1
|
Liang Y, Yin X, Yao Y, Wang Y. Development of biomarker signatures associated with anoikis to predict prognosis in patients with esophageal cancer: An observational study. Medicine (Baltimore) 2024; 103:e39745. [PMID: 39465737 PMCID: PMC11460930 DOI: 10.1097/md.0000000000039745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 10/29/2024] Open
Abstract
Anoikis, a form of programmed cell death linked to cancer, has garnered significant research attention. Esophageal cancer (ESCA) ranks among the most prevalent malignant tumors and represents a major global health concern. To ascertain whether anoikis-related genes (ARGs) can accurately predict ESCA prognosis, we evaluated the predictive value and molecular mechanisms of ARGs in ESCA and constructed an optimal model for prognostic prediction. Using the Cancer Genome Atlas (TCGA)-ESCA database, we identified ARGs with differences in ESCA. ARG signatures were generated using Cox regression. A predictive nomogram model was developed to forecast ARG signatures and patient outcomes in ESCA. Gene set enrichment analysis (GSEA) was employed to uncover potential biological pathways associated with ARG signatures. Estimation of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE) and cell-type identification by estimating relative subsets of RNA transcripts analyses were used to assess differences in the immune microenvironment of the ARG signature model. Based on ARGs, the patients with ESCA were divided into high and low groups, and the sensitivity of patients to drugs in the database of genomics of drug sensitivity in cancer was analyzed. Finally, the correlation between drug sensitivity and risk score was then evaluated based on the ARG signatures. Prognostic relevance was significantly linked to the ARG profiles of 5 genes: MYB binding protein 1a (MYBBP1A), plasminogen activator, urokinase (PLAU), budding uninhibited by benzimidazoles 3, HOX transcript antisense RNA, and euchromatic histone-lysine methyltransferase 2 (EHMT2). Using the risk score as an independent prognostic factor combined with clinicopathological features, the nomogram accurately predicted the overall survival (OS) of individual patients with ESCA. Gene ontology (GO) enrichment analysis indicated that the primary molecular roles included histone methyltransferase function, binding to C2H2 zinc finger domains, and histone-lysine N-methyltransferase activity. GSEA revealed that the high-risk cohort was connected to cytokine-cytokine receptor interaction, graft-versus-host disease, and hematopoietic cell lineage, whereas the low-risk cohort was related to arachidonic acid metabolism, drug metabolism via cytochrome P450 and fatty acid metabolism. Drug sensitivity tests showed that 16 drugs were positively correlated, and 3 drugs were negatively correlated with ARG characteristic scores. Our study developed 5 ARG signatures as biomarkers for patients with ESCA, providing an important reference for the individualized treatment of this disease.
Collapse
Affiliation(s)
- Yunwei Liang
- Department of Oncology, the Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xin Yin
- Chengde Academy of Agriculture and Forestry, Institute of Medicinal Animals and Plants, Chengde, China
| | - Yinhui Yao
- Department of Pharmacy, the Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Ying Wang
- Department of Pharmacy, the Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
2
|
Cao YF, Xie L, Tong BB, Chu MY, Shi WQ, Li X, He JZ, Wang SH, Wu ZY, Deng DX, Zheng YQ, Li ZM, Xu XE, Liao LD, Cheng YW, Li LY, Xu LY, Li EM. Targeting USP10 induces degradation of oncogenic ANLN in esophageal squamous cell carcinoma. Cell Death Differ 2023; 30:527-543. [PMID: 36526897 PMCID: PMC9950447 DOI: 10.1038/s41418-022-01104-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Anillin (ANLN) is a mitosis-related protein that promotes contractile ring formation and cytokinesis, but its cell cycle-dependent degradation mechanisms in cancer cells remain unclear. Here, we show that high expression of ANLN promotes cytokinesis and proliferation in esophageal squamous cell carcinoma (ESCC) cells and is associated with poor prognosis in ESCC patients. Furthermore, the findings of the study showed that the deubiquitinating enzyme USP10 interacts with ANLN and positively regulates ANLN protein levels. USP10 removes the K11- and K63-linked ubiquitin chains of ANLN through its deubiquitinase activity and prevents ANLN ubiquitin-mediated degradation. Importantly, USP10 promotes contractile ring assembly at the cytokinetic furrow as well as cytokinesis by stabilizing ANLN. Interestingly, USP10 and the E3 ubiquitin ligase APC/C co-activator Cdh1 formed a functional complex with ANLN in a non-competitive manner to balance ANLN protein levels. In addition, the macrolide compound FW-04-806 (F806), a natural compound with potential for treating ESCC, inhibited the mitosis of ESCC cells by targeting USP10 and promoting ANLN degradation. F806 selectively targeted USP10 and inhibited its catalytic activity but did not affect the binding of Cdh1 to ANLN and alters the balance of the USP10-Cdh1-ANLN complex. Additionally, USP10 expression was positively correlated with ANLN level and poor prognosis of ESCC patients. Overall, targeting the USP10-ANLN axis can effectively inhibit ESCC cell-cycle progression.
Collapse
Affiliation(s)
- Yu-Fei Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Lei Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Bei-Bei Tong
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Man-Yu Chu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Wen-Qi Shi
- Clinical Research Center, Shantou Central Hospital, Shantou, Guangdong, PR China
| | - Xiang Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Jian-Zhong He
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, PR China
| | - Shao-Hong Wang
- Clinical Research Center, Shantou Central Hospital, Shantou, Guangdong, PR China
| | - Zhi-Yong Wu
- Clinical Research Center, Shantou Central Hospital, Shantou, Guangdong, PR China
| | - Dan-Xia Deng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Ya-Qi Zheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Zhi-Mao Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Yin-Wei Cheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Li-Yan Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, PR China
- Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, PR China
| |
Collapse
|
3
|
He W, Yuan K, He J, Wang C, Peng L, Han Y, Chen N. Network and pathway-based analysis of genes associated with esophageal squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:102. [PMID: 36819552 PMCID: PMC9929830 DOI: 10.21037/atm-22-6512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Background Although diagnostic methods and treatments have improved over the last few years, the 5-year survival rate of esophageal squamous cell carcinoma (ESCC) patients remains generally poor. The development of high-throughput technology has facilitated great achievements in localization of ESCC-related genes. To take a further step toward a thorough understanding of ESCC at a molecular level, the potential pathogenesis of ESCC needs to be deciphered. Methods The interaction of ESCC-related genes was explored by collecting genes associated with ESCC and then performing gene enrichment assays, pathway enrichment assays, pathway crosstalk analysis, and extraction of ESCC-specific subnetwork to describe the relevant biochemical processes. Results Through Gene Ontology (GO) enrichment analysis, many molecular functions related to response to chemical, cellular response to stimulus, and cell proliferation were found to be significantly enriched in ESCC-related genes. The results of pathway and pathway crosstalk analysis showed that pathways associated with multiple malignant tumors, the immune system, and metabolic processes were significantly enriched in ESCC-related genes. Through the analysis of specific subnetworks, we obtained some novel ESCC-related potential genes, such as MUC13, GSTO1, FIN, GRB2, CDC25C, and others. Conclusions The molecular mechanism of ESCC is extremely complex. Some inducing factors change the expression status of many genes. The abnormal expression of genes mediates the biological processes involved in immunity and metabolism, apoptosis, and cell proliferation, leading to the occurrence of tumors. The genes MUC13, RYK, and FIN may be potential prognostic indicators of ESCC; GRB2 and CDC25C may be potential targets of ESCC in proliferation. Our work may provide valuable information for further understanding the molecular mechanisms for the development of ESCC.
Collapse
Affiliation(s)
- Wenwu He
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China;,Department of Thoracic Surgery, Sichuan Cancer Hospital and Research Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Yuan
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Jinlan He
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chenghao Wang
- Department of Thoracic Surgery, Sichuan Cancer Hospital and Research Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Peng
- Department of Thoracic Surgery, Sichuan Cancer Hospital and Research Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, China
| | - Yongtao Han
- Department of Thoracic Surgery, Sichuan Cancer Hospital and Research Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, China
| | - Nianyong Chen
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Li X, Li L, Wu X, Wen B, Lin W, Cao Y, Xie L, Zhang H, Dong G, Li E, Xu L, Cheng Y. Anti-tumour effects of a macrolide analog F806 in oesophageal squamous cell carcinoma cells by targeting and promoting GLUT1 autolysosomal degradation. FEBS J 2022; 289:6782-6798. [PMID: 35653269 DOI: 10.1111/febs.16545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/16/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023]
Abstract
Cancer cells are characterized by altered energetic metabolism with increasing glucose uptake. F806, a 16-membered macrodiolide analogue, has anti-tumour effects on oesophageal squamous cell carcinoma (ESCC) cells. However, its precise anti-tumour mechanism remains unclear. Here, metascape analysis of our previous quantitative proteomics data showed that F806 induced glucose starvation response and inhibited energy production in ESCC cells. The reduced glucose uptake and ATP production were further validated by the fluorescent methods, using glucose-conjugated bioprobe Glu-1-O-DCSN, and the bioluminescent methods, respectively. Consistently, under F806 treatment the AMP-activated protein kinase signalling was activated, and autophagy flux was promoted and more autophagosomes were formed. Moreover, live-cell imaging and immunofluorescence analysis showed that F806 induced GLUT1 plasma membrane dissociation and promoted its internalization and autolysosome accumulation and lysosome degradation. Furthermore, molecular docking studies demonstrated that F806 bound to GLUT1 with a comparable binding energy to that of GLUT1's direct interacting inhibitor cytochalasin B. Amino acid mutation was used to test which residues of GLUT1 may participate in F806 mediated-GLUT1 internalization and degradation, and results showed that Thr137, Asn411 and Trp388 were required for GLUT1 internalization and degradation, respectively. Taken together, these findings shed light on a novel anti-tumour mechanism of F806 by targeting and promoting GLUT1 internalization and further autolysosomal degradation.
Collapse
Affiliation(s)
- Xiang Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
- Cancer Research Center, Shantou University Medical College, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, China
| | - Liyan Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, China
| | - Xiaodong Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
- Medical Informatics Research Center, Shantou University Medical College, China
| | - Bing Wen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, China
| | - Wan Lin
- Cancer Research Center, Shantou University Medical College, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, China
| | - Yufei Cao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, China
| | - Lei Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
| | - Hefeng Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, China
| | - Geng Dong
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
- Medical Informatics Research Center, Shantou University Medical College, China
| | - Enmin Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
| | - Liyan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
- Cancer Research Center, Shantou University Medical College, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, China
| | - Yinwei Cheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, China
- Cancer Research Center, Shantou University Medical College, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, China
| |
Collapse
|
5
|
Zeng R, Zheng C, Gu J, Zhang H, Xie L, Xu L, Li E. RAC1 inhibition reverses cisplatin resistance in esophageal squamous cell carcinoma and induces downregulation of glycolytic enzymes. Mol Oncol 2019; 13:2010-2030. [PMID: 31314174 PMCID: PMC6717762 DOI: 10.1002/1878-0261.12548] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/07/2019] [Accepted: 07/16/2019] [Indexed: 02/05/2023] Open
Abstract
Development of chemoresistance remains a major challenge in treating esophageal squamous cell carcinoma (ESCC) patients despite treatment advances. However, the role of RAC1 in chemoresistance of ESCC and the underlying mechanisms remain largely unknown. In this study, we found that higher levels of RAC1 expression were associated with poorer prognosis in ESCC patients. Enhanced RAC1 expression increased cell proliferation, migration, and chemoresistance in vitro. Combination therapy using RAC1 inhibitor EHop-016 and cisplatin significantly promoted cell viability inhibition, G2/M phase cycle arrest, and apoptosis when compared to each monotherapy. Mechanistically, glycolysis was significantly downregulated in the RAC1 inhibitor monotherapy group and the combination group via inhibiting AKT/FOXO3a signaling when compared to the control group. Moreover, the silencing of RAC1 inhibited AKT/FOXO3a signaling and cell glycolysis while the upregulation of RAC1 produced an opposite effect. In murine xenograft models, the tumor volume and the expression of glycolytic enzymes were significantly reduced in combination therapy when compared to each monotherapy group. Overall, our study demonstrates that targeting RAC1 with an inhibitor overcomes cisplatin resistance in ESCC by suppressing glycolytic enzymes, which provides a promising strategy for treatment of ESCC in clinical practice.
Collapse
Affiliation(s)
- Rui‐Jie Zeng
- Department of Biochemistry and Molecular BiologyShantou University Medical CollegeChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeChina
| | - Chun‐Wen Zheng
- Department of Biochemistry and Molecular BiologyShantou University Medical CollegeChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeChina
| | - Jing‐E Gu
- Department of Biochemistry and Molecular BiologyShantou University Medical CollegeChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeChina
| | - Hai‐Xia Zhang
- Department of Biochemistry and Molecular BiologyShantou University Medical CollegeChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeChina
| | - Lei Xie
- Department of Biochemistry and Molecular BiologyShantou University Medical CollegeChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeChina
| | - Li‐Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeChina
- Institute of Oncologic PathologyShantou University Medical CollegeChina
| | - En‐Min Li
- Department of Biochemistry and Molecular BiologyShantou University Medical CollegeChina
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeChina
| |
Collapse
|
6
|
Fucoxanthin potentiates anoikis in colon mucosa and prevents carcinogenesis in AOM/DSS model mice. J Nutr Biochem 2019; 64:198-205. [DOI: 10.1016/j.jnutbio.2018.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/30/2018] [Accepted: 10/17/2018] [Indexed: 01/05/2023]
|
7
|
He Y, Tan X, Hu H, Wang Q, Hu X, Cai X, Guan Y, Chen B, Jing X. Metformin inhibits the migration and invasion of esophageal squamous cell carcinoma cells by downregulating the protein kinase B signaling pathway. Oncol Lett 2018; 15:2939-2945. [PMID: 29435022 PMCID: PMC5778829 DOI: 10.3892/ol.2017.7699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/24/2017] [Indexed: 02/05/2023] Open
Abstract
Previous studies have suggested that metformin, a biguanide family member widely used as an oral antidiabetic drug, may inhibit proliferation and induce apoptosis in certain types of cancer cell. However, the molecular mechanisms underlying metformin-associated anticancer effects, and in particular antimetastatic effects, remain to be fully understood. The present study assessed the efficacy of metformin in inhibiting the migration and invasion of the esophageal carcinoma cell line EC109, and evaluated the effect of metformin on the protein kinase B (AKT) signaling pathway. EC109 cells were treated with 0, 5, 10 or 20 mM metformin during the logarithmic growth phase. A Transwell assay and western blot analysis revealed that metformin inhibited the migration and invasion of EC109 cells, nuclear factor-κB activation, matrix metallopeptidase 9 and N-cadherin expression in a phosphorylated-AKT dependent manner. These results suggested that metformin inhibits the migration and invasion of human esophageal carcinoma cells by suppressing AKT phosphorylation and regulating the expression of migration- and invasion-associated genes.
Collapse
Affiliation(s)
- Yindi He
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Xiaojun Tan
- Department of Gastroenterology, Central Hospital of Chancheng, Foshan, Guangdong 528000, P.R. China
| | - Hui Hu
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Qinjia Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Xi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Xianbin Cai
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Yinghong Guan
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Binming Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Xubin Jing
- Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Professor Xubin Jing, Department of Gastroenterology, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
8
|
Xie L, Li LY, Zheng D, Xie YM, Xu XE, Tao LH, Liao LD, Xie YH, Cheng YW, Xu LY, Li EM. F806 Suppresses the Invasion and Metastasis of Esophageal Squamous Cell Carcinoma via Downregulating F-Actin Assembly-Related Rho Family Proteins. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2049313. [PMID: 30327774 PMCID: PMC6171261 DOI: 10.1155/2018/2049313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/02/2018] [Accepted: 07/25/2018] [Indexed: 02/05/2023]
Abstract
Invasion and metastasis are critical pathological and mortal processes in esophageal squamous cell carcinoma (ESCC). Novel drugs, targeting the two cancer migration stages, will augment the treatment options for ESCC therapy and improve overall survival. A novel natural macrolide F806 specifically promotes apoptosis of various ESCC cells. However, whether F806 can inhibit metastasis of ESCC cells needs further evaluation. Here, our data showed that F806 inhibits dynamic F-actin assembly and then suppresses the migration of ESCC cells in vitro and their invasion and metastasis in vivo. The correlation between cancer migration and actin cytoskeleton assembly was consistent with the ability of F806 to prevent the aggregation of Paxillin, an essential protein for focal adhesion formation through binding to the ends of actin filaments. Furthermore, F806 downregulated the expression and activity of the Rho family proteins cell division cycle 42 (CDC42), RAC family small GTPase 1 (RAC1), and RAS homolog family member A (RHOA). Taken together, these results suggest that F806 can suppress cancer invasion and metastasis via interrupting the assembly of migration components involving F-actin.
Collapse
Affiliation(s)
- Lei Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
| | - Li-Yan Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
| | - Duo Zheng
- Shenzhen Key Laboratory of Translational Medicine of Tumor, Department of Cell Biology and Genetics, Shenzhen University Health Sciences Center, No. 3688, Nanhai Road, Shenzhen, Guangdong 518000, China
| | - Yang-Min Xie
- Experimental Animal Center, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
| | - Li-Hua Tao
- Institute of Oncologic Pathology, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
| | - Ying-Hua Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
| | - Yin-Wei Cheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No. 22, Xinling Road, Shantou, Guangdong 515041, China
| |
Collapse
|
9
|
Xu Z, Zou L, Ma G, Wu X, Huang F, Feng T, Li S, Lin Q, He X, Liu Z, Cao X. Integrin β1 is a critical effector in promoting metastasis and chemo-resistance of esophageal squamous cell carcinoma. Am J Cancer Res 2017; 7:531-542. [PMID: 28401009 PMCID: PMC5385641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/21/2017] [Indexed: 06/07/2023] Open
Abstract
Metastasis of esophageal squamous cell carcinoma (ESCC) remains a challenge in clinical practice. In this study, we clarified that integrin β1 (ITGB1) plays critical roles in the metastasis of ESCC. By analyzing the expression of integrin β1 in ESCC specimens, we found that the expression of this integrin was higher in malignant than in normal tissues and that this increase was associated with lymph node metastasis. Moreover, in vitro functional experiments demonstrated that deletion of integrin β1 impaired the motility of ESCC cells, and we also showed that integrin β1 deletion significantly inhibited metastases formation in the lungs and lymph nodes of two murine models. Mechanistically, integrin β1 promoted cellular motility by regulating the FAK-Rac1 signaling pathway. Finally, we found that blocking integrin β1 significantly impaired the resistance of ESCC cells to cisplatin (DDP) treatment based on in vitro and in vivo experiments. Overall, our data suggest that integrin β1 promotes metastasis and confers DDP resistance to ESCC, which provides experimental evidence for targeting this protein to treat ESCC in the future.
Collapse
Affiliation(s)
- Zhipeng Xu
- Department of Surgical Oncology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, China
| | - Li Zou
- Department of Surgical Oncology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, China
| | - Gang Ma
- The State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and TherapyTianjin 300060, China
| | - Xiaowei Wu
- The State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Furong Huang
- The State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Tingting Feng
- Department of Surgical Oncology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, China
| | - Suqing Li
- Department of Surgical Oncology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, China
| | - Qingfeng Lin
- Department of Surgical Oncology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, China
| | - Xiaoting He
- Department of Surgical Oncology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, China
| | - Zhihua Liu
- The State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Xiufeng Cao
- Department of Surgical Oncology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, China
| |
Collapse
|
10
|
Shan B, Man H, Liu J, Wang L, Zhu T, Ma M, Xv Z, Chen X, Yang X, Li P. TIM-3 promotes the metastasis of esophageal squamous cell carcinoma by targeting epithelial-mesenchymal transition via the Akt/GSK-3β/Snail signaling pathway. Oncol Rep 2016; 36:1551-61. [PMID: 27430162 DOI: 10.3892/or.2016.4938] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022] Open
Abstract
T-cell immunoglobulin and mucin domain-con-taining protein-3 (TIM-3), a negative regulator of antitumor immune response, has been demonstrated to be involved in the onset and progression of several types of malignancies. The present study aimed to determine whether and how TIM‑3 plays such a role in esophageal squamous cell carcinoma (ESCC). TIM-3 expression was analyzed by immunohistochemistry and real‑time fluorescence quantitative PCR (qRT‑PCR) in ESCC and matched adjacent normal tissues. Functional experiments in vitro were performed to elucidate the effect of TIM‑3 knockdown on the proliferation, apoptosis, migration, invasion and epithelial-mesenchymal transition (EMT) in Eca109 and TE‑1 cell lines. Our data revealed that TIM‑3 expression was significantly elevated at both the mRNA and protein levels in ESCC tissues compared with the levels in the matched adjacent normal tissues (both P<0.001). TIM‑3 expression was significantly associated with lymph node metastasis (P=0.008), tumor‑node‑metastasis (TNM) stage (P=0.042) and depth of tumor invasion (P=0.042). In addition, we observed a strong correlation between high TIM‑3 expression and a worse overall survival of ESCC patients (P=0.001). Functional study demonstrated that TIM‑3 knockdown markedly inhibited proliferation, migration and invasion of ESCC cell lines without affecting apoptosis. In addition, TIM‑3 depletion was associated with downregulation of matrix metalloproteinase (MMP)-9 and upregulation of tissue inhibitor of metalloproteinase (TIMP)-1, and with reversion of EMT, as reflected by higher levels of the epithelial marker E‑cadherin and lower levels of the mesenchymal markers N‑cadherin and vimentin. Further study found that TIM‑3 depletion suppressed the signaling pathway involving p‑Akt, p‑GSK‑3β and Snail. Taken together, these results suggest that TIM‑3 is a novel therapeutic target and prognostic biomarker for ESCC and promotes metastasis of ESCC by inducing EMT via, at least partially, the Akt/GSK-3β/Snail signaling pathway.
Collapse
Affiliation(s)
- Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Hongwei Man
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Junfeng Liu
- The Third Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Ling Wang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Tienian Zhu
- Department of Oncology, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - Ming Ma
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Zhili Xv
- Department of Urology, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| | - Xinran Chen
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xingxiao Yang
- Department of Infection Control, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Pengfei Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
11
|
Gao SG, Liu RM, Zhao YG, Wang P, Ward DG, Wang GC, Guo XQ, Gu J, Niu WB, Zhang T, Martin A, Guo ZP, Feng XS, Qi YJ, Ma YF. Integrative topological analysis of mass spectrometry data reveals molecular features with clinical relevance in esophageal squamous cell carcinoma. Sci Rep 2016; 6:21586. [PMID: 26898710 PMCID: PMC4761933 DOI: 10.1038/srep21586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Combining MS-based proteomic data with network and topological features of such network would identify more clinically relevant molecules and meaningfully expand the repertoire of proteins derived from MS analysis. The integrative topological indexes representing 95.96% information of seven individual topological measures of node proteins were calculated within a protein-protein interaction (PPI) network, built using 244 differentially expressed proteins (DEPs) identified by iTRAQ 2D-LC-MS/MS. Compared with DEPs, differentially expressed genes (DEGs) and comprehensive features (CFs), structurally dominant nodes (SDNs) based on integrative topological index distribution produced comparable classification performance in three different clinical settings using five independent gene expression data sets. The signature molecules of SDN-based classifier for distinction of early from late clinical TNM stages were enriched in biological traits of protein synthesis, intracellular localization and ribosome biogenesis, which suggests that ribosome biogenesis represents a promising therapeutic target for treating ESCC. In addition, ITGB1 expression selected exclusively by integrative topological measures correlated with clinical stages and prognosis, which was further validated with two independent cohorts of ESCC samples. Thus the integrative topological analysis of PPI networks proposed in this study provides an alternative approach to identify potential biomarkers and therapeutic targets from MS/MS data with functional insights in ESCC.
Collapse
Affiliation(s)
- She-Gan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, P. R. China, 471003
| | - Rui-Min Liu
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Yun-Gang Zhao
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Pei Wang
- School of Mathematics and Statistics, Henan University, Kaifeng, China, Henan 475004, P. R. China
| | - Douglas G. Ward
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Guang-Chao Wang
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Xiang-Qian Guo
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Juan Gu
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Wan-Bin Niu
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Tian Zhang
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Ashley Martin
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhi-Peng Guo
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Xiao-Shan Feng
- Henan Key Laboratory of Cancer Epigenetics, Cancer Institute, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, P. R. China, 471003
| | - Yi-Jun Qi
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| | - Yuan-Fang Ma
- Henan Key Laboratory of Engineering Antibody Medicine, Henan International United Laboratory of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Henan University School of Medicine, Kaifeng 475004, P.R. China
| |
Collapse
|