1
|
Nayak AR, Holdcraft CJ, Yin AC, Nicoletto RE, Zhao C, Zheng H, Temiakov D, Goldberg GS. Maackia amurensis seed lectin (MASL) structure and sequence comparison with other Maackia amurensis lectins. J Biol Chem 2025:108466. [PMID: 40158854 DOI: 10.1016/j.jbc.2025.108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025] Open
Abstract
Maackia amurensis lectins, including MASL, MAA, and MAL2, are widely utilized in biochemical and medicinal research. However, the structural and functional differences between these lectins have not been defined. Here, we present a high-resolution cryo-EM structure of MASL revealing that its tetrameric assembly is directed by two intersubunit disulfide bridges. These bridges, formed by C272 residues, are central to the dimer-of-dimers assembly of a MASL tetramer. This cryo-EM structure also identifies residues involved in stabilizing the dimer interface, multiple glycosylation sites, and calcium and manganese atoms in the sugar-binding pockets of MASL. Notably, our analysis reveals that Y250 in the carbohydrate-binding site of MASL adopts a flipped conformation, likely acting as a gatekeeper that obstructs access to non-cognate substrates, a feature that may contribute to MASL's substrate specificity. Sequence analysis suggests that MAA is a truncated version of MASL, while MAL2 represents a homologous isoform. Unlike MASL, neither MAL2 nor MAA contains a cysteine residue required for disulfide bridge formation. Accordingly, analysis of these proteins using reducing and nonreducing SDS-PAGE confirms that the C272 residue in MASL drives intermolecular disulfide bridge formation. These findings provide critical insights into the unique structural features of MASL that distinguish it from other Maackia amurensis lectins, offering a foundation for further exploration of its biological and therapeutic potential.
Collapse
Affiliation(s)
- Ashok R Nayak
- Biochemistry & Molecular Biology Department, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Cayla J Holdcraft
- Molecular Biology Department, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ 08084, USA
| | - Ariel C Yin
- Molecular Biology Department, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ 08084, USA
| | - Rachel E Nicoletto
- Molecular Biology Department, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ 08084, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, 679 Hoes Lane West, Piscataway, NJ 08854-8021, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, 679 Hoes Lane West, Piscataway, NJ 08854-8021, USA
| | - Dmitry Temiakov
- Biochemistry & Molecular Biology Department, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | - Gary S Goldberg
- Molecular Biology Department, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ 08084, USA.
| |
Collapse
|
2
|
Ramsridhar S, Rajkumar C, Balasubramaniam M, Anandan S, Sabesan M, Jayamani L. The Promising Role of Plant-Derived Lectins in Oral Cancer Therapeutics: A Systematic Review. Cureus 2024; 16:e75910. [PMID: 39830560 PMCID: PMC11739538 DOI: 10.7759/cureus.75910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Oral cancer (OC) continues to pose a significant global health challenge, marked by high morbidity and mortality rates despite advances in diagnosis and treatment. Numerous novel potential anticancer drugs have been evaluated, many of which are derived from natural sources, such as microorganisms, plants, and animals. Among these, plant lectins - a distinctive group of proteins and glycoproteins with strong biological activity - have garnered considerable attention over the years. Several plant lectins can trigger selective apoptotic cancer cell death or possess antiproliferative properties. The objective of this systematic review was to provide insight into the potential applications of plant lectins in the treatment of OC. Plant lectins suppress cancer cells by inducing apoptosis and/or autophagy by modulating various signalling pathways such as the caspase family, mitochondrial-mediated ROS-p38-p53 pathway, PI3K/Akt, and Wnt/β-catenin to inhibit OC. Multiple lectins have been shown to exhibit anticancer properties in cell cultures and in vivo. Polygonatum cyrtonema lectin, Maackia amurensis seed lectin, abrus agglutinin, wheat germ agglutinin, mistletoe lectin, and concanavalin A are among the plant lectins with the highest potential for anticancer activities. This review provides an overview of the current understanding of the role of lectins in cancer diagnosis and therapy, highlighting their potential applications and underlying mechanisms.
Collapse
Affiliation(s)
- Saranya Ramsridhar
- Department of Oral Pathology, Sathyabama Dental College and Hospital, Chennai, IND
| | - Chandini Rajkumar
- Department of Oral Pathology, Sathyabama Dental College and Hospital, Chennai, IND
| | | | - Soumya Anandan
- Department of Oral Pathology and Microbiology, Sri Ramachandra Dental College, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Mythili Sabesan
- Department of Oral Pathology and Microbiology, Sri Ramachandra Dental College, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Logeswari Jayamani
- Department of Oral Pathology, Meenakshi Ammal Dental College, Chennai, IND
| |
Collapse
|
3
|
Nicoletto RE, Holdcraft CJ, Yin AC, Retzbach EP, Sheehan SA, Greenspan AA, Laugier CM, Trama J, Zhao C, Zheng H, Goldberg GS. Effects of cadherin mediated contact normalization on oncogenic Src kinase mediated gene expression and protein phosphorylation. Sci Rep 2024; 14:23942. [PMID: 39397108 PMCID: PMC11471763 DOI: 10.1038/s41598-024-75449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Nontransformed cells form heterotypic cadherin junctions with adjacent transformed cells to inhibit tumor cell growth and motility. Transformed cells must override this form of growth control, called "contact normalization", to invade and metastasize during cancer progression. Heterocellular cadherin junctions between transformed and nontransformed cells are needed for this process. However, specific mechanisms downstream of cadherin signaling have not been clearly elucidated. Here, we utilized a β-catenin reporter construct to determine if contact normalization affects Wnt signaling in transformed cells. β-catenin driven GFP expression in Src transformed mouse embryonic cells was decreased when cultured with cadherin competent nontransformed cells compared to transformed cells cultured with themselves, but not when cultured with cadherin deficient nontransformed cells. We also utilized a layered culture system to investigate the effects of oncogenic transformation and contact normalization on gene expression and oncogenic Src kinase mediated phosphorylation events. RNA-Seq analysis found that cadherin dependent contact normalization inhibited the expression of 22 transcripts that were induced by Src transformation, and increased the expression of 78 transcripts that were suppressed by Src transformation. Phosphoproteomic analysis of cells expressing a temperature sensitive Src kinase construct found that contact normalization decreased phosphorylation of 10 proteins on tyrosine residues that were phosphorylated within 1 h of Src kinase activation in transformed cells. Taken together, these results indicate that cadherin dependent contact normalization inhibits Wnt signaling to regulate oncogenic kinase activity and gene expression, particularly PDPN expression, in transformed cells in order to control tumor progression.
Collapse
Affiliation(s)
- Rachel E Nicoletto
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Cayla J Holdcraft
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Ariel C Yin
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Edward P Retzbach
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Stephanie A Sheehan
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Amanda A Greenspan
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Christopher M Laugier
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Jason Trama
- Medical Diagnostic Laboratories, 2439 Kuser Rd, Hamilton Township, NJ, 08690, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Gary S Goldberg
- Rowan-Virtua School of Osteopathic Medicine, Rowan University, B330 Science Center, 2 Medical Center Dr., Stratford, NJ, 08084, USA.
| |
Collapse
|
4
|
Yin AC, Holdcraft CJ, Brace EJ, Hellmig TJ, Basu S, Parikh S, Jachimowska K, Kalyoussef E, Roden D, Baredes S, Capitle EM, Suster DI, Shienbaum AJ, Zhao C, Zheng H, Balcaen K, Devos S, Haustraete J, Fatahzadeh M, Goldberg GS. Maackia amurensis seed lectin (MASL) and soluble human podoplanin (shPDPN) sequence analysis and effects on human oral squamous cell carcinoma (OSCC) cell migration and viability. Biochem Biophys Res Commun 2024; 710:149881. [PMID: 38583233 DOI: 10.1016/j.bbrc.2024.149881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Maackia amurensis lectins serve as research and botanical agents that bind to sialic residues on proteins. For example, M. amurensis seed lectin (MASL) targets the sialic acid modified podoplanin (PDPN) receptor to suppress arthritic chondrocyte inflammation, and inhibit tumor cell growth and motility. However, M. amurensis lectin nomenclature and composition are not clearly defined. Here, we sought to definitively characterize MASL and its effects on tumor cell behavior. We utilized SDS-PAGE and LC-MS/MS to find that M. amurensis lectins can be divided into two groups. MASL is a member of one group which is composed of subunits that form dimers, evidently mediated by a cysteine residue in the carboxy region of the protein. In contrast to MASL, members of the other group do not dimerize under nonreducing conditions. These data also indicate that MASL is composed of 4 isoforms with an identical amino acid sequence, but unique glycosylation sites. We also produced a novel recombinant soluble human PDPN receptor (shPDPN) with 17 threonine residues glycosylated with sialic acid moieties with potential to act as a ligand trap that inhibits OSCC cell growth and motility. In addition, we report here that MASL targets PDPN with very strong binding kinetics in the nanomolar range. Moreover, we confirm that MASL can inhibit the growth and motility of human oral squamous cell carcinoma (OSCC) cells that express the PDPN receptor. Taken together, these data characterize M. amurensis lectins into two major groups based on their intrinsic properties, clarify the composition of MASL and its subunit isoform sequence and glycosylation sites, define sialic acid modifications on the PDPN receptor and its ability to act as a ligand trap, quantitate MASL binding to PDPN with KD in the nanomolar range, and verify the ability of MASL to serve as a potential anticancer agent.
Collapse
Affiliation(s)
- Ariel C Yin
- Molecular Biology, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Cayla J Holdcraft
- Molecular Biology, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Eamonn J Brace
- Molecular Biology, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Tyler J Hellmig
- Molecular Biology, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Sayan Basu
- Molecular Biology, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Saumil Parikh
- Molecular Biology, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Katarzyna Jachimowska
- Molecular Biology, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Evelyne Kalyoussef
- Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - Dylan Roden
- Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - Soly Baredes
- Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - Eugenio M Capitle
- Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - David I Suster
- Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA
| | - Alan J Shienbaum
- Keystone Pathology Associates, 781 Keystone Industrial Park Rd, Dunmore, PA, 18512, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Kevin Balcaen
- VIB Protein Core, VIB, Technologiepark 71, Ghent, Belgium; VIB-UGent Center for Inflammation Research, VIB, Ghent University, Technologiepark 71, 9000, Ghent, Belgium
| | - Simon Devos
- VIB Proteomics Core, VIB, Technologiepark 75, 9000, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, Ghent University, Technologiepark 75, 9000, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 75, 9000, Belgium
| | - Jurgen Haustraete
- VIB Protein Core, VIB, Technologiepark 71, Ghent, Belgium; VIB-UGent Center for Inflammation Research, VIB, Ghent University, Technologiepark 71, 9000, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 71, Ghent, Belgium
| | - Mahnaz Fatahzadeh
- Rutgers School of Dental Medicine, 110 Bergen St, Newark, NJ, 07103, USA
| | - Gary S Goldberg
- Molecular Biology, Rowan Virtua SOM, Rowan University, 2 Medical Center Dr., Stratford, NJ, 08084, USA.
| |
Collapse
|
5
|
Sayuddin ENEN, Taher M, Arzmi MH, Burhanudin NA, Rostam MA. The role of podoplanin inhibitors in controlling oral cancer progression. Arch Oral Biol 2024; 157:105841. [PMID: 37952507 DOI: 10.1016/j.archoralbio.2023.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVE In this article, we review the current studies on the role of podoplanin in oral cancer and the potential application of podoplanin inhibitors as a therapeutic agent for oral cancer. DESIGN The narrative review approach was conducted, providing a comprehensive perspective of related literature. Publications addressing podoplanin and its inhibitors in the context of oral cancer were retrieved from PubMed and Scopus databases. RESULTS Podoplanin has emerged as a biomarker and therapeutic agent for oral cancer. Numerous studies have reported high podoplanin expression in oral cancer and pre-cancerous lesions compared to normal cells. A specific inhibitor targeting podoplanin may have the potential to prevent oral carcinogenesis via interfering with the pathway of cancerous cells involved in cell proliferation and metastasis. Antibodies, chimeric antigen receptor (CAR)-T cells, cancer-specific mAb (CasMab), synthetic molecules, and lectins are among the materials used as anticancer agents targeting podoplanin. Plant-derived lectins appear to demonstrate a unique advantage against alternative candidates. CONCLUSIONS The use of podoplanin inhibitors in place of existing therapeutic approaches could be a promising and novel approach to the prevention and treatment of oral cancer. Nevertheless, further research is required to investigate the practical application of such inhibitors.
Collapse
Affiliation(s)
- Engku Nasiha Engku Ngah Sayuddin
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia; Pharmaceutics and Translational Research Group, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Mohd Hafiz Arzmi
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia; Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan, Pahang, Malaysia; Melbourne Dental School, The University of Melbourne, Victoria, Australia
| | - Nor Aszlitah Burhanudin
- Department of Oral Maxillofacial Surgery and Oral Diagnosis, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Muhamad Ashraf Rostam
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Pahang, Malaysia; Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan, Pahang, Malaysia.
| |
Collapse
|
6
|
Ouchida T, Tanaka T, Suzuki H, Uchida K, Nakagawa T, Li G, Nakamura T, Yanaka M, Handa S, Kaneko MK, Kato Y. PMab-301: An Anti-Giraffe Podoplanin Monoclonal Antibody for Immunohistochemistry. Monoclon Antib Immunodiagn Immunother 2023; 42:209-215. [PMID: 38150189 DOI: 10.1089/mab.2023.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Immunohistochemistry staining is an essential method in pathological diagnoses. Podoplanin (PDPN) is a specific maker of alveolar epithelium, lymphatic vessels, and glomeruli. In this study, we established a novel anti-giraffe PDPN (girPDPN) mAb, PMab-301, using the Cell-Based Immunization and Screening (CBIS) method. PMab-301 (mouse IgG1, kappa) detected girPDPN in various applications, such as flow cytometry, western blot, and immunohistochemistry. PMab-301 specifically stained type-I alveolar cells using formalin-fixed paraffin-embedded giraffe lung tissues. Our findings suggest the potential usefulness of PMab-301 for the pathophysiological analyses of giraffe tissues.
Collapse
Affiliation(s)
- Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Guanjie Li
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Hamilton KL, Greenspan AA, Shienbaum AJ, Fischer BD, Bottaro A, Goldberg GS. Maackia amurensis seed lectin (MASL) ameliorates articular cartilage destruction and increases movement velocity of mice with TNFα induced rheumatoid arthritis. Biochem Biophys Rep 2022; 32:101341. [PMID: 36120492 PMCID: PMC9471970 DOI: 10.1016/j.bbrep.2022.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
Up to 70 million people around the world suffer from rheumatoid arthritis. Current treatment options have varied efficacy and can cause unwanted side effects. New approaches are needed to treat this condition. Sialic acid modifications on chondrocyte receptors have been associated with arthritic inflammation and joint destruction. For example, the transmembrane mucin receptor protein podoplanin (PDPN) has been identified as a functionally relevant receptor that presents extracellular sialic acid motifs. PDPN signaling promotes inflammation and invasion associated with arthritis and, therefore, has emerged as a target that can be used to inhibit arthritic inflammation. Maackia amurensis seed lectin (MASL) can target PDPN on chondrocytes to decrease inflammatory signaling cascades and reduce cartilage destruction in a lipopolysaccharide induced osteoarthritis mouse model. Here, we investigated the effects of MASL on rheumatoid arthritis progression in a TNFα transgenic (TNF-Tg) mouse model. Results from this study indicate that MASL can be administered orally to ameliorate joint malformation and increase velocity of movement exhibited by these TNF-Tg mice. These data support the consideration of MASL as a potential treatment for rheumatoid arthritis.
Collapse
Affiliation(s)
- Kelly L. Hamilton
- Rowan University School of Osteopathic Medicine and Graduate School of Biomedical Sciences, 2 Medical Center Dr., Stratford, NJ, 08084, USA
- Medstar Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC, 20007, USA
| | - Amanda A. Greenspan
- Rowan University School of Osteopathic Medicine and Graduate School of Biomedical Sciences, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| | - Alan J. Shienbaum
- Keystone Medical Laboratories & Pathology Associates, 781 Keystone Industrial Park, Throop, PA, 18512, USA
| | - Bradford D. Fischer
- Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ, 08103, USA
| | - Andrea Bottaro
- Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ, 08103, USA
| | - Gary S. Goldberg
- Rowan University School of Osteopathic Medicine and Graduate School of Biomedical Sciences, 2 Medical Center Dr., Stratford, NJ, 08084, USA
| |
Collapse
|
8
|
Bektas S, Kaptan E. RNA-Seq transcriptome analysis reveals Maackia amurensis leukoagglutinin has antitumor activity in human anaplastic thyroid cancer cells. Mol Biol Rep 2022; 49:9257-9266. [PMID: 36057880 PMCID: PMC9441018 DOI: 10.1007/s11033-022-07759-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022]
Abstract
Background Lectins are carbohydrate-binding molecules that can bind specifically to the sugar residues of glycoconjugates and are found in almost all organisms. Plant lectins subjected to many studies reported exhibiting anti-cancer activity. This study aimed to investigate the possible molecular mechanisms of Maackia amurensis leukoagglutinin II (MAL-II) treated ATCCs. Methods and results We tested the effects of MAL-II, which is isolated from Amur seeds, on cancerous features of 8505C human anaplastic thyroid cancer cells (ATCCs) on a large scale using RNA-Seq. Transcriptome analysis was performed using Illumina next-generation sequencing technology by using cDNA libraries obtained from total RNA isolates of ATCCs treated with 0.25 µM MAL-II for 24 h. Gene ontology and pathway enrichment analysis were performed for the systematic analysis of gene functions. Moreover, we validated RNA-Seq findings using qPCR. Our results showed that many cancer-related genes such as TENM4, STIM2, SYT12, PIEZO2, ABCG1, SPNS2, ARRB1, and IRX5 were downregulated and many anticancer genes such as HSPA6, G0S2, TNFAIP3, GEM, GADD45G, RND1, SERPINB2, and IL24 were upregulated. Also, pathway enrichment analysis showed that differentially expressed genes were found to be associated with Ras, p53, and apoptosis signaling pathways, which are some important signal transduction pathways in development, proliferation, stem cell control, and carcinogenesis. Conclusion Collectively, our results show that MAL-II treatment reveals significant antitumor activity by changing the expression of many cancer-related genes and implies that MAL-II treatment might be a potential candidate molecule to inhibit the malignancy of human anaplastic thyroid cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07759-6.
Collapse
Affiliation(s)
- Suna Bektas
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| | - Engin Kaptan
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| |
Collapse
|
9
|
Okada Y, Suzuki H, Kaneko MK, Kato Y. Epitope Mapping of an Anti-elephant Podoplanin Monoclonal Antibody (PMab-295) Using Enzyme-Linked Immunosorbent Assay. Monoclon Antib Immunodiagn Immunother 2022; 41:221-227. [PMID: 35917553 DOI: 10.1089/mab.2022.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Podoplanin (PDPN) is a marker of lung type I alveolar cells, kidney podocytes, and lymphatic endothelial cells. The overexpression of PDPN contributes to the malignant progression of tumors. Therefore, the development of anti-PDPN monoclonal antibodies (mAbs) to animals is essential to evaluate the pathogenesis and cellular functions. Using peptide immunization, we previously developed an anti-elephant PDPN (elePDPN) mAb, PMab-295, which is useful for flow cytometry, Western blotting, and immunohistochemistry. In this study, we determined the critical epitope of PMab-295 by enzyme-linked immunosorbent assay (ELISA). We performed ELISA with the alanine-substituted peptides of elePDPN extracellular domain (amino acids 38-51), and found that PMab-295 did not recognize the alanine-substituted peptides of M41A, P44A, and E47A. Furthermore, these peptides could not inhibit the recognition of PMab-295 to elePDPN-expressing cells by flow cytometry and immunohistochemistry. The results indicate that the binding epitope of PMab-295 includes Met41, Pro44, and Glu47 of elePDPN.
Collapse
Affiliation(s)
- Yuki Okada
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Kudo Y, Suzuki H, Kaneko MK, Kato Y. Development of a Monoclonal Antibody PMab-295 Against Elephant Podoplanin. Monoclon Antib Immunodiagn Immunother 2022; 41:194-201. [PMID: 35917562 DOI: 10.1089/mab.2022.0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Podoplanin (PDPN) is an essential marker of lung type I alveolar cells, kidney podocytes, and lymphatic endothelial cells. Monoclonal antibodies (mAbs) that can specifically recognize PDPN in immunohistochemistry are important to analyze the development of tissues and the pathogenesis of diseases, including cancers. We have developed anti-PDPN mAbs against many animal species; however, mAbs that can recognize elephant-derived membrane proteins and distinguish the specific cell types in immunohistochemistry are limited. In this study, a novel anti-elephant PDPN (elePDPN) mAb, PMab-295 (IgG1, kappa), was established using the peptide immunization method. PMab-295 recognized both elePDPN-overexpressed Chinese hamster ovary (CHO)-K1 cells and endogenous elePDPN-expressed LACF-NaNaI cells by flow cytometry and western blotting. Kinetic analyses using flow cytometry showed that the KD of PMab-295 for CHO/elePDPN was 1.5 × 10-8 M. Furthermore, PMab-295 detected elePDPN-expressing cells using immunohistochemistry. These results showed the usefulness of PMab-295 to investigate the molecular function of elePDPN and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Yuma Kudo
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Retzbach EP, Sheehan SA, Krishnan H, Zheng H, Zhao C, Goldberg GS. Independent effects of Src kinase and podoplanin on anchorage independent cell growth and migration. Mol Carcinog 2022; 61:677-689. [PMID: 35472679 PMCID: PMC9233000 DOI: 10.1002/mc.23410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/07/2022]
Abstract
The Src tyrosine kinase is a strong tumor promotor. Over a century of research has elucidated fundamental mechanisms that drive its oncogenic potential. Src phosphorylates effector proteins to promote hallmarks of tumor progression. For example, Src associates with the Cas focal adhesion adaptor protein to promote anchorage independent cell growth. In addition, Src phosphorylates Cas to induce Pdpn expression to promote cell migration. Pdpn is a transmembrane receptor that can independently increase cell migration in the absence of oncogenic Src kinase activity. However, to our knowledge, effects of Src kinase activity on anchorage independent cell growth and migration have not been examined in the absence of Pdpn expression. Here, we analyzed the effects of an inducible Src kinase construct in knockout cells with and without exogenous Pdpn expression on cell morphology migration and anchorage independent growth. We report that Src promoted anchorage independent cell growth in the absence of Pdpn expression. In contrast, Src was not able to promote cell migration in the absence of Pdpn expression. In addition, continued Src kinase activity was required for cells to assume a transformed morphology since cells reverted to a nontransformed morphology upon cessation of Src kinase activity. We also used phosphoproteomic analysis to identify 28 proteins that are phosphorylated in Src transformed cells in a Pdpn dependent manner. Taken together, these data indicate that Src utilizes Pdpn to promote transformed cell growth and motility in complementary, but parallel, as opposed to serial, pathways.
Collapse
Affiliation(s)
- Edward P. Retzbach
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Stephanie A. Sheehan
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University Stony Brook, NY, 11794-8661, USA
| | - Haiyan Zheng
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New jersey, New Brunswick, NJ, 08901, USA
| | - Caifeng Zhao
- Biological Mass Spectrometry Resources, Robert Wood Johnson Medical School, Rutgers, State University of New jersey, New Brunswick, NJ, 08901, USA
| | - Gary S. Goldberg
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| |
Collapse
|
12
|
Gharahkhani R, Pourhadi M, Mirdamadi NS, Dana N, Rafiee L, Nedaeinia R, Javanmard SH. Effect of Anti-Podoplanin on Malignant Glioma Cell Viability, Invasion and Tumor Cell-Induced Platelet Aggregation. Arch Med Res 2022; 53:461-468. [DOI: 10.1016/j.arcmed.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/05/2022] [Accepted: 05/06/2022] [Indexed: 11/02/2022]
|
13
|
Sheehan SA, Retzbach EP, Shen Y, Krishnan H, Goldberg GS. Heterocellular N-cadherin junctions enable nontransformed cells to inhibit the growth of adjacent transformed cells. Cell Commun Signal 2022; 20:19. [PMID: 35177067 PMCID: PMC8851851 DOI: 10.1186/s12964-021-00817-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The Src tyrosine kinase phosphorylates effector proteins to induce expression of the podoplanin (PDPN) receptor in order to promote tumor progression. However, nontransformed cells can normalize the growth and morphology of neighboring transformed cells. Transformed cells must escape this process, called "contact normalization", to become invasive and malignant. Contact normalization requires junctional communication between transformed and nontransformed cells. However, specific junctions that mediate this process have not been defined. This study aimed to identify junctional proteins required for contact normalization. METHODS Src transformed cells and oral squamous cell carcinoma cells were cultured with nontransformed cells. Formation of heterocellular adherens junctions between transformed and nontransformed cells was visualized by fluorescent microscopy. CRISPR technology was used to produce cadherin deficient and cadherin competent nontransformed cells to determine the requirement for adherens junctions during contact normalization. Contact normalization of transformed cells cultured with cadherin deficient or cadherin competent nontransformed cells was analyzed by growth assays, immunofluorescence, western blotting, and RNA-seq. In addition, Src transformed cells expressing PDPN under a constitutively active exogenous promoter were used to examine the ability of PDPN to override contact normalization. RESULTS We found that N-cadherin (N-Cdh) appeared to mediate contact normalization. Cadherin competent cells that expressed N-Cdh inhibited the growth of neighboring transformed cells in culture, while cadherin deficient cells failed to inhibit the growth of these cells. Results from RNA-seq analysis indicate that about 10% of the transcripts affected by contact normalization relied on cadherin mediated communication, and this set of genes includes PDPN. In contrast, cadherin deficient cells failed to inhibit PDPN expression or normalize the growth of adjacent transformed cells. These data indicate that nontransformed cells formed heterocellular cadherin junctions to inhibit PDPN expression in adjacent transformed cells. Moreover, we found that PDPN enabled transformed cells to override the effects of contact normalization in the face of continued N-Cdh expression. Cadherin competent cells failed to normalize the growth of transformed cells expressing PDPN under a constitutively active exogenous promoter. CONCLUSIONS Nontransformed cells form cadherin junctions with adjacent transformed cells to decrease PDPN expression in order to inhibit tumor cell proliferation. Cancer begins when a single cell acquires changes that enables them to form tumors. During these beginning stages of cancer development, normal cells surround and directly contact the cancer cell to prevent tumor formation and inhibit cancer progression. This process is called contact normalization. Cancer cells must break free from contact normalization to progress into a malignant cancer. Contact normalization is a widespread and powerful process; however, not much is known about the mechanisms involved in this process. This work identifies proteins required to form contacts between normal cells and cancer cells, and explores pathways by which cancer cells override contact normalization to progress into malignant cancers. Video Abstract.
Collapse
Affiliation(s)
- Stephanie A. Sheehan
- Department of Molecular Biology and Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084 USA
| | - Edward P. Retzbach
- Department of Molecular Biology and Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084 USA
| | - Yongquan Shen
- Department of Molecular Biology and Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084 USA
| | - Harini Krishnan
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794 USA
| | - Gary S. Goldberg
- Department of Molecular Biology and Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084 USA
| |
Collapse
|
14
|
Cheok YY, Tan GMY, Fernandez KC, Chan YT, Lee CYQ, Cheong HC, Looi CY, Vadivelu J, Abdullah S, Wong WF. Podoplanin Drives Motility of Active Macrophage via Regulating Filamin C During Helicobacter pylori Infection. Front Immunol 2021; 12:702156. [PMID: 34707599 PMCID: PMC8543000 DOI: 10.3389/fimmu.2021.702156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/10/2021] [Indexed: 01/12/2023] Open
Abstract
Podoplanin (Pdpn) is a mucin-type transmembrane protein that has been implicated in multiple physiological settings including lymphangiogenesis, platelet aggregation, and cancer metastasis. Here, we reported an absence of Pdpn transcript expression in the resting mouse monocytic macrophages, RAW264.7 cells; intriguingly, a substantial upregulation of Pdpn was observed in activated macrophages following Helicobacter pylori or lipopolysaccharide stimulation. Pdpn-knockout macrophages demonstrated intact phagocytic and intracellular bactericidal activities comparable to wild type but exhibited impaired migration due to attenuated filopodia formation. In contrast, an ectopic expression of Pdpn augmented filopodia protrusion in activated macrophages. NanoString analysis uncovered a close dependency of Filamin C gene on the presence of Pdpn, highlighting an involvement of Filamin C in modulation of actin polymerization activity, which controls cell filopodia formation and migration. In addition, interleukin-1β production was significantly declined in the absence of Pdpn, suggesting a role of Pdpn in orchestrating inflammation during H. pylori infection besides cellular migration. Together, our findings unravel the Pdpn network that modulates movement of active macrophages.
Collapse
Affiliation(s)
- Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Grace Min Yi Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Keith Conrad Fernandez
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- School of Bioscience, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Suhailah Abdullah
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Sheehan SA, Hamilton KL, Retzbach EP, Balachandran P, Krishnan H, Leone P, Lopez-Gonzalez M, Suryavanshi S, Kumar P, Russo R, Goldberg GS. Evidence that Maackia amurensis seed lectin (MASL) exerts pleiotropic actions on oral squamous cells with potential to inhibit SARS-CoV-2 infection and COVID-19 disease progression. Exp Cell Res 2021; 403:112594. [PMID: 33823179 PMCID: PMC8019238 DOI: 10.1016/j.yexcr.2021.112594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 was declared an international public health emergency in January, and a pandemic in March of 2020. There are over 125 million confirmed COVID-19 cases that have caused over 2.7 million deaths worldwide as of March 2021. COVID-19 is caused by the SARS-CoV-2 virus. SARS-CoV-2 presents a surface "spike" protein that binds to the ACE2 receptor to infect host cells. In addition to the respiratory tract, SARS-Cov-2 can also infect cells of the oral mucosa, which also express the ACE2 receptor. The spike and ACE2 proteins are highly glycosylated with sialic acid modifications that direct viral-host interactions and infection. Maackia amurensis seed lectin (MASL) has a strong affinity for sialic acid modified proteins and can be used as an antiviral agent. Here, we report that MASL targets the ACE2 receptor, decreases ACE2 expression and glycosylation, suppresses binding of the SARS-CoV-2 spike protein, and decreases expression of inflammatory mediators by oral epithelial cells that cause ARDS in COVID-19 patients. In addition, we report that MASL also inhibits SARS-CoV-2 infection of kidney epithelial cells in culture. This work identifies MASL as an agent with potential to inhibit SARS-CoV-2 infection and COVID-19 related inflammatory syndromes.
Collapse
Affiliation(s)
- Stephanie A Sheehan
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Kelly L Hamilton
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Edward P Retzbach
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Premalatha Balachandran
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS, 38677, USA
| | - Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University Stony Brook, NY, 11794-8661, USA
| | - Paola Leone
- Department of Cell Biology and Neuroscience, Cell and Gene Therapy Center, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Moises Lopez-Gonzalez
- Regional Bio-containment Laboratory, Center for COVID-19 Response and Pandemic Preparedness (CRP2), Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Shraddha Suryavanshi
- Regional Bio-containment Laboratory, Center for COVID-19 Response and Pandemic Preparedness (CRP2), Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Pradeep Kumar
- Regional Bio-containment Laboratory, Center for COVID-19 Response and Pandemic Preparedness (CRP2), Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Riccardo Russo
- Regional Bio-containment Laboratory, Center for COVID-19 Response and Pandemic Preparedness (CRP2), Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Gary S Goldberg
- Department of Molecular Biology, And Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA.
| |
Collapse
|
16
|
Hosono H, Asano T, Takei J, Sano M, Tanaka T, Kaneko MK, Kato Y. Development of an Anti-Elephant Podoplanin Monoclonal Antibody PMab-265 for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2021; 40:141-145. [PMID: 34042502 DOI: 10.1089/mab.2021.0015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of specific antibodies is essential to understand a wide variety of biological phenomena and pathophysiological analyses. Podoplanin (PDPN), a type I transmembrane glycoprotein, is known as a diagnostic marker. Anti-PDPN monoclonal antibodies (mAbs) against many species, such as human, mouse, rat, rabbit, dog, bovine, cat, tiger, horse, pig, goat, alpaca, Tasmanian devil, bear, whale, and sheep, have been established in recent studies. However, sensitive and specific mAbs against elephant PDPN (elePDPN) have not been established. Thus, this study established a novel mAb against African savanna elephant (Loxodonta africana) PDPN using the Cell-Based Immunization and Screening method. elePDPN-overexpressed Chinese hamster ovary-K1 (CHO/elePDPN) cells were immunized, and mAbs were screened against elePDPN using flow cytometry. One of the mAbs, PMab-265 (IgM, κ), specifically detected CHO/elePDPN cells by flow cytometry. These findings suggested the potential usefulness of PMab-265 for the functional analyses of elePDPN.
Collapse
Affiliation(s)
- Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
17
|
Tavares MR, Pechar M, Chytil P, Etrych T. Polymer-Based Drug-Free Therapeutics for Anticancer, Anti-Inflammatory, and Antibacterial Treatment. Macromol Biosci 2021; 21:e2100135. [PMID: 34008348 DOI: 10.1002/mabi.202100135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/05/2021] [Indexed: 01/09/2023]
Abstract
This paper summarizes the area of biomedicinal polymers, which serve as nanomedicines even though they do not contain any anticancer or antiinflammatory drugs. These polymer nanomedicines with unique design are in the literature highlighted as a novel class of therapeutics called "drug-free macromolecular therapeutics." Their therapeutic efficacy is based on the tailored multiple presentations of biologically active vectors, i.e., peptides, oligopeptides, or oligosaccharides. Thus, they enable, for example, to directly induce the apoptosis of malignant cells by the crosslinking of surface slowly internalizing receptors, or to deplete the efficacy of tumor-associated proteins. The precise biorecognition of natural binding motifs by multiple vectors on the polymer construct remains the crucial part in the designing of these drug-free nanomedicines. Here, the rationales, designs, synthetic approaches, and therapeutic potential of drug-free macromolecular therapeutics consisting of various active vectors are described in detail. Recent developments and achievements for namely B-cell lymphoma treatment, Gal-3-positive tumors, inflammative liver injury, and bacterial treatment are reviewed and highlighted. Finally, a possible future prospect within this highly exciting new field of nanomedicine research is presented.
Collapse
Affiliation(s)
- Marina Rodrigues Tavares
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Michal Pechar
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Petr Chytil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| |
Collapse
|
18
|
Saxena S, Kandasubramanian B. Glycopolymers in molecular recognition, biomimicking and glycotechnology: a review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1900181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shatakshi Saxena
- Centre for Converging Technologies, University of Rajasthan, Jaipur, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Pune, India
| |
Collapse
|
19
|
Deregulation of extracellular matrix modeling with molecular prognostic markers revealed by transcriptome sequencing and validations in Oral Tongue squamous cell carcinoma. Sci Rep 2021; 11:250. [PMID: 33420101 PMCID: PMC7794513 DOI: 10.1038/s41598-020-78624-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Oral Tongue Squamous Cell Carcinoma (OTSCC), a distinct sub-group of head and neck cancers, is characteristically aggressive in nature with a higher incidence of recurrence and metastasis. Recent advances in therapeutics have not improved patient survival. The phenomenon of occult node metastasis, even among the purportedly good prognosis group of early-stage and node-negative tongue tumors, leads to a high incidence of locoregional failure in OTSCC which needs to be addressed. In the current study, transcriptome analysis of OTSCC patients identified the key genes and deregulated pathways. A panel of 26 marker genes was shortlisted and validated using real-time PCR in a prospective cohort of 100 patients. The gene expression was correlated with clinicopathological features including occult node metastasis, survival, and therapeutic outcome. The up-regulation of a panel of 6 genes namely, matrix metalloproteinase 9 (MMP9), Laminin subunit Gamma 2 (LAMC2), Desmoglein 2 (DSG2), Plasminogen Activator Urokinase (PLAU), Forkhead Box M1 (FOXM1), and Myosin 1B (MYO1B) was associated with failure of treatment in the early stage (T1, T2). Up-regulation of Tenacin C (TNC) and Podoplanin (PDPN) was significantly correlated with occult node positivity. Immunohistochemical analysis of LAMC2, MMP9, and E-Cadherin (ECAD) confirmed these markers to be indicators of poor prognosis. We propose this panel of valuable prognostic markers can be clinically useful to identify poor prognosis and occult node metastasis in OTSCC patients.
Collapse
|
20
|
Hamilton KL, Sheehan SA, Retzbach EP, Timmerman CA, Gianneschi GB, Tempera PJ, Balachandran P, Goldberg GS. Effects of Maackia amurensis seed lectin (MASL) on oral squamous cell carcinoma (OSCC) gene expression and transcriptional signaling pathways. J Cancer Res Clin Oncol 2020; 147:445-457. [PMID: 33205348 DOI: 10.1007/s00432-020-03456-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Oral cancer causes over 120,000 deaths annually and affects the quality of life for survivors. Over 90% of oral cancers are derived from oral squamous cell carcinoma cells (OSCCs) which are generally resistant to standard cytotoxic chemotherapy agents. OSCC cells often exhibit increased TGFβ and PDPN receptor activity compared to nontransformed oral epithelial cells. Maackia amurensis seed lectin (MASL) can target the PDPN receptor and has been identified as a novel agent that can be used to treat oral cancer. However, mechanisms by which MASL inhibits OSCC progression are not yet clearly defined. METHODS Here, we performed cell migration and cytotoxicity assays to assess the effects of MASL on OSCC motility and viability at physiologically relevant concentrations. We then performed comprehensive transcriptome analysis combined with transcription factor reporter assays to investigate the how MASL affects OSCC gene expression at these concentration. Key data were then confirmed by western blotting to evaluate the effects of MASL on gene expression and kinase signaling activity at the protein level. RESULTS MASL significantly affected the expression of about 27% of approximately 15,000 genes found to be expressed by HSC-2 cells used to model OSCC cells in this study. These genes affected by MASL include members of the TGFβ-SMAD, JAK-STAT, and Wnt-βCTN signaling pathways. In particular, MASL decreased expression of PDPN, SOX2, and SMAD5 at the RNA and protein levels. MASL also inhibited SMAD and MAPK activity, and exhibited potential for combination therapy with doxorubicin and 5-fluorouracil. CONCLUSIONS Taken together, results from this study indicate that MASL decreases activity of JAK-STAT, TGFβ-SMAD, and Wnt-βCTN signaling pathways to inhibit OSCC growth and motility. These data suggest that further studies should be undertaken to determine how MASL may also be used alone and in combination with other agents to treat oral cancer.
Collapse
Affiliation(s)
- Kelly L Hamilton
- Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Stephanie A Sheehan
- Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Edward P Retzbach
- Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Clinton A Timmerman
- Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Garret B Gianneschi
- Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Patrick J Tempera
- Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA
| | - Premalatha Balachandran
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Gary S Goldberg
- Department of Molecular Biology, Science Center, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, 08084, USA.
| |
Collapse
|
21
|
Sheehan SA, Hamilton KL, Retzbach EP, Balachandran P, Krishnan H, Leone P, Goldberg GS. Evidence that Maackia amurensis seed lectin (MASL) exerts pleiotropic actions on oral squamous cells to inhibit SARS-CoV-2 infection and COVID-19 disease progression. RESEARCH SQUARE 2020:rs.3.rs-93851. [PMID: 33106801 PMCID: PMC7587785 DOI: 10.21203/rs.3.rs-93851/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
COVID-19 was declared an international public health emergency in January, and a pandemic in March of 2020. There are over 23 million confirmed COVID-19 cases that have cause over 800 thousand deaths worldwide as of August 19th, 2020. COVID-19 is caused by the SARS-CoV-2 virus. SARS-CoV-2 presents a surface "spike" protein that binds to the ACE2 receptor to infect host cells. In addition to the respiratory tract, SARS-Cov-2 can also infect cells of the oral mucosa, which also express the ACE2 receptor. The spike and ACE2 proteins are highly glycosylated with sialic acid modifications that direct viral-host interactions and infection. Maackia amurensis seed lectin (MASL) has a strong affinity for sialic acid modified proteins and can be used as an antiviral agent. Here, we report that MASL targets the ACE2 receptor, decreases ACE2 expression and glycosylation, suppresses binding of the SARS-CoV-2 spike protein, and decreases expression of inflammatory mediators by oral epithelial cells that cause ARDS in COVID-19 patients. This work identifies MASL as an agent with potential to inhibit SARS-CoV-2 infection and COVID-19 related inflammatory syndromes.
Collapse
Affiliation(s)
- Stephanie A. Sheehan
- Department of Molecular Biology, and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Kelly L. Hamilton
- Department of Molecular Biology, and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Edward P. Retzbach
- Department of Molecular Biology, and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Premalatha Balachandran
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Harini Krishnan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University Stony Brook, NY 11794-8661, USA
| | - Paola Leone
- Department of Cell Biology and Neuroscience, Cell and Gene Therapy Center, and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| | - Gary S. Goldberg
- Department of Molecular Biology, and Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ 08084, USA
| |
Collapse
|
22
|
Zuo J, Huo M, Wang L, Li J, Chen Y, Xiong P. Photonic hyperthermal and sonodynamic nanotherapy targeting oral squamous cell carcinoma. J Mater Chem B 2020; 8:9084-9093. [PMID: 32926057 DOI: 10.1039/d0tb01089h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nanomedicine that enables multiple synergetic treatments provides effective non-invasive treatment modalities for cancer therapy. Yet treatments for oral squamous cell carcinoma (OSCC) are rarely reported. Here, we designed OSCC-targeting multi-functional nanomedicines to overcome the therapeutic obstacles during OSCC treatments, including ineffective chemotherapy, and the traumatic surgery and radiotherapy. The urokinase plasminogen activator receptor (uPAR)-targeting ligand AE105 decorated dendritic mesoporous silica nanoparticles (DMSN) encapsulating photonic active ultrasmall Cu2-xS NPs and sonosensitizer Rose Bengal (RB) have been rationally designed and constructed (designated as Cu2-xS-RB@DMSN-AE105, abbreviated as CRDA). These CRDAs initially target the uPAR, which is overexpressed in the OSCC cell membrane, to increase the localized accumulation of CRDAs at tumor sites. Under the irradiation of both near-infrared laser and ultrasound, the in situ photonic-hyperthermal and sonodynamic effects are respectively enabled to induce the cell death of OSCC. Upon both in vitro/in vivo challenges, tumor cells/xenografts have been efficiently eradicated, achieving the targeting and synergetic treatment modality against the OSCC with satisfactory biocompatibility.
Collapse
Affiliation(s)
- Jiaxin Zuo
- Department of Ultrasound, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, P. R. China.
| | - Minfeng Huo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | - Liying Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | - Jia Li
- Department of Ultrasound, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, P. R. China.
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ping Xiong
- Department of Ultrasound, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, P. R. China.
| |
Collapse
|
23
|
Kariri YA, Aleskandarany MA, Joseph C, Kurozumi S, Mohammed OJ, Toss MS, Green AR, Rakha EA. Molecular Complexity of Lymphovascular Invasion: The Role of Cell Migration in Breast Cancer as a Prototype. Pathobiology 2020; 87:218-231. [PMID: 32645698 DOI: 10.1159/000508337] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022] Open
Abstract
Lymphovascular invasion (LVI) is associated with poor outcome in breast cancer (BC); however, its underlying mechanisms remain ill-defined. LVI in BC develops through complex molecular pathways involving not only the interplay with the surrounding microenvironment along with endothelial cells lining the lymphovascular spaces but also changes in the malignant epithelial cells with the acquisition of more invasive and migration abilities. In this review, we focus on the key features that enable tumour cell detachment from the primary niche, their migration and interaction with the surrounding microenvironment as well as the crosstalk with the vascular endothelial cells, which eventually lead to intravasation of tumour cells and LVI. Intravascular tumour cell survival and migration, their distant site extravasation, stromal invasion and growth are part of the metastatic cascade. Cancer cell migration commences with loss of tumour cells' cohesion initiating the invasion and migration processes which are usually accompanied by the accumulation of specific cellular and molecular changes that enable tumour cells to overcome the blockades of the extracellular matrix, spread into surrounding tissues and interact with stromal cells and immune cells. Thereafter, tumour cells migrate further via interacting with lymphovascular endothelial cells to penetrate the vessel wall leading ultimately to intravasation of cancer cells. Exploring the potential factors influencing cell migration in LVI can help in understanding the underlying mechanisms of LVI to identify targeted therapy in BC.
Collapse
Affiliation(s)
- Yousif A Kariri
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Faculty of Applied Medical Science, Shaqra University, Riyadh, Saudi Arabia.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Mohammed A Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Chitra Joseph
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Sasagu Kurozumi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Omar J Mohammed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom,
| |
Collapse
|
24
|
Fazio M, Ablain J, Chuan Y, Langenau DM, Zon LI. Zebrafish patient avatars in cancer biology and precision cancer therapy. Nat Rev Cancer 2020; 20:263-273. [PMID: 32251397 PMCID: PMC8011456 DOI: 10.1038/s41568-020-0252-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2020] [Indexed: 01/05/2023]
Abstract
In precision oncology, two major strategies are being pursued for predicting clinically relevant tumour behaviours, such as treatment response and emergence of drug resistance: inference based on genomic, transcriptomic, epigenomic and/or proteomic analysis of patient samples, and phenotypic assays in personalized cancer avatars. The latter approach has historically relied on in vivo mouse xenografts and in vitro organoids or 2D cell cultures. Recent progress in rapid combinatorial genetic modelling, the development of a genetically immunocompromised strain for xenotransplantation of human patient samples in adult zebrafish and the first clinical trial using xenotransplantation in zebrafish larvae for phenotypic testing of drug response bring this tiny vertebrate to the forefront of the precision medicine arena. In this Review, we discuss advances in transgenic and transplantation-based zebrafish cancer avatars, and how these models compare with and complement mouse xenografts and human organoids. We also outline the unique opportunities that these different models present for prediction studies and current challenges they face for future clinical deployment.
Collapse
Affiliation(s)
- Maurizio Fazio
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Julien Ablain
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Yan Chuan
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA
| | - David M Langenau
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
25
|
New Therapeutic Strategies for Osteoarthritis by Targeting Sialic Acid Receptors. Biomolecules 2020; 10:biom10040637. [PMID: 32326143 PMCID: PMC7226619 DOI: 10.3390/biom10040637] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease characterized by articular cartilage degradation and joint degeneration. The articular cartilage is mainly formed by chondrocytes and a collagen-proteoglycan extracellular matrix that contains high levels of glycosylated proteins. It was reported that the shift from glycoproteins containing α-2,6-linked sialic acids to those that contain α-2,3 was associated with the onset of common types of arthritis. However, the pathophysiology of α-2,3-sialylation in cartilage has not been yet elucidated. We show that cartilage from osteoarthritic patients expresses high levels of the α-2,3-sialylated transmembrane mucin receptor, known as podoplanin (PDPN). Additionally, the Maackia amurensis seed lectin (MASL), that can be utilized to target PDPN, attenuates the inflammatory response mediated by NF-kB activation in primary chondrocytes and protects human cartilage breakdown ex vivo and in an animal model of arthritis. These findings reveal that specific lectins targeting α-2,3-sialylated receptors on chondrocytes might effectively inhibit cartilage breakdown. We also present a computational 3D molecular model for this interaction. These findings provide mechanistic information on how a specific lectin could be used as a novel therapy to treat degenerative joint diseases such as osteoarthritis.
Collapse
|
26
|
Expression of podoplanin correlates with prognosis in nasopharyngeal carcinoma. Eur Arch Otorhinolaryngol 2020; 277:1185-1190. [PMID: 31955212 DOI: 10.1007/s00405-020-05785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE Podoplanin is a membrane-bound glycoprotein that plays a role in lymphangiogenesis. Several studies suggest a role of podoplanin in head-and-neck cancer. The purpose of the current study was to evaluate the role of podoplanin as a prognostic marker in nasopharyngeal carcinoma. METHODS In a monocentric retrospective analysis, data of 42 patients with primary diagnosis of nasopharyngeal carcinoma (diagnosed between 2004 and 2017) were examined regarding the relationship between the immunohistochemically analyzed podoplanin expression status and corresponding clinical and oncological parameters. RESULTS The mean age was 56.6 years. The majority (61.9%) had an advanced tumor stage (T3-T4). The 5-year overall survival was 54%. 33% showed a positive expression of podoplanin. In patients with tumors with podoplanin expression, 5-year overall survival was 15%, while in patients with tumors without podoplanin expression, 5-year overall survival was 75% (p = 0.017, univariate analysis). In multivariate analysis, podoplanin expression was shown to be the only independent prognostic marker for nasopharyngeal carcinoma (p = 0.025). CONCLUSION This retrospective study shows that podoplanin expression is a potential prognostic marker for nasopharyngeal carcinomas. In the future, clinical use could filter out more aggressive courses and allow therapy escalation in those cases.
Collapse
|
27
|
Sano M, Kaneko MK, Kato Y. Epitope Mapping of Monoclonal Antibody PMab-233 Against Tasmanian Devil Podoplanin. Monoclon Antib Immunodiagn Immunother 2019; 38:261-265. [DOI: 10.1089/mab.2019.0032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
28
|
Yamada S, Itai S, Furusawa Y, Kaneko MK, Kato Y. Epitope Mapping of Antipig Podoplanin Monoclonal Antibody PMab-213. Monoclon Antib Immunodiagn Immunother 2019; 38:224-229. [DOI: 10.1089/mab.2019.0023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunsuke Itai
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
29
|
Takei J, Itai S, Harada H, Furusawa Y, Miwa T, Fukui M, Nakamura T, Sano M, Sayama Y, Yanaka M, Handa S, Hisamatsu K, Nakamura Y, Yamada S, Kaneko MK, Kato Y. Characterization of Anti-Goat Podoplanin Monoclonal Antibody PMab-235 Using Immunohistochemistry Against Goat Tissues. Monoclon Antib Immunodiagn Immunother 2019; 38:213-219. [DOI: 10.1089/mab.2019.0022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunsuke Itai
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- ZENOAQ RESOURCE CO., LTD., Koriyama, Japan
| | | | | | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kayo Hisamatsu
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshimi Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
30
|
Kato Y, Takei J, Furusawa Y, Sayama Y, Sano M, Konnai S, Kobayashi A, Harada H, Takahashi M, Suzuki H, Yamada S, Kaneko MK. Epitope Mapping of Anti-Bear Podoplanin Monoclonal Antibody PMab-247. Monoclon Antib Immunodiagn Immunother 2019; 38:230-233. [PMID: 31535919 DOI: 10.1089/mab.2019.0025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Podoplanin (PDPN)/T1alpha is a type I transmembrane sialoglycoprotein, which is expressed on podocytes of the kidneys and type I alveolar cells of the lungs. PDPN is also known as Aggrus, a platelet aggregation-inducing factor, which comprises three platelet aggregation-stimulating (PLAG) domains (PLAG1, PLAG2, and PLAG3) in the N-terminus and PLAG-like domains (PLDs) in the middle of the PDPN protein. We have previously established a mouse anti-bear PDPN (bPDPN) monoclonal antibody (mAb) clone, PMab-247 using the Cell-Based Immunization and Screening (CBIS) method. PMab-247 is very useful in flow cytometry, Western blotting, and immunohistochemical (IHC) analyses; however, the binding epitope of PMab-247 has not been elucidated. In this study, we aimed to investigate the epitope of PMab-247 using enzyme-linked immunosorbent assay and IHC analyses. The results revealed that the critical epitopes of PMab-247 are Asp76, Arg78, Glu80, and Arg82 of bPDPN. The Glu80 and Arg82 are included in PLD of bPDPN. The findings of our study can be applied to the production of more functional anti-bPDPN mAbs.
Collapse
Affiliation(s)
- Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan.,New Industry Creation Hatchery Center, Tohoku University, Miyagi, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan.,New Industry Creation Hatchery Center, Tohoku University, Miyagi, Japan
| | - Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Maki Takahashi
- Department of Pathology and Laboratory Medicine, Sendai Medical Center, Miyagi, Japan
| | - Hiroyoshi Suzuki
- Department of Pathology and Laboratory Medicine, Sendai Medical Center, Miyagi, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
| |
Collapse
|
31
|
Furusawa Y, Kaneko MK, Nakamura T, Itai S, Fukui M, Harada H, Yamada S, Kato Y. Establishment of a Monoclonal Antibody PMab-231 for Tiger Podoplanin. Monoclon Antib Immunodiagn Immunother 2019; 38:89-95. [PMID: 31009336 DOI: 10.1089/mab.2019.0003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Podoplanin (PDPN), also known as T1alpha, has been used as a lung type I alveolar cell marker in the pathophysiological condition. Although we have established several monoclonal antibodies (mAbs) against mammalian PDPNs, mAbs against tiger PDPN (tigPDPN), which are useful for immunohistochemical analysis, remain to be developed. In this study, we immunized mice with tigPDPN-overexpressing Chinese hamster ovary (CHO)-K1 cells (CHO/tigPDPN) and screened hybridomas producing mAbs against tigPDPN using flow cytometry. One of the mAbs, PMab-231 (IgG2a, kappa), specifically detected CHO/tigPDPN cells using flow cytometry as well as recognized tigPDPN protein using western blotting. In addition, PMab-231 was found to cross-react with cat PDPN (cPDPN). The dissociation constants (KD) of PMab-231 for CHO/tigPDPN and CHO/cPDPN cells were determined to be 1.2 × 10-8 and 1.9 × 10-8, respectively, indicating moderate affinity for CHO/tigPDPN and CHO/cPDPN cells. PMab-231 stained type I alveolar cells of the feline lungs and podocytes of the feline kidneys using immunohistochemistry. Our findings suggest the potential usefulness of PMab-231 for the functional analyses of tigPDPN and cPDPN.
Collapse
Affiliation(s)
- Yoshikazu Furusawa
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,2 New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan.,3 Zenoaq Resource Co., Ltd., Koriyama, Japan
| | - Mika K Kaneko
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunsuke Itai
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,4 Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | | | - Hiroyuki Harada
- 4 Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Shinji Yamada
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,2 New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
32
|
Takei J, Furusawa Y, Yamada S, Nakamura T, Sayama Y, Sano M, Konnai S, Kobayashi A, Harada H, Kaneko MK, Kato Y. PMab-247 Detects Bear Podoplanin in Immunohistochemical Analysis. Monoclon Antib Immunodiagn Immunother 2019; 38:171-174. [PMID: 31313968 DOI: 10.1089/mab.2019.0019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Podoplanin (PDPN) is utilized as a specific marker of type I alveolar cells of lung and lymphatic endothelial cells of every tissue. Therefore, sensitive and specific monoclonal antibodies detecting PDPN are necessary for immunohistochemical analyses, especially using formalin-fixed paraffin-embedded tissues. Recently, we developed an anti-bear PDPN (bPDPN) mAb, PMab-247, which is useful for Western blot, flow cytometry, and immunohistochemical analyses. In this study, immunohistochemical analyses showed that PMab-247 strongly detected bPDPN, which is expressed in type I alveolar cells and lymphatic endothelial cells of bear lung and podocytes of bear kidney. These findings suggest that PMab-247 could be useful for pathophysiological analyses using immunohistochemistry.
Collapse
Affiliation(s)
- Junko Takei
- 1Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,2Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshikazu Furusawa
- 1Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,3New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Shinji Yamada
- 1Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- 1Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Sayama
- 1Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- 1Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Konnai
- 4Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,5Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Atsushi Kobayashi
- 6Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Harada
- 2Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mika K Kaneko
- 1Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- 1Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,3New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
33
|
Furusawa Y, Yamada S, Nakamura T, Sano M, Sayama Y, Itai S, Takei J, Harada H, Fukui M, Kaneko MK, Kato Y. PMab-235: A monoclonal antibody for immunohistochemical analysis against goat podoplanin. Heliyon 2019; 5:e02063. [PMID: 31338471 PMCID: PMC6626078 DOI: 10.1016/j.heliyon.2019.e02063] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 07/05/2019] [Indexed: 02/09/2023] Open
Abstract
Sensitive and specific monoclonal antibodies (mAbs) against not only human but also mouse, rat, rabbit, dog, cat, bovine, pig, and horse podoplanins (PDPNs) have been established in our previous studies. However, anti-goat PDPN (gPDPN) has not been established yet. PDPN has been utilized as a lymphatic endothelial cell marker especially in pathological diagnoses; therefore, mAbs for immunohistochemical analyses using formalin-fixed paraffin-embedded tissues are needed. Although we recently demonstrated that an anti-bovine PDPN mAb, PMab-44 cross-reacted with gPDPN, PMab-44 did not detect lymphatic endothelial cells in immunohistochemistry. In this study, we immunized mice with gPDPN-overexpressing Chinese hamster ovary (CHO)–K1 (CHO/gPDPN) cells, and screened mAbs against gPDPN using flow cytometry. One of the mAbs, PMab-235 (IgG1, kappa), specifically detected CHO/gPDPN cells by flow cytometry. Furthermore, PMab-235 strongly detected lung type I alveolar cells, renal podocytes, and lymphatic endothelial cells of colon by immunohistochemistry. These findings suggest that PMab-235 may be useful as a lymphatic endothelial cell marker for goat tissues.
Collapse
Affiliation(s)
- Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,ZENOAQ RESOURCE CO., LTD., 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima, 963-0196, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yusuke Sayama
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shunsuke Itai
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masato Fukui
- ZENOAQ RESOURCE CO., LTD., 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima, 963-0196, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
34
|
Podoplanin, a Potential Therapeutic Target for Nasopharyngeal Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7457013. [PMID: 31321241 PMCID: PMC6610758 DOI: 10.1155/2019/7457013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022]
Abstract
Introduction The role of podoplanin (PDPN) in nasopharyngeal carcinoma (NPC) is still unknown. The aims of this study were to investigate the expression and role of PDPN in NPC cells. Materials and Methods Immunofluorescence staining and functional tests were used to determine the effects of PDPN knockdown by siRNA in TW01 NPC cells. Microarray analysis was conducted to identify genes regulated by PDPN. The molecular mechanism of PDPN on NPC cells was further determined by Ingenuity Pathways Analysis (IPA). Results PDPN was expressed in most TW01 NPC cells. PDPN knockdown by siRNA decreased NPC cell proliferation, migration, and invasion. The microarray data showed 63 upregulated genes and 12 downregulated genes following PDPN knockdown. The top 5 most upregulated genes analyzed by IPA were IFI27, IFI44L, IFI6, OAS1, and TRIM22, and the most relevant pathway was the interferon signaling pathway. Conclusions To the best of our knowledge, this is the first report to show that knocking down PDPN leads to suppression of NPC cell proliferation, migration, and invasion. Our results suggest that PDPN may serve as a potential chemotherapeutic target for NPC treatment in the future.
Collapse
|
35
|
Kato Y, Yamada S, Furusawa Y, Itai S, Nakamura T, Yanaka M, Sano M, Harada H, Fukui M, Kaneko MK. PMab-213: A Monoclonal Antibody for Immunohistochemical Analysis Against Pig Podoplanin. Monoclon Antib Immunodiagn Immunother 2019; 38:18-24. [PMID: 30802179 DOI: 10.1089/mab.2018.0048] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Podoplanin (PDPN) is known to be expressed in normal tissues, including lymphatic endothelial cells, renal podocytes, and type I lung alveolar cells. Monoclonal antibodies (mAbs) against human, mouse, rat, rabbit, dog, cat, and bovine PDPN have already been established; however, mAbs against pig PDPN (pPDPN) are lacking. In the present study, mice were immunized with pPDPN-overexpressing Chinese hamster ovary (CHO)-K1 cells (CHO/pPDPN), and hybridomas producing mAbs against pPDPN were identified by flow cytometric screening. One of the mAbs, PMab-213 (IgG2b, kappa), could specifically detect CHO/pPDPN cells through flow cytometry and detect pPDPN through western blot analysis. KD of PMab-213 for CHO/pPDPN was determined to be 2.1 × 10-9 M, indicating a high affinity for CHO/pPDPN. Furthermore, PMab-213 strongly stained lymphatic endothelial cells, renal podocytes, and type I lung alveolar cells through immunohistochemistry. PMab-213 is expected to be useful in investigating the function of pPDPN.
Collapse
Affiliation(s)
- Yukinari Kato
- 1 New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan.,2 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinji Yamada
- 2 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikazu Furusawa
- 1 New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan.,2 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,3 ZENOAQ RESOURCE CO., LTD., Koriyama, Japan
| | - Shunsuke Itai
- 2 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,4 Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuro Nakamura
- 2 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- 2 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- 2 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Harada
- 4 Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Mika K Kaneko
- 2 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
36
|
Kato Y, Furusawa Y, Itai S, Takei J, Nakamura T, Sano M, Harada H, Yamada S, Kaneko MK. Establishment of an Anticetacean Podoplanin Monoclonal Antibody PMab-237 for Immunohistochemical Analysis. Monoclon Antib Immunodiagn Immunother 2019; 38:108-113. [PMID: 31161965 DOI: 10.1089/mab.2019.0013] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Podoplanin (PDPN) has been utilized as a lymphatic endothelial cell marker especially in pathological diagnoses. Therefore, sensitive and specific monoclonal antibodies (mAbs) targeting PDPN are needed for immunohistochemical analyses using formalin-fixed paraffin-embedded tissues. Recently, anti-PDPN mAbs against many species, such as human, mouse, rat, rabbit, dog, cat, bovine, pig, and horse were established in our studies. However, anticetacean (whale) PDPN (wPDPN) has not been established yet. In this study, we immunized mice with wPDPN-overexpressing Chinese hamster ovary (CHO)-K1 (CHO/wPDPN) cells, and screened mAbs against wPDPN using flow cytometry. One of the mAbs, PMab-237 (IgG1, kappa), specifically detected CHO/wPDPN cells by flow cytometry and immunohistochemistry. Our findings suggest the potential usefulness of PMab-237 for the functional analyses of wPDPN.
Collapse
Affiliation(s)
- Yukinari Kato
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,2 New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Yoshikazu Furusawa
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,2 New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Shunsuke Itai
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,3 Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junko Takei
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,3 Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuro Nakamura
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Harada
- 3 Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Yamada
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
37
|
Yamada S, Itai S, Nakamura T, Takei J, Sano M, Konnai S, Kobayashi A, Nakagun S, Kobayashi Y, Kaneko MK, Kato Y. Immunohistochemical Analysis of the Harbor Porpoise Using Antipodoplanin Antibody PMab-237. Monoclon Antib Immunodiagn Immunother 2019; 38:104-107. [PMID: 31161964 DOI: 10.1089/mab.2019.0014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Podoplanin (PDPN)/T1 alpha is known as a specific marker of lymphatic endothelial cells and type I alveolar cells. Sensitive and specific monoclonal antibodies (mAbs) for PDPN are needed for immunohistochemical analyses. Recently, we developed an anticetacean PDPN mAb, PMab-237. Herein, immunohistochemical analyses showed that PMab-237 strongly detected pulmonary type I alveolar cells, renal podocytes, and lymphatic endothelial cells of the harbor porpoise. These findings suggest that PMab-237 may be useful for immunohistochemical analyses for cetacean tissues.
Collapse
Affiliation(s)
- Shinji Yamada
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunsuke Itai
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Konnai
- 2 Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,3 Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Atsushi Kobayashi
- 4 Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shotaro Nakagun
- 5 Laboratory of Veterinary Pathology, Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yoshiyasu Kobayashi
- 5 Laboratory of Veterinary Pathology, Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mika K Kaneko
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,6 New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
38
|
Takei J, Itai S, Furusawa Y, Yamada S, Nakamura T, Sano M, Harada H, Fukui M, Kaneko MK, Kato Y. Epitope Mapping of Anti-Tiger Podoplanin Monoclonal Antibody PMab-231. Monoclon Antib Immunodiagn Immunother 2019; 38:129-132. [DOI: 10.1089/mab.2019.0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunsuke Itai
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- ZENOAQ RESOURCE CO., LTD., Koriyama, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
39
|
Kato Y, Yamada S, Itai S, Kobayashi A, Konnai S, Kaneko MK. Anti-Horse Podoplanin Monoclonal Antibody PMab-219 is Useful for Detecting Lymphatic Endothelial Cells by Immunohistochemical Analysis. Monoclon Antib Immunodiagn Immunother 2019; 37:272-274. [PMID: 30592702 DOI: 10.1089/mab.2018.0044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Podoplanin (PDPN) is expressed in lymphatic endothelial cells, where it induces platelet aggregation through C-type lectin-like receptor-2 (CLEC-2). This protein has been characterized for a number of animal species using specific anti-PDPN monoclonal antibodies (mAbs). We recently established the mAb against horse PDPN (horPDPN) named PMab-219. Therefore, in this study, we investigated whether PMab-219 can detect lymphatic endothelial cells in horse tissues. Immunohistochemical analysis demonstrated that PMab-219 strongly stained lymphatic endothelial cells in horse colon tissues, indicating that it will be useful for investigating the function of horPDPN in these cells.
Collapse
Affiliation(s)
- Yukinari Kato
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Sendai, Miyagi, Japan .,2 New Industry Creation Hatchery Center, Tohoku University , Sendai, Miyagi, Japan
| | - Shinji Yamada
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Sendai, Miyagi, Japan
| | - Shunsuke Itai
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Sendai, Miyagi, Japan
| | - Atsushi Kobayashi
- 3 Laboratory of Comparative Pathology, Faculty of Veterinary Medicine, Hokkaido University , Sapporo, Japan
| | - Satoru Konnai
- 4 Laboratory of Infectious Diseases, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University , Sapporo, Japan .,5 Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University , Sapporo, Japan
| | - Mika K Kaneko
- 1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine , Sendai, Miyagi, Japan
| |
Collapse
|
40
|
Kato Y, Furusawa Y, Yamada S, Itai S, Takei J, Sano M, Kaneko MK. Establishment of a monoclonal antibody PMab-225 against alpaca podoplanin for immunohistochemical analyses. Biochem Biophys Rep 2019; 18:100633. [PMID: 30997422 PMCID: PMC6451175 DOI: 10.1016/j.bbrep.2019.100633] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/02/2019] [Accepted: 03/27/2019] [Indexed: 01/06/2023] Open
Abstract
Podoplanin (PDPN) is known as a lymphatic endothelial cell marker. Monoclonal antibodies (mAbs) against human, mouse, rat, rabbit, dog, cat, bovine, pig, and horse PDPN have been established in our previous studies. However, mAbs against alpaca PDPN (aPDPN), required for immunohistochemical analysis, remain to be developed. In the present study, we employed the Cell-Based Immunization and Screening (CBIS) method for producing anti-aPDPN mAbs. We immunized mice with aPDPN-overexpressing Chinese hamster ovary (CHO)-K1 cells (CHO/aPDPN), and hybridomas producing mAbs against aPDPN were screened using flow cytometry. One of the mAbs, PMab-225 (IgG2b, kappa), specifically detected CHO/aPDPN cells via flow cytometry and recognized the aPDPN protein on Western blotting. Further, PMab-225 strongly stained lung type I alveolar cells, colon lymphatic endothelial cells, and kidney podocytes via immunohistochemistry. These findings demonstrate that PMab-225 antibody is useful to investigate the function of aPDPN via different techniques. PDPN is known as a specific lymphatic endothelial cell (LEC) marker. Sensitive and specific PMab-225 mAb against alpaca PDPN was produced. PMab-225 strongly reacted with alpaca PDPN in flow cytometry. PMab-225 is useful for IHC using paraffin-embedded cell sections.
Collapse
Key Words
- Alpaca podoplanin
- CBIS, Cell-Based Immunization and Screening
- CHO, Chinese hamster ovary
- CLEC-2, C-type lectin-like receptor-2
- DAB, 3,3′-diaminobenzidine tetrahydrochloride
- PBS, phosphate-buffered saline
- PDPN
- PDPN, podoplanin
- PMab-225
- PVDF, polyvinylidene difluoride
- SDS, sodium dodecyl sulfate
- aPDPN, alpaca podoplanin
- hPDPN, human podoplanin
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Yukinari Kato
- New Industry Creation Hatchery Center, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yoshikazu Furusawa
- New Industry Creation Hatchery Center, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shunsuke Itai
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
41
|
Kaneko MK, Furusawa Y, Sano M, Itai S, Takei J, Harada H, Fukui M, Yamada S, Kato Y. Epitope Mapping of the Antihorse Podoplanin Monoclonal Antibody PMab-202. Monoclon Antib Immunodiagn Immunother 2019; 38:79-84. [DOI: 10.1089/mab.2019.0001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- ZENOAQ Resource Co., Ltd., Koriyama, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunsuke Itai
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
42
|
Furusawa Y, Yamada S, Itai S, Nakamura T, Takei J, Sano M, Harada H, Fukui M, Kaneko MK, Kato Y. Establishment of a monoclonal antibody PMab-233 for immunohistochemical analysis against Tasmanian devil podoplanin. Biochem Biophys Rep 2019; 18:100631. [PMID: 30984883 PMCID: PMC6446048 DOI: 10.1016/j.bbrep.2019.100631] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022] Open
Abstract
Monoclonal antibodies (mAbs) against not only human, mouse, and rat but also rabbit, dog, cat, bovine, pig, and horse podoplanins (PDPNs) have been established in our previous studies. PDPN is used as a lymphatic endothelial cell marker in pathological diagnoses. However, mAbs against Tasmanian devil PDPN (tasPDPN), which are useful for immunohistochemical analysis, remain to be developed. Herein, mice were immunized with tasPDPN-overexpressing Chinese hamster ovary (CHO)-K1 (CHO/tasPDPN) cells, and hybridomas producing mAbs against tasPDPN were screened using flow cytometry. One of the mAbs, PMab-233 (IgG1, kappa), specifically detected CHO/tasPDPN cells by flow cytometry and recognized tasPDPN protein by western blotting. Furthermore, PMab-233 strongly detected CHO/tasPDPN cells by immunohistochemistry. These findings suggest that PMab-233 may be useful as a lymphatic endothelial cell marker of the Tasmanian devil. PDPN is known as a specific lymphatic endothelial cell (LEC) marker. Sensitive and specific PMab-233 mAb against Tasmanian devil PDPN was produced. PMab-233 strongly reacted with Tasmanian devil PDPN in flow cytometry. PMab-233 is useful for IHC using paraffin-embedded cell sections.
Collapse
Affiliation(s)
- Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.,ZENOAQ RESOURCE CO., LTD., 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima, 963-0196, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shunsuke Itai
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Junko Takei
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masato Fukui
- ZENOAQ RESOURCE CO., LTD., 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima, 963-0196, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.,New Industry Creation Hatchery Center, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
43
|
Pharmacophore-guided discovery of CDC25 inhibitors causing cell cycle arrest and tumor regression. Sci Rep 2019; 9:1335. [PMID: 30718768 PMCID: PMC6362118 DOI: 10.1038/s41598-019-38579-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/10/2018] [Indexed: 01/27/2023] Open
Abstract
CDC25 phosphatases play a key role in cell cycle transitions and are important targets for cancer therapy. Here, we set out to discover novel CDC25 inhibitors. Using a combination of computational methods, we defined a minimal common pharmacophore in established CDC25 inhibitors and performed virtual screening of a proprietary library. Based on the availability of crystal structures for CDC25A and CDC25B, we implemented a molecular docking strategy and carried out hit expansion/optimization. Enzymatic assays revealed that naphthoquinone scaffolds were the most promising CDC25 inhibitors among selected hits. At the molecular level, the compounds acted through a mixed-type mechanism of inhibition of phosphatase activity, involving reversible oxidation of cysteine residues. In 2D cell cultures, the compounds caused arrest of the cell cycle at the G1/S or at the G2/M transition. Mitotic markers analysis and time-lapse microscopy confirmed that CDK1 activity was impaired and that mitotic arrest was followed by death. Finally, the compounds induced differentiation, accompanied by decreased stemness properties, in intestinal crypt stem cell-derived Apc/K-Ras-mutant mouse organoids, and led to tumor regression and reduction of metastatic potential in zebrafish embryo xenografts used as in vivo model.
Collapse
|
44
|
Furusawa Y, Yamada S, Itai S, Nakamura T, Yanaka M, Sano M, Harada H, Fukui M, Kaneko MK, Kato Y. PMab-219: A monoclonal antibody for the immunohistochemical analysis of horse podoplanin. Biochem Biophys Rep 2019; 18:100616. [PMID: 30766925 PMCID: PMC6360987 DOI: 10.1016/j.bbrep.2019.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/08/2018] [Accepted: 01/27/2019] [Indexed: 01/08/2023] Open
Abstract
Monoclonal antibodies (mAbs) against human, mouse, rat, rabbit, dog, cat, and bovine podoplanin (PDPN), a lymphatic endothelial cell marker, have been established in our previous studies. However, mAbs against horse PDPN (horPDPN), which are useful for immunohistochemical analysis, remain to be developed. In the present study, mice were immunized with horPDPN-overexpressing Chinese hamster ovary (CHO)-K1 cells (CHO/horPDPN), and hybridomas producing mAbs against horPDPN were screened using flow cytometry. One of the mAbs, PMab-219 (IgG2a, kappa), specifically detected CHO/horPDPN cells via flow cytometry and recognized horPDPN protein using Western blotting. Furthermore, PMab-219 strongly stained CHO/horPDPN via immunohistochemistry. These findings suggest that PMab-219 is useful for investigating the function of horPDPN. PDPN is known as a specific lymphatic endothelial cell (LEC) marker. Sensitive and specific PMab-219 mAb against horse PDPN was produced. PMab-219 reacted with a horse renal cell line sensitively in flow cytometry. PMab-219 is useful for IHC using paraffin-embedded cell sections.
Collapse
Key Words
- CBIS, Cell-Based Immunization and Screening
- CHO, Chinese hamster ovary
- CLEC-2, C-type lectin-like receptor-2
- DAB, 3,3'-diaminobenzidine tetrahydrochloride
- ELISA, enzyme-linked immunosorbent assay
- Horse podoplanin
- PBS, phosphate-buffered saline
- PDPN
- PDPN, podoplanin
- PMab-219
- PVDF, polyvinylidene difluoride
- SDS, sodium dodecyl sulfate
- hPDPN, human podoplanin
- horPDPN, horse podoplanin
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- New Industry Creation Hatchery Center, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- ZENOAQ RESOURCE CO., LTD, 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima, 963-0196, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Shunsuke Itai
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masato Fukui
- ZENOAQ RESOURCE CO., LTD, 1-1 Tairanoue, Sasagawa, Asaka-machi, Koriyama, Fukushima, 963-0196, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- New Industry Creation Hatchery Center, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
- Corresponding author.New Industry Creation Hatchery Center, Tohoku University, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
45
|
Furusawa Y, Yamada S, Itai S, Sano M, Nakamura T, Yanaka M, Fukui M, Harada H, Mizuno T, Sakai Y, Takasu M, Kaneko MK, Kato Y. PMab-210: A Monoclonal Antibody Against Pig Podoplanin. Monoclon Antib Immunodiagn Immunother 2019; 38:30-36. [DOI: 10.1089/mab.2018.0038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- ZENOAQ RESOURCE CO., LTD., Koriyama, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunsuke Itai
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
46
|
Krishnan H, Miller WT, Blanco FJ, Goldberg GS. Src and podoplanin forge a path to destruction. Drug Discov Today 2019; 24:241-249. [DOI: 10.1016/j.drudis.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/18/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
|
47
|
Pramudya I, Chung H. Recent progress of glycopolymer synthesis for biomedical applications. Biomater Sci 2019; 7:4848-4872. [DOI: 10.1039/c9bm01385g] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glycopolymers are an important class of biomaterials which include carbohydrate moieties in their polymer structure.
Collapse
Affiliation(s)
- Irawan Pramudya
- Department of Chemical and Biomedical Engineering
- Florida State University
- Tallahassee
- USA
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering
- Florida State University
- Tallahassee
- USA
| |
Collapse
|
48
|
Furusawa Y, Yamada S, Itai S, Sano M, Nakamura T, Yanaka M, Handa S, Mizuno T, Maeda K, Fukui M, Harada H, Kaneko MK, Kato Y. Establishment of Monoclonal Antibody PMab-202 Against Horse Podoplanin. Monoclon Antib Immunodiagn Immunother 2018; 37:233-237. [DOI: 10.1089/mab.2018.0030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Yoshikazu Furusawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi, Japan
- ZENOAQ RESOURCE CO., LTD., Koriyama, Fukushima, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shunsuke Itai
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Saori Handa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Takuya Mizuno
- Laboratories of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ken Maeda
- Laboratories of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masato Fukui
- ZENOAQ RESOURCE CO., LTD., Koriyama, Fukushima, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
49
|
Krishnan H, Rayes J, Miyashita T, Ishii G, Retzbach EP, Sheehan SA, Takemoto A, Chang Y, Yoneda K, Asai J, Jensen L, Chalise L, Natsume A, Goldberg GS. Podoplanin: An emerging cancer biomarker and therapeutic target. Cancer Sci 2018; 109:1292-1299. [PMID: 29575529 PMCID: PMC5980289 DOI: 10.1111/cas.13580] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/02/2018] [Accepted: 03/10/2018] [Indexed: 01/13/2023] Open
Abstract
Podoplanin (PDPN) is a transmembrane receptor glycoprotein that is upregulated on transformed cells, cancer associated fibroblasts and inflammatory macrophages that contribute to cancer progression. In particular, PDPN increases tumor cell clonal capacity, epithelial mesenchymal transition, migration, invasion, metastasis and inflammation. Antibodies, CAR-T cells, biologics and synthetic compounds that target PDPN can inhibit cancer progression and septic inflammation in preclinical models. This review describes recent advances in how PDPN may be used as a biomarker and therapeutic target for many types of cancer, including glioma, squamous cell carcinoma, mesothelioma and melanoma.
Collapse
Affiliation(s)
- Harini Krishnan
- Department of Physiology and BiophysicsStony Brook UniversityStony BrookNYUSA
| | - Julie Rayes
- Institute of Cardiovascular ScienceCollege of Medical and Dental SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - Tomoyuki Miyashita
- Division of PathologyExploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaChibaJapan
- Laboratory of Cancer BiologyDepartment of Integrated BiosciencesGraduate School of Frontier SciencesThe University of TokyoKashiwaChibaJapan
| | - Genichiro Ishii
- Division of PathologyExploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaChibaJapan
- Laboratory of Cancer BiologyDepartment of Integrated BiosciencesGraduate School of Frontier SciencesThe University of TokyoKashiwaChibaJapan
| | - Edward P. Retzbach
- Graduate School of Biomedical Sciences and Department of Molecular BiologyRowan University School of Osteopathic MedicineStratfordNJUSA
| | - Stephanie A. Sheehan
- Graduate School of Biomedical Sciences and Department of Molecular BiologyRowan University School of Osteopathic MedicineStratfordNJUSA
| | - Ai Takemoto
- Division of Experimental ChemotherapyThe Cancer Chemotherapy CenterJapanese Foundation for Cancer ResearchTokyoJapan
| | - Yao‐Wen Chang
- Graduate Institute of Biomedical SciencesCollege of MedicineChang Gung UniversityTaoyuanTaiwanChina
| | - Kazue Yoneda
- Second Department of Surgery (Chest Surgery)University of Occupational and Environmental healthKitakyushuFukuokaJapan
| | - Jun Asai
- Department of DermatologyKyoto Prefectural University of Medicine Graduate School of Medical ScienceKyotoJapan
| | - Lasse Jensen
- Division of Cardiovascular MedicineDepartment of Medical and Health SciencesLinköping UniversityLinköpingSweden
| | - Lushun Chalise
- Department of NeurosurgeryNagoya University School of MedicineNagoyaJapan
| | - Atsushi Natsume
- Department of NeurosurgeryNagoya University School of MedicineNagoyaJapan
| | - Gary S. Goldberg
- Graduate School of Biomedical Sciences and Department of Molecular BiologyRowan University School of Osteopathic MedicineStratfordNJUSA
| |
Collapse
|
50
|
Kaptan E, Sancar‐Bas S, Sancakli A, Bektas S, Bolkent S. The effect of plant lectins on the survival and malignant behaviors of thyroid cancer cells. J Cell Biochem 2018; 119:6274-6287. [DOI: 10.1002/jcb.26875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Engin Kaptan
- Department of BiologyFaculty of ScienceIstanbul UniversityVeznecilerIstanbulTurkey
| | - Serap Sancar‐Bas
- Department of BiologyFaculty of ScienceIstanbul UniversityVeznecilerIstanbulTurkey
| | - Aylin Sancakli
- Department of BiologyFaculty of ScienceIstanbul UniversityVeznecilerIstanbulTurkey
| | - Suna Bektas
- Department of BiologyFaculty of ScienceIstanbul UniversityVeznecilerIstanbulTurkey
| | - Sehnaz Bolkent
- Department of BiologyFaculty of ScienceIstanbul UniversityVeznecilerIstanbulTurkey
| |
Collapse
|