1
|
Fries BD, Hummon AB. FAS Inhibited Proteomics and Phosphoproteomics Profiling of Colorectal Cancer Spheroids Shows Activation of Ferroptotic Death Mechanism. J Proteome Res 2024; 23:3904-3916. [PMID: 39079039 DOI: 10.1021/acs.jproteome.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Colorectal cancer (CRC) is projected to become the third most diagnosed and third most fatal cancer in the United States by 2024, with early onset CRC on the rise. Research is constantly underway to discover novel therapeutics for the treatment of various cancers to improve patient outcomes and survival. Fatty acid synthase (FAS) has become a druggable target of interest for the treatment of many different cancers. One such inhibitor, TVB-2640, has gained popularity for its high specificity for FAS and has entered a phase 1 clinical trial for the treatment of solid tumors. However, the distinct molecular differences that occur upon inhibition of FAS have yet to be understood. Here, we conduct proteomics and phosphoproteomics analyses on HCT 116 and HT-29 CRC spheroids inhibited with either a generation 1 (cerulenin) or generation 2 (TVB-2640) FAS inhibitor. Proteins involved in lipid metabolism and cellular respiration were altered in abundance. It was also observed that proteins involved in ferroptosis─an iron mediated form of cell death─were altered. These results show that HT-29 spheroids exposed to cerulenin or TVB-2640 are undergoing a ferroptotic death mechanism. The data were deposited to the ProteomeXchange Consortium via the PRIDE repository with the identifier PXD050987.
Collapse
Affiliation(s)
- Brian D Fries
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Li GJ, Xiang Y, Yang JY, Weiskirchen R, Feng R, Zhai WL. Promotion of hepatocellular carcinoma stemness and progression by abnormal spindle-like microcephaly-associated protein via the Wnt/β-catenin pathway. J Gastrointest Oncol 2024; 15:1613-1626. [PMID: 39279956 PMCID: PMC11399842 DOI: 10.21037/jgo-24-406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024] Open
Abstract
Background Cancer stem cells (CSCs) play a crucial role in tumor recurrence and metastasis, which are the primary causes of death in patients with hepatocellular carcinoma (HCC). Currently, no drug effectively blocks the recurrence and metastasis of liver cancer, leading to a poor prognosis for patients. To enhance treatment outcomes, there is an urgent need to investigate the molecular mechanisms behind the recurrence and progression of liver cancer, with the aim of identifying effective therapeutic targets. Targeting HCC stemness can improve the prognosis of patients with HCC. Abnormal spindle-like microcephaly-associated protein (ASPM) plays a pivotal role in regulating neurogenesis and brain size, which is a centrosome protein. ASPM has been implicated in tumorigenesis and tumor progression, but its regulatory role in HCC stemness is not well understood. This study aims to investigate the role of ASPM in liver cancer stemness and elucidate its potential molecular mechanisms. Methods Bioinformatics analysis was used to study the expression of ASPM and its clinical significance in HCC. In vitro and in vivo assays were conducted to clarify the impact of ASPM knockdown on HCC cell stemness. The correlation between ASPM and the Wnt/β-catenin pathway was examined through analysis of online databases and in vitro experiments. Results The bioinformatics analysis revealed significant upregulation of ASPM was significantly upregulated in HCC samples, with expression correlating with poor prognosis. In vitro experimental data confirmed elevated ASPM expression in HCC cells compared to normal hepatocytes. Knockdown of ASPM suppressed HCC cell growth, clone formation, spheroid formation, migration, invasion, and the expression of CSC markers CD133 and CD44. This also inhibited the activation of the Wnt/β-catenin pathway. Reactivation of this pathway partially reversed the biological changes induced by ASPM knockdown in HCC cells. Additionally, in vivo data demonstrated that ASPM downregulation reduced the size and weight of xenografts in BALB/c mice, along with decreased expression of CSC markers. Conclusions These findings suggest that ASPM promotes HCC stemness and progression through the Wnt/β-catenin pathway. Targeting ASPM or the Wnt/β-catenin pathway may be a promising strategy to prevent HCC chemoresistance and recurrence, ultimately improving patient prognosis.
Collapse
Affiliation(s)
- Gao-Jie Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Examination Centre of the First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Ying Xiang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ji-Yao Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital Aachen, Aachen, Germany
| | - Ruo Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wen-Long Zhai
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Jiang N, Li YB, Jin JY, Guo JY, Ding QR, Meng D, Zhi XL. Structural and functional insights into the epigenetic regulator MRG15. Acta Pharmacol Sin 2024; 45:879-889. [PMID: 38191914 PMCID: PMC11053006 DOI: 10.1038/s41401-023-01211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
MORF4-related gene on chromosome 15 (MRG15), a chromatin remodeller, is evolutionally conserved and ubiquitously expressed in mammalian tissues and cells. MRG15 plays vital regulatory roles in DNA damage repair, cell proliferation and division, cellular senescence and apoptosis by regulating both gene activation and gene repression via associations with specific histone acetyltransferase and histone deacetylase complexes. Recently, MRG15 has also been shown to rhythmically regulate hepatic lipid metabolism and suppress carcinoma progression. The unique N-terminal chromodomain and C-terminal MRG domain in MRG15 synergistically regulate its interaction with different cofactors, affecting its functions in various cell types. Thus, how MRG15 elaborately regulates target gene expression and performs diverse functions in different cellular contexts is worth investigating. In this review, we provide an in-depth discussion of how MRG15 controls multiple physiological and pathological processes.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yong-Bo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jia-Yu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jie-Yu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiu-Rong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xiu-Ling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Metzenmacher M, Hegedüs B, Forster J, Schramm A, Horn PA, Klein CA, Bielefeld N, Ploenes T, Aigner C, Siveke JT, Schuler M, Lueong SS. The clinical utility of cfRNA for disease detection and surveillance: A proof of concept study in non-small cell lung cancer. Thorac Cancer 2022; 13:2180-2191. [PMID: 35708207 PMCID: PMC9346179 DOI: 10.1111/1759-7714.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/01/2022] Open
Abstract
Background CT scans are used in routine clinical practice for the diagnosis and treatment surveillance of non‐small cell lung cancer (NSCLC). However, more sensitive methods are desirable. Liquid biopsy analyses of RNA and DNA can offer more sensitive diagnostic approaches. Cell‐free RNA (cfRNA) has been described in several malignancies, but its clinical utility has not previously been explored. Methods We evaluated the clinical utility of cfRNA for early detection and surveillance of tumor disease in a proof‐of‐concept study. Using real‐time‐droplet digital polymerase chain reaction we characterized a candidate transcript (MORF4L2) in plasma samples from 41 advanced stage, 38 early stage NSCLC and 39 healthy samples. We compared its diagnostic performance with tumor markers and evaluated its utility for disease monitoring. Results MORF4L2 cfRNA was more abundant in patients than in healthy donors (p < 0.0001). Using the Youden index approach (cutoff value of 537 copies/ml was established) with a sensitivity of 0.73 (95% CI: 0.61–0.82) and a specificity of 0.87 (95% CI: 0.73–0.96). Positive and negative predictive values of 0.92 (95% CI: 0.83–0.95) and 0.59 (95% CI: 0.47–0.83) were achieved. Combination of cfRNA and Cyfra21‐1 improved its predictive value from 89.5% to 94.7%. Low baseline MORF4L2 levels were associated with better overall survival (HR:0.25, 95% CI: 0.09–0.7, p = 0.009) and progression‐free survival for patients treated with tyrosine kinase inhibitors (p = 0.011) and chemotherapy (p = 0.019). MORF4L2 profile between baseline and follow‐up mirrored radiological response and tumor dynamics better than tumor markers. cfRNA transcripts allowed monitoring tumor dynamics in patients without tumor‐reported genetic alterations. Conclusion Our data support clinical utility of cfRNA for detection and surveillance of NSCLC. Further studies with larger cohorts are required.
Collapse
Affiliation(s)
- Martin Metzenmacher
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Thoracic Oncology, West German Cancer Center, University Medicine Essen Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Balazs Hegedüs
- Department of Thoracic Surgery, West German Cancer Center, University Medicine Essen Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Jan Forster
- German Cancer Consortium (DKTK), Partner site University Hospital Essen, Essen, Germany.,Chair for Genome Informatics, Department of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Alexander Schramm
- Laboratory for Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Christoph A Klein
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany.,Fraunhofer-Institute for Toxicology and Experimental Medicine, Division of Personalized Tumor Therapy, Regensburg, Germany
| | - Nicola Bielefeld
- German Cancer Consortium (DKTK), Partner site University Hospital Essen, Essen, Germany.,Bridge Institute of Experimental Tumor Therapy, West German Cancer Center and Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Till Ploenes
- Department of Thoracic Surgery, West German Cancer Center, University Medicine Essen Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery, West German Cancer Center, University Medicine Essen Ruhrlandklinik, University Duisburg-Essen, Essen, Germany
| | - Jens T Siveke
- German Cancer Consortium (DKTK), Partner site University Hospital Essen, Essen, Germany.,Bridge Institute of Experimental Tumor Therapy, West German Cancer Center and Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,Division of Thoracic Oncology, West German Cancer Center, University Medicine Essen Ruhrlandklinik, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner site University Hospital Essen, Essen, Germany
| | - Smiths S Lueong
- German Cancer Consortium (DKTK), Partner site University Hospital Essen, Essen, Germany.,Bridge Institute of Experimental Tumor Therapy, West German Cancer Center and Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| |
Collapse
|
5
|
Feng Z, Zhang J, Zheng Y, Liu J, Duan T, Tian T. Overexpression of abnormal spindle-like microcephaly-associated (ASPM) increases tumor aggressiveness and predicts poor outcome in patients with lung adenocarcinoma. Transl Cancer Res 2022; 10:983-997. [PMID: 35116426 PMCID: PMC8798794 DOI: 10.21037/tcr-20-2570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022]
Abstract
Background Cumulative evidence points to abnormal spindle-like microcephaly-associated (ASPM) protein being overexpressed in various cancers, and the aberrant expression of ASPM has been shown to promote cancer tumorigenicity and progression. However, its role and clinical significance in lung adenocarcinoma (LUAD) remains unclear. This study aimed to determine the expression patterns of ASPM and its clinical significance in LUAD. Methods In total, 4 original worldwide LUAD microarray mRNA expression datasets (N=1,116) with clinical and follow-up annotations were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. The expression of ASPM protein in LUAD patients was detected by immunohistochemistry. Survival analysis and Cox regression analysis were used to examine the prognostic value of ASPM expression. Gene set enrichment analysis (GSEA) was performed to investigate the relationship between ASPM and LUAD. Results Dataset analyses and immunohistochemistry revealed that ASPM expression was significantly higher in the LUAD tissues compared with normal lung tissues, especially in the advanced tumor stage. Additionally, overexpression of ASPM was significantly correlated with shorter overall survival (OS) and relapse-free survival (RFS) in LUAD. Univariate and multivariate Cox regression analyses revealed that the overexpression of ASPM was a potential independent predictor of poor OS and RFS. However, ASPM overexpression was not significantly associated with predicting OS in lung squamous cell carcinoma. GSEA analysis demonstrated that ASPM was significantly enriched in the cell cycle, DNA replication, homologous recombination, RNA degradation, mismatch repair, and p53 signaling pathways. Conclusions These findings demonstrate the important role of ASPM in the tumorigenesis and progression of LUAD.
Collapse
Affiliation(s)
- Zhenxing Feng
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jiao Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yafang Zheng
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin, China
| | - Jianchao Liu
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin, China
| | - Tianyu Duan
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin, China
| | - Tieshuan Tian
- Department of Radiation Oncology, Tianjin Chest Hospital, Tianjin Cardiovascular Disease Research Institute, Tianjin, China
| |
Collapse
|
6
|
Jiang L, Zhang S, An N, Chai G, Ye C. ASPM Promotes the Progression of Anaplastic Thyroid Carcinomas by Regulating the Wnt/ β-Catenin Signaling Pathway. Int J Endocrinol 2022; 2022:5316102. [PMID: 35387319 PMCID: PMC8977346 DOI: 10.1155/2022/5316102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Abnormal spindle-like microcephaly-associated protein (ASPM) is closely correlated with several malignant tumors, whereas little is known about the role of ASPM in anaplastic thyroid cancer (ATC). Herein, we sought to investigate whether ASPM is involved in the pathogenesis of ATC and the underlying mechanisms. METHODS The data from two data sets (GSE76039 and GSE33630) were extracted and analyzed for the expression of ASPM, followed by a further validation in collected ATC patients using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The effect of ASPM on cell proliferation, migration, invasion, and cell cycle was explored in ATC cell lines by in vitro inhibition of ASPM, while ASPM-mediated tumorigenicity was investigated in a xenograft tumor model. The involvement of Wnt/β-catenin signaling pathway was also investigated. RESULTS ASPM was overexpressed in ATC patients and cell lines. In vitro knockdown of ASPM inhibited the proliferation, migration, and invasion capabilities of ATC cells and induced cell cycle arrest. Wnt/β-catenin signaling was suppressed in response to ASPM inhibition, while rescue of β-catenin expression restored the impaired biological functions of ATC cells. In vivo transplantation of ASPM-knockdown cells inhibited the growth of tumors. CONCLUSIONS Upregulation of ASPM promotes the malignant properties of ATC cells and contributes to tumorigenesis through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Liang Jiang
- Department of Head and Neck Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhang
- Department of Head and Neck Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning An
- Department of Head and Neck Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoqing Chai
- Department of General Surgery, The Traditional Chinese Medicine Hospital of Jiangxia District, Wuhan, China
| | - Changhong Ye
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Cabral de Carvalho Corrêa D, Dias Oliveira I, Mascaro Cordeiro B, Silva FA, de Seixas Alves MT, Saba-Silva N, Capellano AM, Dastoli P, Cavalheiro S, Caminada de Toledo SR. Abnormal spindle-like microcephaly-associated (ASPM) gene expression in posterior fossa brain tumors of childhood and adolescence. Childs Nerv Syst 2021; 37:137-145. [PMID: 32591873 DOI: 10.1007/s00381-020-04740-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE In neurogenesis, ASPM (abnormal spindle-like microcephaly-associated) gene is expressed mainly in the ventricular zone of posterior fossa and is the major determinant in the cerebral cortex. Besides its role in embryonic development, ASPM overexpression promotes tumor growth, including central nervous system (CNS) tumors. This study aims to investigate ASPM expression levels in most frequent posterior fossa brain tumors of childhood and adolescence: medulloblastoma (MB), ependymoma (EPN), and astrocytoma (AS), correlating them with clinicopathological characteristics and tumor solid portion size. METHODS Quantitative reverse transcription (qRT-PCR) is used to quantify ASPM mRNA levels in 80 pre-treatment tumor samples: 28 MB, 22 EPN, and 30 AS. The tumor solid portion size was determined by IOP-GRAACC Diagnostic Imaging Center. We correlated these findings with clinicopathological characteristics and tumor solid portion size. RESULTS Our results demonstrated that ASPM gene was overexpressed in MB (p = 0.007) and EPN (p = 0.0260) samples. ASPM high expression was significantly associated to MB samples from patients with worse overall survival (p = 0.0123) and death due to disease progression (p = 0.0039). Interestingly, two patients with AS progressed toward higher grade showed ASPM overexpression (p = 0.0046). No correlation was found between the tumor solid portion size and ASPM expression levels in MB (p = 0.1154 and r = - 0.4825) and EPN (p = 0.1108 and r = - 0.3495) samples. CONCLUSION Taking in account that ASPM gene has several functions to support cell proliferation, as mitotic defects and premature differentiation, we suggest that its overexpression, presumably, plays a critical role in disease progression of posterior fossa brain tumors of childhood and adolescence.
Collapse
Affiliation(s)
- Débora Cabral de Carvalho Corrêa
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Morphology and Genetics, Division of Genetics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Indhira Dias Oliveira
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Bruna Mascaro Cordeiro
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Frederico Adolfo Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Imaging Diagnosis, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Maria Teresa de Seixas Alves
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Pathology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Nasjla Saba-Silva
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Andrea Maria Capellano
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Patrícia Dastoli
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Sergio Cavalheiro
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil.,Department of Neurology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Silvia Regina Caminada de Toledo
- Department of Pediatrics, Pediatric Oncology Institute-GRAACC, Federal University of São Paulo, São Paulo, SP, Brazil. .,Department of Morphology and Genetics, Division of Genetics, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Lin P, Liang LY, Dong YZ, Ren ZP, Zhao HJ, Li GS. Identification of Abnormal Spindle Microtubule Assembly as a Promising Therapeutic Target for Osteosarcoma. Orthop Surg 2020; 12:1963-1970. [PMID: 33078894 PMCID: PMC7767677 DOI: 10.1111/os.12796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
Objective To demonstrate the expression of abnormal spindle microtubule assembly (ASPM) in clinical osteosarcoma tissue specimens collected in our hospital, and to explore the function of ASPM in osteosarcoma in vitro and in vivo. Methods Tissue specimens from 82 cases of osteosarcoma were collected and analyzed by immunohistochemistry assay. We also investigated the relationship between ASPM expression and clinicopathological characteristics in the patients. We transfected shASPM plasmid and the empty control plasmid, respectively, and then used quantitative polymerase chain reaction and western blot analysis to detect ASPM expression. Cell colony assay and MTT were used to observe the proliferation ability. In vivo study was undertaken to explore the ASPM function further. Results In this study, ASPM showed high expression in osteosarcoma tissue samples compared with non‐tumor normal tissues. ASPM was positively correlated with clinical pathological characteristics, including tumor size (P = 0.024) and clinical stage (P = 0.045). Our results further showed that ASPM depletion dramatically inhibited the proliferation of osteosarcoma cells (with fewer cells in the sh‐RNA‐ASPM group compared with the control group(P < 0.05, respectively), and the in vivo assays further confirmed that ASPM ablation markedly blocked tumor growth compared with control (P < 0.05). Conclusion Our data provides strong evidence that the high expression of ASPM in osteosarcoma promotes proliferation in vitro and in vivo, indicating its potential role as an osteosarcoma therapeutic target.
Collapse
Affiliation(s)
- Peng Lin
- Department of Intensive Care Unit, Yantai Yuhuangding Hospital, Yantai, China
| | - Li-Yan Liang
- Department of Intensive Care Unit, Yantai Yuhuangding Hospital, Yantai, China
| | - Yao-Zhong Dong
- Department of Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Zhi-Peng Ren
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - He-Jun Zhao
- Department of Endocrinology, Tianjin First Center Hospital, Tianjin, China
| | - Gui-Shi Li
- Department of Joint Orthopaedics, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
9
|
Yuan YJ, Sun Y, Gao R, Yin ZZ, Yuan ZY, Xu LM. Abnormal spindle-like microcephaly-associated protein (ASPM) contributes to the progression of Lung Squamous Cell Carcinoma (LSCC) by regulating CDK4. J Cancer 2020; 11:5413-5423. [PMID: 32742488 PMCID: PMC7391212 DOI: 10.7150/jca.39760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is a type of malignant tumor with high morbidity and mortality. Due to its complicated etiology and clinical manifestations, no significant therapeutic advance has been made. Lung squamous cell carcinoma (LSCC) is the most common type of lung cancer. To combat this disease, novel therapeutic targets are badly requirement. ASPM (Abnormal spindle-like microcephaly-associated protein) is involved in multiple cellular or developmental processes, such as neurogenesis and brain growth. ASPM is also reported widely expressed in multiple tumor tissues and involved in the development and progression of several cancers including lung cancer. However, the potential role on ASPM on LSCC is still unclear. In this study, we reported that ASPM was related to the poor prognosis of patients with lung squamous cell carcinoma. Our results further showed that ASPM depletion dramatically inhibited the proliferation of LSCC cells, consistent with the obviously decreased of cyclin D1(CCND1) and cyclin dependent kinases 4 (CDK4) expression. In vivo assays further confirmed ASPM ablation markedly blocked tumor growth in vivo compared with control. In addition, a co-expression was found between ASPM and CDK4 in human tumor tissues. Taken together, our data provides strong evidence that ASPM promotes lung squamous cell carcinoma proliferation in vitro and in vivo, and indicates its potential role as a LSCC therapeutic target.
Collapse
Affiliation(s)
- Ya-Jing Yuan
- Department of Anesthesia, Tianjin medical university cancer institute & hospital, National clinical research center for cancer, Key laboratory of cancer prevention and therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yao Sun
- Department of Radiation Oncology, Tianjin medical university cancer institute & hospital, National clinical research center for cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, Tianjin, 300060, China
| | - Rong Gao
- Department of Pathology, Gansu Medical College, Pingliang City, Gansu Province, 744000, China
| | - Zhen-zhen Yin
- Department of Radiation Oncology, Tianjin medical university cancer institute & hospital, National clinical research center for cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, Tianjin, 300060, China
| | - Zhi-yong Yuan
- Department of Radiation Oncology, Tianjin medical university cancer institute & hospital, National clinical research center for cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, Tianjin, 300060, China
| | - Li-Ming Xu
- Department of Radiation Oncology, Tianjin medical university cancer institute & hospital, National clinical research center for cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's clinical research center for cancer, Tianjin, 300060, China
- Department of Radiation Oncology, Tianjin Medical University Cancer Hospital airport hospital, Tianjin, 300308, China
| |
Collapse
|
10
|
Shamsian A, Sepand MR, Javaheri Kachousangi M, Dara T, Ostad SN, Atyabi F, Ghahremani MH. Targeting Tumorigenicity of Breast Cancer Stem Cells Using SAHA/Wnt-b Catenin Antagonist Loaded Onto Protein Corona of Gold Nanoparticles. Int J Nanomedicine 2020; 15:4063-4078. [PMID: 32606664 PMCID: PMC7295335 DOI: 10.2147/ijn.s234636] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Among various theories for the origin of cancer, the "stemness phenotype model" suggests a dynamic feature for tumor cells in which non-cancer stem cells (non-CSCs) can inter-convert to CSCs. Differentiation with histone-deacetylase inhibitor, vorinostat (SAHA), can induce stem cells to differentiate as well as enforces non-CSCs to reprogram to CSCs. To avoid this undesirable effect, one can block the Wnt-βcatenin pathway. Thus, a dual delivery system of SAHA and a Wnt-βcatenin blocker will be beneficial in the induction of differentiation of CSCs. Protein corona (PC) formation in nanoparticle has a biologic milieu, and despite all problematic properties, it can be employed as a medium for dual loading of the drugs. MATERIALS AND METHODS We prepared sphere gold nanoparticles (GNPs) with human plasma protein corona loaded with SAHA as differentiating agent and PKF118-310 (PKF) as a Wnt-βcatenin antagonist. The MCF7 breast cancer stem cells were treated with NPs and the viability and differentiation were evaluated by Western blotting and sphere formation assay. RESULTS We found that both drugs loaded onto corona-capped GNPs had significant cytotoxicity in comparison to bare GNP-corona. Data demonstrated an increase in stem cell population and upregulation of mesenchymal marker, Snail by SAHA-loaded GNPs treatment; however, the combination of PKF loaded GNPs along with SAHA-loaded GNPs resulted in a reduction of stem cell populations and Snail marker. We have shown that in MCF7 and its CSCs simultaneous treatment with SAHA and PKF118-310 induced differentiation and inhibition of Snail induction. CONCLUSION Our study reveals the PC-coated GNPs as a biocompatible career for both hydrophilic (PKF) and hydrophobic (SAHA) agents which can decrease breast cancer stem cell populations along with reduced stemness state regression.
Collapse
Affiliation(s)
- Azam Shamsian
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sepand
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziye Javaheri Kachousangi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Dara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Wu Z, Zhang X, He Z, Hou L. Identifying candidate diagnostic markers for early stage of non-small cell lung cancer. PLoS One 2019; 14:e0225080. [PMID: 31726467 PMCID: PMC6855900 DOI: 10.1371/journal.pone.0225080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/28/2019] [Indexed: 11/19/2022] Open
Abstract
We performed a series of bioinformatics analysis on a set of important gene expression data with 76 samples in early stage of non-small cell lung cancer, including 40 adenocarcinoma samples, 16 squamous cell carcinoma samples and 20 normal samples. In order to identify the specific markers for diagnosis, we compared the two subtypes with the normal samples respectively to determine the gene expression characteristics. Through the multi-dimensional scaling classification, we found that the samples were clustered well according to the disease cases. Based on the classification results and using empirical Bayes moderation and treat method, 486 important genes associated with the disease were identified. We constructed gene functions and gene pathways to verify our result and explain the pathogenicity factor and process. We generated a protein-protein interaction network based on the mutual interaction between the selected genes and found that the top thirteen hub genes were highly associated with lung cancer or some other cancers including five newly found genes through our method. The results of this study indicated that contrast on the gene expression between different subtypes and normal samples provides important information for the detection of non-small cell lung cancer and helps exploration of the disease pathogenesis.
Collapse
Affiliation(s)
- Zhen Wu
- School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
| | - Xu Zhang
- School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
| | - Zhihui He
- Department of Pediatric Respiration, Chongqing Ninth People’s Hospital, Chongqing 400700, China
| | - Liyun Hou
- School of Mathematics and Statistics, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Ren J, Du Y, Li S, Ma S, Jiang Y, Wu C. Robust network-based regularization and variable selection for high-dimensional genomic data in cancer prognosis. Genet Epidemiol 2019; 43:276-291. [PMID: 30746793 PMCID: PMC6446588 DOI: 10.1002/gepi.22194] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022]
Abstract
In cancer genomic studies, an important objective is to identify prognostic markers associated with patients' survival. Network-based regularization has achieved success in variable selections for high-dimensional cancer genomic data, because of its ability to incorporate the correlations among genomic features. However, as survival time data usually follow skewed distributions, and are contaminated by outliers, network-constrained regularization that does not take the robustness into account leads to false identifications of network structure and biased estimation of patients' survival. In this study, we develop a novel robust network-based variable selection method under the accelerated failure time model. Extensive simulation studies show the advantage of the proposed method over the alternative methods. Two case studies of lung cancer datasets with high-dimensional gene expression measurements demonstrate that the proposed approach has identified markers with important implications.
Collapse
Affiliation(s)
- Jie Ren
- Department of Statistics, Kansas State University, Manhattan, KS
| | - Yinhao Du
- Department of Statistics, Kansas State University, Manhattan, KS
| | - Shaoyu Li
- Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC
| | - Shuangge Ma
- Department of Biostatistics, Yale University, New Haven, CT
| | - Yu Jiang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN
| | - Cen Wu
- Department of Statistics, Kansas State University, Manhattan, KS
| |
Collapse
|
13
|
Eriksson M, Hååg P, Brzozowska B, Lipka M, Lisowska H, Lewensohn R, Wojcik A, Viktorsson K, Lundholm L. Analysis of Chromatin Opening in Heterochromatic Non-Small Cell Lung Cancer Tumor-Initiating Cells in Relation to DNA-Damaging Antitumor Treatment. Int J Radiat Oncol Biol Phys 2017; 100:174-187. [PMID: 29107335 DOI: 10.1016/j.ijrobp.2017.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/31/2017] [Accepted: 09/14/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE We previously reported that sphere-forming non-small cell lung cancer (NSCLC) tumor-initiating cells (TICs) have an altered activation of DNA damage response- and repair proteins and are refractory to DNA-damaging treatments. We analyzed whether chromatin organization plays a role in the observed refractoriness. METHODS AND MATERIALS Bulk cells and TICs from the NSCLC H23 and H1299 cell lines were examined using cell viability, clonogenic survival, Western blot, short interfering RNA analysis, and micronucleus assay. RESULTS NSCLC TICs displayed elevated heterochromatin markers trimethylated lysine 9 of histone H3 and heterochromatin protein 1γ relative to bulk cells and reduced cell viability upon histone deacetylase inhibition (HDACi). Vorinostat and trichostatin A increased the euchromatin markers acetylated lysine 9/14 of histone H3 and lysine 8 of histone H4, and HDACi pretreatment increased the phosphorylation of the DNA damage response proteins ataxia telangiectasia mutated and DNA-dependent protein kinase, catalytic subunit, upon irradiation in TICs. HDACi sensitized TICs to cisplatin and to some extent to ionizing irradiation. The protectiveness of a dense chromatin structure was indicated by an enhanced frequency of micronuclei in TICs following irradiation, after knockdown of heterochromatin protein 1γ. CONCLUSIONS Although confirmatory studies in additional NSCLC model systems and with respect to analyses of other DNA damage response proteins are needed, our data point toward a heterochromatic structure of NSCLC TICs, such that HDACi can sensitize TICs to DNA damage.
Collapse
Affiliation(s)
- Mina Eriksson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Beata Brzozowska
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Poland
| | - Magdalena Lipka
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Halina Lisowska
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | | | - Lovisa Lundholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
14
|
Kuo WY, Hwu L, Wu CY, Lee JS, Chang CW, Liu RS. STAT3/NF-κB-Regulated Lentiviral TK/GCV Suicide Gene Therapy for Cisplatin-Resistant Triple-Negative Breast Cancer. Am J Cancer Res 2017; 7:647-663. [PMID: 28255357 PMCID: PMC5327640 DOI: 10.7150/thno.16827] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) represents approximately 20% of all breast cancers and appears resistance to conventional cytotoxic chemotherapy, demonstrating a particularly poor prognosis and a significantly worse clinical outcome than other types of cancer. Suicide gene therapy has been used for the in vivo treatment of various solid tumors in recent clinical trials. In tumor microenvironment, STAT3/NF-κB pathways are constitutively activated in stromal cells as well as in cancer stem cells (CSCs). In this study, we have cloned a novel STAT3/NF-κB-based reporter system to drive the expression of herpes simplex virus thymidine kinase (HSV-TK) against breast cancer. Lentiviral vector expressing HSV-TK under the regulation of STAT3/NF-κB fused response element was developed. In this setting, we exploited the constitutive STAT3/NF-κB activation in tumors to achieve higher transgene expression than that driven by a constitutively active CMV promotor in vivo. An orthotropic MDA-MB-231 triple negative breast cancer mouse model was used for evaluating the feasibility of STAT3-NF-κB-TK/GCV suicide gene therapy system. The basal promoter activity of Lenti-CMV-TK and Lenti-STAT3-NF-κB-TK in MDA-MB-231 cells was compared by 3H-FEAU uptake assay. The Lenti-CMV-TK showed ~5 fold higher 3H-FEAU uptake then Lenti -STAT3-NF-κB-TK. In clonogenic assay, cells expressing Lenti-CMV-TK were 2-fold more sensitive to GCV than Lenti-STAT3-NF-κB-TK transduced cells. In vitro effect of STAT3-NF-κB-induced transgene expression was determined by 10ng/mL TNF-α induction and confirmed by western blot analysis and DsRedm fluorescent microscopy. In vivo evaluation of therapeutic effect by bioluminescence and [18F]FHBG microPET imaging indicated that Lenti-STAT3-NF-κB-TK showed more tumor growth retardation than Lenti-CMV-TK when GCV (20 mg/kg) was administered. The invasiveness and expression of cancer stem cell markers were both decreased after STAT3/NF-κB-regulated HSV-TK/GCV therapy. Moreover, STAT3/NF-κB signaling targeting could further sensitize tumor cells to cisplatin. This study successfully established a theranositic approach to treat triple-negative breast cancer via STAT3-NF-κB responsive element-driven suicide gene therapy. This platform may also be an alternative strategy to handle with drug-resistant cancer cells.
Collapse
|