suppressed the basal or type I insulin-like growth factor (IGF)-1-stimulated adhesion of cancer cells (Rh1, Rh30, HT29, and HeLa cells) by inhibiting the extracellular signal-regulated kinase 1/2 (Erk1/2) pathway. Inhibition of Erk1/2 with U0126, knockdown of Erk1/2, or overexpression of dominant-negative mitogen-activated protein kinase kinase 1 (MKK1) strengthened resveratrol's inhibition of the basal or IGF-1-stimulated of Erk1/2 phosphorylation and cell adhesion, whereas ectopic expression of constitutively active MKK1 attenuated the inhibitory effects of resveratrol. Further research revealed that both protein phosphatase 2A (PP2A) and phosphatase and tensin homolog (PTEN)-Akt were implicated in resveratrol-inactivated Erk1/2-dependent cell adhesion. Inhibition of PP2A with okadaic acid or overexpression of dominant-negative PP2A rendered resistance to resveratrol's suppression of the basal or IGF-1-stimulated phospho-Erk1/2 and cell adhesion, whereas expression of wild-type PP2A enhanced resveratrol's inhibitory effects. Overexpression of wild-type PTEN or dominant-negative Akt or inhibition of Akt with Akt inhibitor X strengthened resveratrol's inhibition of the basal or IGF-1-stimulated Erk1/2 phosphorylation and cell adhesion. Furthermore, inhibition of mechanistic/mammalian target of rapamycin (mTOR) with rapamycin or silencing mTOR enhanced resveratrol's inhibitory effects on the basal and IGF-1-induced inhibition of PP2A-PTEN, activation of Akt-Erk1/2, and cell adhesion. The results indicate that resveratrol inhibits Erk1/2-mediated adhesion of cancer cells via activating PP2A-PTEN signaling network. Our data highlight that resveratrol has a great potential in the prevention of cancer cell adhesion.
Collapse
Affiliation(s)
- Xin Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyu Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yue Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Cuilan Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoqing Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruijie Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
15
|
Jacques C, Renema N, Lezot F, Ory B, Walkley CR, Grigoriadis AE, Heymann D. Small animal models for the study of bone sarcoma pathogenesis:characteristics, therapeutic interests and limitations. J Bone Oncol 2018; 12:7-13. [PMID: 29850398 PMCID: PMC5966525 DOI: 10.1016/j.jbo.2018.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma, Ewing sarcoma and chondrosarcoma are the three main entities of bone sarcoma which collectively encompass more than 50 heterogeneous entities of rare malignancies. In contrast to osteosarcoma and Ewing sarcoma which mainly affect adolescents and young adults and exhibit a high propensity to metastasise to the lungs, chondrosarcoma is more frequently observed after 40 years of age and is characterised by a high frequency of local recurrence. The combination of chemotherapy, surgical resection and radiotherapy has contributed to an improved outcome for these patients. However, a large number of patients still suffer significant therapy related toxicities or die of refractory and metastatic disease. To better delineate the pathogenesis of bone sarcomas and to identify and test new therapeutic options, major efforts have been invested over the past decades in the development of relevant pre-clinical animal models. Nowadays, in vivo models aspire to mimic all the steps and the clinical features of the human disease as accurately as possible and should ideally be manipulable. Considering these features and given their small size, their conduciveness to experiments, their affordability as well as their human-like bone-microenvironment and immunity, murine pre-clinical models are interesting in the context of these pathologies. This chapter will provide an overview of the murine models of bone sarcomas, paying specific attention for the models induced by inoculation of tumour cells. The genetically-engineered mouse models of bone sarcoma will also be summarized.
Collapse
Affiliation(s)
| | | | | | | | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Department of Medicine, St. Vincent's Hospital, University of Melbourne, Australia
| | - Agi E Grigoriadis
- Centre for Craniofacial and Regenerative Biology, King's College London Guy's Hospital, London, UK
| | - Dominique Heymann
- University of Sheffield, Medical School, Dept of Oncology and Metabolism. INSERM, European Associated laboratory «Sarcoma Research Unit», Beech Hill Road, S10 2RX Sheffield, UK.,Institut de Cancérologie de l'Ouest, INSERM, U1232, University of Nantes, «Tumour Heterogeneity and Precision Medicine», Bld Jacques Monod, 44805 Saint-Herblain cedex, France
| |
Collapse
|
16
|
Wen Y, Li H, Zeng Y, Wen W, Pendleton KP, Lui VWY, Egloff AM, Grandis JR. MAPK1E322K mutation increases head and neck squamous cell carcinoma sensitivity to erlotinib through enhanced secretion of amphiregulin. Oncotarget 2018; 7:23300-11. [PMID: 27004400 PMCID: PMC5029627 DOI: 10.18632/oncotarget.8188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/06/2016] [Indexed: 01/19/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have not been effective in unselected head and neck squamous cell carcinoma (HNSCC) populations. We previously reported an exceptional response to a brief course of erlotinib in a patient with advanced HNSCC whose tumor harbored a MAPK1E322K somatic mutation. MAPK1E322Kwas associated with increased p-EGFR, increased EGFR downstream signaling and increased sensitivity to erlotinib. In this study, we investigated the mechanism of MAPK1E322K-mediated EGFR activation in the context of erlotinib sensitivity. We demonstrated increased AREG secretion in HNSCC cell lines harboring endogenous or exogenous MAPK1E322K compared to wild type MAPK1. We found inhibition or knockdown of MAPK1 with siRNA resulted in reduced secretion of AREG and decreased sensitivity to erlotinib in the setting of MAPK1E322K. MAPK1E322K was associated with increased AREG secretion leading to an autocrine feedback loop involving AREG, EGFR and downstream signaling. Knockdown of AREG in HNSCC cells harboring MAPK1E322K abrogated EGFR signaling and decreased sensitivity to erlotinib in vitro and in vivo. These cumulative findings implicate increased AREG secretion and EGFR activation as contributing to increased erlotinib sensitivity in MAPK1E322K HNSCC.
Collapse
Affiliation(s)
- Yihui Wen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.,Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hua Li
- Department of Otolaryngology Head and Neck Surgery, University of California at San Francisco, San Francisco, California, USA
| | - Yan Zeng
- Department of Otolaryngology Head and Neck Surgery, University of California at San Francisco, San Francisco, California, USA
| | - Weiping Wen
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Kelsey P Pendleton
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vivian W Y Lui
- Department of Pharmacology and Pharmacy, School of Biomedical Sciences, Li-Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Ann Marie Egloff
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Departments of Molecular and Cell Biology and Otolaryngology, Boston University, Boston, Massachusetts, USA
| | - Jennifer R Grandis
- Department of Otolaryngology Head and Neck Surgery, University of California at San Francisco, San Francisco, California, USA.,Clinical and Translational Science Institute, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
Chen Y, Wang X, Cao C, Wang X, Liang S, Peng C, Fu L, He G. Inhibition of HSP90 sensitizes a novel Raf/ERK dual inhibitor CY-9d in triple-negative breast cancer cells. Oncotarget 2017; 8:104193-104205. [PMID: 29262632 PMCID: PMC5732798 DOI: 10.18632/oncotarget.22119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/22/2017] [Indexed: 02/05/2023] Open
Abstract
Raf and extracellular signal-regulated kinases (ERK) are both important therapeutic targets in the mitogen-activated protein kinase (MAPK) pathway, and play crucial roles in the apoptosis resistance of breast cancer cells. In the present study, cytotoxic and apoptosis-inducing activities of the Raf/ERK dual inhibitor CY-9d were found to be restricted in triple negative breast cancer (TNBC) cells compared with ER/PR-positive cells. Based on the analysis of differentially expressed proteins using a quantitative proteomic iTRAQ method and bioinformatics analysis, HSP90 was found to identify as a potential mediator between Raf and ERK in TNBC cells. Western blotting and RNA interference suggested that down-regulated IQGAP1 can attenuate the routine Raf/MEK/ERK cascade and recruit HSP90 as a bypass pathway. Simultaneous treatment with the HSP90 inhibitor and CY-9d at sub-therapeutic doses was found to produce synergistic therapeutic and apoptosis-inducing effects in TNBC cells. Moreover, CY-9d was also found to suppress breast cancer growth, inhibit the activation of Raf/ERK, and induce mitochondrial apoptosis in vivo without remarkable toxicity. These results support the combination of HSP90 and Raf/ERK inhibitors as a potential target therapeutic strategy with enhanced tumor growth suppression, downstream pathway blockade, and greater induction of apoptosis.
Collapse
Affiliation(s)
- Yujuan Chen
- State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiaoyun Wang
- State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Chuan Cao
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaodong Wang
- State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Cheng Peng
- State Key Laboratory Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Leilei Fu
- State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| |
Collapse
|
18
|
Prediction of clinical outcome and survival in soft-tissue sarcoma using a ten-lncRNA signature. Oncotarget 2017; 8:80336-80347. [PMID: 29113307 PMCID: PMC5655202 DOI: 10.18632/oncotarget.18165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
The prognostic value of long non-coding RNAs (lncRNAs) in patients with soft-tissue sarcoma has rarely been unraveled. The aim of the study was to find a lncRNA signature to predict the clinical outcome and survival in soft-tissue sarcoma based on the high-throughput RNA-seq data from The Cancer Genome Atlas (TCGA) database. The lncRNAs which closely correlated with overall survival in 258 soft-tissue sarcoma patients were identified with Cox proportional regression model. Ten lncRNAs, including RP11-560J1.2, AP001432.14, RP4-665J23.1, LINC00680, AC006129.2, RP11-230G5.2, BACH1-IT2, RP11-274B21.9, RP11-504A18.1 and RP11-713P17.3, were selected to calculate a risk score. The risk score could effectively predict patients’ outcome, such as the status of mitotic count of tumor cells, person neoplasm cancer and residual tumor. More inspiringly, the risk score generated from the 10-lncRNA signature was an independent prognostic indicator for soft-tissue sarcoma patients. Overall, this 10-lncRNA signature gains the potential as an effective prognostic tool for soft-tissue sarcoma as part of the integrated clinical RNA-seq program.
Collapse
|
19
|
Wang CQ, Huang YW, Wang SW, Huang YL, Tsai CH, Zhao YM, Huang BF, Xu GH, Fong YC, Tang CH. Amphiregulin enhances VEGF-A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR-206 via FAK/c-Src/PKCδ pathway. Cancer Lett 2016; 385:261-270. [PMID: 27826039 DOI: 10.1016/j.canlet.2016.10.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
Abstract
Chondrosarcoma is the second most common primary malignancy of bone after myeloma and osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). The expression of VEGF-A has been recognized as a prognostic marker in angiogenesis. Amphiregulin (AR), an epidermal growth factor receptor ligand, promotes tumor proliferation, metastasis and angiogenesis. However, the role of AR in VEGF-A expression and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that AR promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, AR-enhanced VEGF-A expression and angiogenesis involved the FAK, c-Src and PKCδ signaling pathways, while miR-206 expression was negatively mediated by AR via the FAK, c-Src and PKCδ pathways. Our results illustrate the clinical significance between AR, VEGF-A and miR-206, as well as tumor stage, in human chondrosarcoma. AR may represent a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma.
Collapse
Affiliation(s)
- Chao-Qun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Yu-Wen Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- School of Medicine, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yong-Ming Zhao
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Bi-Fei Huang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Guo-Hong Xu
- Department of Orthopedics, Dongyang People's Hospital, Wenzhou Medical University, Dongyang, China
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin County, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
20
|
Hausmann C, Temme A, Cordes N, Eke I. ILKAP, ILK and PINCH1 control cell survival of p53-wildtype glioblastoma cells after irradiation. Oncotarget 2016; 6:34592-605. [PMID: 26460618 PMCID: PMC4741475 DOI: 10.18632/oncotarget.5423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/25/2015] [Indexed: 11/29/2022] Open
Abstract
The prognosis is generally poor for patients suffering from glioblastoma multiforme (GBM) due to radiation and drug resistance. Prosurvival signaling originating from focal adhesion hubs essentially contributes to therapy resistance and tumor aggressiveness. As the underlying molecular mechanisms remain largely elusive, we addressed whether targeting of the focal adhesion proteins particularly interesting new cysteine-histidine-rich 1 (PINCH1), integrin-linked kinase (ILK) and ILK associated phosphatase (ILKAP) modulates GBM cell radioresistance. Intriguingly, PINCH1, ILK and ILKAP depletion sensitized p53-wildtype, but not p53-mutant, GBM cells to radiotherapy. Concomitantly, these cells showed inactivated Glycogen synthase kinase-3β (GSK3β) and reduced proliferation. For PINCH1 and ILKAP knockdown, elevated levels of radiation-induced γH2AX/53BP1-positive foci, as a marker for DNA double strand breaks, were observed. Mechanistically, we identified radiation-induced phosphorylation of DNA protein kinase (DNAPK), an important DNA repair protein, to be dependent on ILKAP. This interaction was fundamental to radiation survival of p53-wildtype GBM cells. Conclusively, our data suggest an essential role of PINCH1, ILK and ILKAP for the radioresistance of p53-wildtype GBM cells and provide evidence for DNAPK functioning as a central mediator of ILKAP signaling. Strategies for targeting focal adhesion proteins in combination with radiotherapy might be a promising approach for patients with GBM.
Collapse
Affiliation(s)
- Christina Hausmann
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Achim Temme
- Section of Experimental Neurosurgery/Tumor Immunology, Department of Neurosurgery University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, 01328 Dresden, Germany.,German Cancer Consortium (DKTK), 01307 Dresden, Germany.,German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Iris Eke
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.,Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health/National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Inhibition of pentraxin 3 in glioma cells impairs proliferation and invasion in vitro and in vivo. J Neurooncol 2016; 129:201-9. [DOI: 10.1007/s11060-016-2168-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/01/2016] [Indexed: 12/17/2022]
|
22
|
Ding L, Liu T, Wu Z, Hu B, Nakashima T, Ullenbruch M, Gonzalez De Los Santos F, Phan SH. Bone Marrow CD11c+ Cell-Derived Amphiregulin Promotes Pulmonary Fibrosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:303-12. [PMID: 27206766 DOI: 10.4049/jimmunol.1502479] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/27/2016] [Indexed: 12/30/2022]
Abstract
Amphiregulin (AREG), an epidermal growth factor receptor ligand, is implicated in tissue repair and fibrosis, but its cellular source and role in regeneration versus fibrosis remain unclear. In this study, we hypothesize that AREG induced in bone marrow-derived CD11c(+) cells is essential for pulmonary fibrosis. Thus, the objectives were to evaluate the importance and role of AREG in pulmonary fibrosis, identify the cellular source of AREG induction, and analyze its regulation of fibroblast function and activation. The results showed that lung AREG expression was significantly induced in bleomycin-induced pulmonary fibrosis. AREG deficiency in knockout mice significantly diminished pulmonary fibrosis. Analysis of AREG expression in major lung cell types revealed induction in fibrotic lungs predominantly occurred in CD11c(+) cells. Moreover, depletion of bone marrow-derived CD11c(+) cells suppressed both induction of lung AREG expression and pulmonary fibrosis. Conversely, adoptive transfer of bone marrow-derived CD11c(+) cells from bleomycin-treated donor mice exacerbated pulmonary fibrosis, but not if the donor cells were made AREG deficient prior to transfer. CD11c(+) cell-conditioned media or coculture stimulated fibroblast proliferation, activation, and myofibroblast differentiation in an AREG-dependent manner. Furthermore, recombinant AREG induced telomerase reverse transcriptase, which appeared to be essential for the proliferative effect. Finally, AREG significantly enhanced fibroblast motility, which was associated with increased expression of α6 integrin. These findings suggested that induced AREG specifically in recruited bone marrow-derived CD11c(+) cells promoted bleomycin-induced pulmonary fibrosis by activation of fibroblast telomerase reverse transcriptase-dependent proliferation, motility, and indirectly, myofibroblast differentiation.
Collapse
Affiliation(s)
- Lin Ding
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Tianju Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Zhe Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Biao Hu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Taku Nakashima
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Matthew Ullenbruch
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | | | - Sem H Phan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
23
|
Kuang XY, Jiang HS, Li K, Zheng YZ, Liu YR, Qiao F, Li S, Hu X, Shao ZM. The phosphorylation-specific association of STMN1 with GRP78 promotes breast cancer metastasis. Cancer Lett 2016; 377:87-96. [PMID: 27130664 DOI: 10.1016/j.canlet.2016.04.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 11/26/2022]
Abstract
Metastasis is a major cause of death in patients with breast cancer. Stathmin1 (STMN1) is a phosphoprotein associated with cancer metastasis. It exhibits a complicated phosphorylation pattern in response to various extracellular signals, but its signaling mechanism is poorly understood. In this study, we report that phosphorylation of STMN1 at Ser25 and Ser38 is necessary to maintain cell migration capabilities and is associated with shorter disease-free survival (DFS) in breast cancer. In addition, we report that glucose-regulated protein of molecular mass 78 (GRP78) is a novel phospho-STMN1 binding protein upon STMN1 Ser25/Ser38 phosphorylation. This phosphorylation-dependent interaction is regulated by MEK kinase and is required for STMN1-GRP78 complex stability and STMN1-mediated migration. We also propose a prognostic model based on phospho-STMN1 and GRP78 to assess metastatic risk in breast cancer patients.
Collapse
Affiliation(s)
- Xia-Ying Kuang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Breast Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - He-Sheng Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kai Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi-Zi Zheng
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Rong Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Qiao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shan Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
D'Amato V, Rosa R, Bianco R. Integr(at)in(g) EGFR therapy in HNSCC. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:338. [PMID: 26733003 PMCID: PMC4691002 DOI: 10.3978/j.issn.2305-5839.2015.12.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Valentina D'Amato
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy
| | - Roberta Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy
| | - Roberto Bianco
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|