1
|
Lyu F, Zhong Y, He Q, Xiao W, Zhang X. Identification and validation of prognostic biomarkers in ccRCC: immune-stromal score and survival prediction. BMC Cancer 2025; 25:148. [PMID: 39871215 PMCID: PMC11771106 DOI: 10.1186/s12885-025-13534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND The tumor microenvironment (TME) is integral to tumor progression. However, its prognostic implications and underlying mechanisms in clear cell renal cell carcinoma (ccRCC) are not yet fully elucidated. This study aims to examine the prognostic significance of genes associated with immune-stromal scores and to explore their underlying mechanisms in ccRCC. METHODS Data from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) were subjected to analysis to compute immune and stromal scores utilizing the ESTIMATE algorithm. The weighted gene co-expression network analysis (WGCNA) was employed to identify gene modules associated with these scores. Differentially expressed genes were assessed using the limma package. Prognostic biomarkers were subsequently identified through univariate, LASSO, and multivariate Cox regression analyses, culminating in the development of a risk score model. Gene expression was confirmed in ccRCC cell lines (786-O, Caki-1) and tumor tissues. Functional assays, such as wound healing and Transwell assays, were employed to evaluate tumor invasion and migration. The prognostic accuracy was assessed through ROC curve analysis, and a nomogram integrating risk scores with clinical variables was constructed. Analyses of immune infiltration, human leukocyte antigen (HLA) expression, immune checkpoint expression, immunophenoscore (IPS), tumor immune dysfunction and exclusion (TIDE) scores, and responses to six targeted therapies were conducted across different risk groups. RESULTS Twelve critical prognostic markers, including CAPRIN1, CXCR3, FERMT3, HAPLN3, HBP1, MACF1, MPEG1, OSCAR, STAT1, UBA7, VAMP1, and VSIG4, were identified. The risk score model exhibited a high degree of predictive accuracy for survival outcomes in ccRCC. Immune profiling revealed significant differences in the TME between risk groups, with high-risk patients displaying elevated expression of HLA and immune checkpoints. Drug sensitivity analyses suggested that high-risk patients had a better response to erlotinib, temsirolimus, axitinib, and sunitinib, whereas low-risk patients demonstrated greater sensitivity to pazopanib. Variability in immunotherapy responsiveness between groups was observed based on IPS and TIDE analyses. CONCLUSION This study highlights the prognostic value and TME-related mechanisms of immune-stromal score signatures in ccRCC, developing a risk score model and nomogram for predicting patient prognosis.
Collapse
Affiliation(s)
- Fang Lyu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuxin Zhong
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qingliu He
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
2
|
Razavinia A, Razavinia A, Jamshidi Khalife Lou R, Ghavami M, Shahri F, Tafazoli A, Khalesi B, Hashemi ZS, Khalili S. Exosomes as novel tools for renal cell carcinoma therapy, diagnosis, and prognosis. Heliyon 2024; 10:e32875. [PMID: 38948044 PMCID: PMC11211897 DOI: 10.1016/j.heliyon.2024.e32875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/06/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Background Renal Cell Carcinoma (RCC) stands as a formidable challenge within the field of oncology, despite considerable research endeavors. The advanced stages of this malignancy present formidable barriers to effective treatment and management. Objective This review aims to explore the potential of exosomes in addressing the diagnostic and therapeutic challenges associated with RCC. Specifically, it investigates the role of exosomes as biomarkers and therapeutic vehicles in the context of RCC management. Methods For this review article, a comprehensive literature search was conducted using databases such as PubMed, employing relevant keywords to identify research articles pertinent to the objectives of the review. Initially, 200 articles were identified, which underwent screening to remove duplicates and assess relevance based on titles and abstracts, followed by a detailed examination of full texts. From the selected articles, relevant data were extracted and synthesized to address the review's objectives. The conclusions were drawn based on a thorough analysis of the findings. The quality was ensured through independent review and resolution of discrepancies among multiple reviewers. Results Exosomes demonstrate potential as diagnostic tools for early detection, prognosis, and treatment monitoring in RCC. Their ability to deliver various therapeutic agents, such as small interfering RNAs, lncRNAs, chemotherapeutic drugs, and immune-stimulating agents, allows for a personalized approach to RCC management. By leveraging exosome-based technologies, precision and efficacy in treatment strategies can be significantly enhanced. Conclusion Despite the promising advancements enabled by exosomes in the management of RCC, further research is necessary to refine exosome-based technologies and validate their efficacy, safety, and long-term benefits through rigorous clinical trials. Embracing exosomes as integral components of RCC diagnosis and treatment represents a significant step towards improving patient outcomes and addressing the persistent challenges posed by this malignancy in the field of oncology.
Collapse
Affiliation(s)
- Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abazar Razavinia
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Roya Jamshidi Khalife Lou
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahlegha Ghavami
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Forouzan Shahri
- Department of Chemistry, Faculty of Sciences, University of Guilan, Iran
| | - Aida Tafazoli
- Department of Bacterial and Virology, Shiraz medical school, Shiraz, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
3
|
Kowalewski A, Borowczak J, Maniewski M, Gostomczyk K, Grzanka D, Szylberg Ł. Targeting apoptosis in clear cell renal cell carcinoma. Biomed Pharmacother 2024; 175:116805. [PMID: 38781868 DOI: 10.1016/j.biopha.2024.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent subtype of renal cancer, accounting for approximately 80% of all renal cell cancers. Due to its exceptional inter- and intratumor heterogeneity, it is highly resistant to conventional systemic therapies. Targeting the evasion of cell death, one of cancer's hallmarks, is currently emerging as an alternative strategy for ccRCC. In this article, we review the current state of apoptosis-inducing therapies against ccRCC, including antisense oligonucleotides, BH3 mimetics, histone deacetylase inhibitors, cyclin-kinase inhibitors, inhibitors of apoptosis protein antagonists, and monoclonal antibodies. Although preclinical studies have shown encouraging results, these compounds fail to improve patients' outcomes significantly. Current evidence suggests that inducing apoptosis in ccRCC may promote tumor progression through apoptosis-induced proliferation, anastasis, and apoptosis-induced nuclear expulsion. Therefore, re-evaluating this approach is expected to enable successful preclinical-to-clinical translation.
Collapse
Affiliation(s)
- Adam Kowalewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Center of Medical Sciences, University of Science and Technology, Bydgoszcz 85-796, Poland.
| | - Jędrzej Borowczak
- Clinical Department of Oncology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland
| | - Mateusz Maniewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Doctoral School of Medical and Health Sciences, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| |
Collapse
|
4
|
Asberger J, Berner K, Bicker A, Metz M, Jäger M, Weiß D, Kreutz C, Juhasz-Böss I, Mayer S, Ge I, Erbes T. In Vitro microRNA Expression Profile Alterations under CDK4/6 Therapy in Breast Cancer. Biomedicines 2023; 11:2705. [PMID: 37893081 PMCID: PMC10604872 DOI: 10.3390/biomedicines11102705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Breast cancer is the most common type of cancer worldwide. Cyclin-dependent kinase inhibition is one of the backbones of metastatic breast cancer therapy. However, there are a significant number of therapy failures. This study evaluates the biomarker potential of microRNAs for the prediction of a therapy response under cyclin-dependent kinase inhibition. METHODS This study comprises the analysis of intracellular and extracellular microRNA-expression-level alterations of 56 microRNAs under palbociclib mono as well as combination therapy with letrozole. Breast cancer cell lines BT-474, MCF-7 and HS-578T were analyzed using qPCR. RESULTS A palbociclib-induced microRNA signature could be detected intracellularly as well as extracellularly. Intracellular miR-10a, miR-15b, miR-21, miR-23a and miR-23c were constantly regulated in all three cell lines, whereas let-7b, let-7d, miR-15a, miR-17, miR-18a, miR-20a, miR-191 and miR301a_3p were regulated only in hormone-receptor-positive cells. Extracellular miR-100, miR-10b and miR-182 were constantly regulated across all cell lines, whereas miR-17 was regulated only in hormone-receptor-positive cells. CONCLUSIONS Because they are secreted and significantly upregulated in the microenvironment of tumor cells, miRs-100, -10b and -182 are promising circulating biomarkers that can be used to predict or detect therapy responses under CDK inhibition. MiR-10a, miR-15b, miR-21, miR-23a and miR-23c are potential tissue-based biomarkers.
Collapse
Affiliation(s)
- Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Anna Bicker
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Obstetrics and Gynecology, St. Josefs-Hospital Wiesbaden, 65189 Wiesbaden, Germany
| | - Marius Metz
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniela Weiß
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Clemens Kreutz
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute of Medical Biometry and Statistics, Medical Center – University of Freiburg, 79104 Freiburg, Germany
| | - Ingolf Juhasz-Böss
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Sebastian Mayer
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Gynaecology and Obstetrics, Hospital Krumbach, 86381 Krumbach, Germany
| | - Isabell Ge
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Obstetrics and Gynaecology, University Hospital of Basel, 4056 Basel, Switzerland
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center—University Hospital Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Gynaecology and Obstetrics, Diako Mannheim, 68135 Mannheim, Germany
| |
Collapse
|
5
|
Zhang M, Peng S. The association and clinical relevance of phase-separating protein CAPRIN1 with noncoding RNA. Cell Stress Chaperones 2023; 28:125-132. [PMID: 36627508 PMCID: PMC10050270 DOI: 10.1007/s12192-023-01320-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
CAPRIN1, cell cycle-associated protein 1, is an RNA-binding protein in stress granules, P bodies, and messenger RNA transport granules and has a high level of expression in cancer. It promotes the proliferation and invasion of cancer cells and enhances their glycolysis and chemoresistance. In addition, it mediates the formation of intracellular SGs in various ways when exposed to endogenous and exogenous stress. As an RNA-binding protein, it not only directly binds to several mRNAs associated with the cell cycle but also is the target of miRNA, lncRNA, and circRNA. Recently, CAPRIN1 is identified as a phase-separating protein that mediates the liquid-liquid phase separation within tumor cells. Moreover, the formation of CAPRIN1-mediated phase separation is regulated by circRNA and lncRNA. In addition, CAPRIN1 is associated with ubiquitination, which affects the relevant characteristics of cancer cells. This review discusses the different regulatory mechanisms of CAPRIN1 in various tumors and its association with noncoding RNA, suggesting its potential as an oncogenic signal and possibly as a diagnostic indicator in the future. This may provide the multifunctional characteristic insight of CAPRIN1 protein and potential therapeutic target in malignancy with high levels of CAPRIN1.
Collapse
Affiliation(s)
- Mojian Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
6
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Dong P, Gassler N, Taheri M, Baniahmad A, Dilmaghani NA. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int 2022; 22:325. [PMID: 36266723 PMCID: PMC9583502 DOI: 10.1186/s12935-022-02747-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
The Cyclin-dependent kinase (CDK) class of serine/threonine kinases has crucial roles in the regulation of cell cycle transition and is mainly involved in the pathogenesis of cancers. The expression of CDKs is controlled by a complex regulatory network comprised of genetic and epigenetic mechanisms, which are dysregulated during the progression of cancer. The abnormal activation of CDKs results in uncontrolled cancer cell proliferation and the induction of cancer stem cell characteristics. The levels of CDKs can be utilized to predict the prognosis and treatment response of cancer patients, and further understanding of the function and underlying mechanisms of CDKs in human tumors would pave the way for future cancer therapies that effectively target CDKs. Defects in the regulation of cell cycle and mutations in the genes coding cell-cycle regulatory proteins lead to unrestrained proliferation of cells leading to formation of tumors. A number of treatment modalities have been designed to combat dysregulation of cell cycle through affecting expression or activity of CDKs. However, effective application of these methods in the clinical settings requires recognition of the role of CDKs in the progression of each type of cancer, their partners, their interactions with signaling pathways and the effects of suppression of these kinases on malignant features. Thus, we designed this literature search to summarize these findings at cellular level, as well as in vivo and clinical levels.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nikolaus Gassler
- Section of Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Sager RA, Backe SJ, Ahanin E, Smith G, Nsouli I, Woodford MR, Bratslavsky G, Bourboulia D, Mollapour M. Therapeutic potential of CDK4/6 inhibitors in renal cell carcinoma. Nat Rev Urol 2022; 19:305-320. [PMID: 35264774 PMCID: PMC9306014 DOI: 10.1038/s41585-022-00571-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
The treatment of advanced and metastatic kidney cancer has entered a golden era with the addition of more therapeutic options, improved survival and new targeted therapies. Tyrosine kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors and immune checkpoint blockade have all been shown to be promising strategies in the treatment of renal cell carcinoma (RCC). However, little is known about the best therapeutic approach for individual patients with RCC and how to combat therapeutic resistance. Cancers, including RCC, rely on sustained replicative potential. The cyclin-dependent kinases CDK4 and CDK6 are involved in cell-cycle regulation with additional roles in metabolism, immunogenicity and antitumour immune response. Inhibitors of CDK4 and CDK6 are now commonly used as approved and investigative treatments in breast cancer, as well as several other tumours. Furthermore, CDK4/6 inhibitors have been shown to work synergistically with other kinase inhibitors, including mTOR inhibitors, as well as with immune checkpoint inhibitors in preclinical cancer models. The effect of CDK4/6 inhibitors in kidney cancer is relatively understudied compared with other cancers, but the preclinical studies available are promising. Collectively, growing evidence suggests that targeting CDK4 and CDK6 in kidney cancer, alone and in combination with current therapeutics including mTOR and immune checkpoint inhibitors, might have therapeutic benefit and should be further explored.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Elham Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Garrett Smith
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Imad Nsouli
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Syracuse VA Medical Center, Syracuse, NY, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Syracuse VA Medical Center, Syracuse, NY, USA.
| |
Collapse
|
8
|
Nelson LJ, Castro KE, Xu B, Li J, Dinh NB, Thompson JM, Woytash J, Kipp KR, Razorenova OV. Synthetic lethality of cyclin-dependent kinase inhibitor Dinaciclib with VHL-deficiency allows for selective targeting of clear cell renal cell carcinoma. Cell Cycle 2022; 21:1103-1119. [PMID: 35240916 PMCID: PMC9037521 DOI: 10.1080/15384101.2022.2041783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clear cell renal cell carcinoma (CC-RCC) remains one of the most deadly forms of kidney cancer despite recent advancements in targeted therapeutics, including tyrosine kinase and immune checkpoint inhibitors. Unfortunately, these therapies have not been able to show better than a 16% complete response rate. In this study we evaluated a cyclin-dependent kinase inhibitor, Dinaciclib, as a potential new targeted therapeutic for CC-RCC. In vitro, Dinaciclib showed anti-proliferative and pro-apoptotic effects on CC-RCC cell lines in Cell Titer Glo, Crystal Violet, FACS-based cell cycle analysis, and TUNEL assays. Additionally, these responses were accompanied by a reduction in phospho-Rb and pro-survival MCL-1 cell signaling responses, as well as the induction of caspase 3 and PARP cleavage. In vivo, Dinaciclib efficiently inhibited primary tumor growth in an orthotopic, patient-derived xenograft-based CC-RCC mouse model. Importantly, Dinaciclib targeted both CD105+ cancer stem cells (CSCs) and CD105− non-CSCs in vivo. Moreover, normal cell lines, as well as a CC-RCC cell line with re-expressed von-Hippel Lindau (VHL) tumor suppressor gene, were protected from Dinaciclib-induced cytotoxicity when not actively dividing, indicating an effective therapeutic window due to synthetic lethality of Dinaciclib treatment with VHL loss. Thus, Dinaciclib represents a novel potential therapeutic for CC-RCC.
Collapse
Affiliation(s)
- Luke J Nelson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Kyleen E Castro
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Binzhi Xu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Junyi Li
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Nguyen B Dinh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Jordan M Thompson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Jordan Woytash
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | | | - Olga V Razorenova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| |
Collapse
|
9
|
Khan P, Ebenezer NS, Siddiqui JA, Maurya SK, Lakshmanan I, Salgia R, Batra SK, Nasser MW. MicroRNA-1: Diverse role of a small player in multiple cancers. Semin Cell Dev Biol 2021; 124:114-126. [PMID: 34034986 DOI: 10.1016/j.semcdb.2021.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022]
Abstract
The process of cancer initiation and development is a dynamic and complex mechanism involving multiple genetic and non-genetic variations. With the development of high throughput techniques like next-generation sequencing, the field of cancer biology extended beyond the protein-coding genes. It brought the functional role of noncoding RNAs into cancer-associated pathways. MicroRNAs (miRNAs) are one such class of noncoding RNAs regulating different cancer development aspects, including progression and metastasis. MicroRNA-1 (miR-1) is a highly conserved miRNA with a functional role in developing skeletal muscle precursor cells and cardiomyocytes and acts as a consistent tumor suppressor gene. In humans, two discrete genes, MIR-1-1 located on 20q13.333 and MIR-1-2 located on 18q11.2 loci encode for a single mature miR-1. Downregulation of miR-1 has been demonstrated in multiple cancers, including lung, breast, liver, prostate, colorectal, pancreatic, medulloblastoma, and gastric cancer. A vast number of studies have shown that miR-1 affects the hallmarks of cancer like proliferation, invasion and metastasis, apoptosis, angiogenesis, chemosensitization, and immune modulation. The potential therapeutic applications of miR-1 in multiple cancer pathways provide a novel platform for developing anticancer therapies. This review focuses on the different antitumorigenic and therapeutic aspects of miR-1, including how it regulates tumor development and associated immunomodulatory functions.
Collapse
Affiliation(s)
- Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nivetha Sarah Ebenezer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
10
|
Weidle UH, Nopora A. Clear Cell Renal Carcinoma: MicroRNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2021; 18:349-368. [PMID: 33994361 PMCID: PMC8240043 DOI: 10.21873/cgp.20265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
In order to identify new targets and treatment modalities for clear cell renal carcinoma, we surveyed the literature with respect to microRNAs involved in this disease. In this review, we have focused on up- and down-regulated miRs which mediate efficacy in preclinical clear-cell renal carcinoma-related in vivo models. We have identified 10 up-regulated and 33 down-regulated micro-RNAs according to this criterion. As proof-of-concept, micro-RNAs interfering with VEGF (miR-205p) and mTOR (mir-99a) pathways, which are modulated by approved drugs for this disease, have been identified. miRs targeting hypoxia induced factor-2α (HIF-2α) (miR-145), E3 ubiquitinylases speckle-type POZ protein (SPOP) (miR 520/372/373) and casitas B-lineage lymphoma (CBL) (miR-200a-3p), interfere with druggable targets. Further identified miRs interfere with cell-cycle dependent kinases, such as CDK2 (miR-200c), CDK4, 6 (miR-1) and CDK4, 9 (206c). Transmembrane receptor Ral interacting protein of 76 kD (RLIP76), targeted by mir-137, has emerged as another important target for ccRCC. Additional miRs and their targets merrying further preclinical validation are discussed.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
11
|
Du G, Yu X, Chen Y, Cai W. MiR-1-3p Suppresses Colorectal Cancer Cell Proliferation and Metastasis by Inhibiting YWHAZ-Mediated Epithelial-Mesenchymal Transition. Front Oncol 2021; 11:634596. [PMID: 33718221 PMCID: PMC7952857 DOI: 10.3389/fonc.2021.634596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background Colorectal cancer (CRC) is regarded as one of the most common malignancies in the world. MiR-1-3p was reported to be a tumor suppressor in CRC. However, the mechanisms have not been fully elucidated. Methods To identify CRC-associated miRNA, microarray data set GSE30454 was downloaded from the Gene Expression Omnibus database (GEO), and miR-1-3p was screened out as a candidate. The expression of miR-1-3p was detected using quantitative real-time polymerase chain reaction (qRT-PCR) in CRC cell lines and tissues. CCK-8 assay and transwell invasion assay were performed to determine CRC cell line proliferation and invasion, respectively. The levels of YWHAZ and EMT-associated proteins were detected using western blotting. Results Bioinformatic analysis showed that miR-1-3p was downregulated in CRC tissues, which is verified by our experimental validation. The overexpression of miR-1-3p significantly suppressed CRC cell proliferation and invasion. Further studies showed that YWHAZ was a direct target of miR-1-3p and mediated epithelial-mesenchymal transition (EMT) modulated by miR-1-3p. Conclusion Our results demonstrated that miR-1-3p suppresses colorectal cancer cell proliferation and metastasis through regulating YWHAZ-mediated EMT, which may support a novel therapeutic strategy for CRC patients.
Collapse
Affiliation(s)
- Guanghong Du
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuelian Yu
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun Chen
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wangting Cai
- Organ transplant center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Safa A, Bahroudi Z, Shoorei H, Majidpoor J, Abak A, Taheri M, Ghafouri-Fard S. miR-1: A comprehensive review of its role in normal development and diverse disorders. Biomed Pharmacother 2020; 132:110903. [PMID: 33096351 DOI: 10.1016/j.biopha.2020.110903] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNA-1 (miR-1) is a conserved miRNA with high expression in the muscle tissues. In humans, two discrete genes, MIRN1-1 and MIRN1-2 residing on a genomic region on 18q11.2 produce a single mature miRNA which has 21 nucleotides. miR-1 has a regulatory role on a number of genes including heat shock protein 60 (HSP60), Kruppel-like factor 4 (KLF4) and Heart And Neural Crest Derivatives Expressed 2 (HAND2). miR-1 has critical roles in the physiological processes in the smooth and skeletal muscles as well as other tissues, thus being involved in the pathogenesis of a wide range of disorders. Moreover, dysregulation of miR-1 has been noted in diverse types of cancers including gastric, colorectal, breast, prostate and lung cancer. In the current review, we provide the summary of the data regarding the role of this miRNA in the normal development and the pathogenic processes.
Collapse
Affiliation(s)
- Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciecnes, Tehran, Iran.
| |
Collapse
|
13
|
MicroRNA-199a-5p suppresses the cell growth of colorectal cancer by targeting oncogene Caprin1. 3 Biotech 2020; 10:453. [PMID: 33088650 DOI: 10.1007/s13205-020-02433-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/08/2020] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs-199a-5p (miR-199a-5p) plays critical regulatory roles in various types of human cancers. However, the biological function and regulatory mechanisms of miR-199a-5p in colorectal cancer (CRC) remain unclear. The aim of this study was to investigate the role of miR-199a-5p in CRC and possible mechanisms of its action. The expression of miR-199a-5p in CRC tumor tissues was validated using quantitative real-time PCR (qRT-PCR). The effects of miR-199a-5p on cell proliferation and apoptosis were evaluated in vitro. Then, the association of miR-199a-5p and its downstream target was investigated in both cell line and clinical specimens. Furthermore, gain- and loss-of-function studies of cytoplasmic activation/proliferation-associated protein-1 (Caprin1) were performed to assess whether the suppressive effect of on CRC cells were via targeting Caprin1. Using a microarray platform, we focused on miR-199a-5p for further research, which was one of the most markedly downregulated miRNAs in CRC tumor tissues. Functionally, the overexpression of miR-199a-5p inhibited proliferation and induced apoptosis in both HTC116 and SW480 cells. Furthermore, cytoplasmic activation/proliferation-associated protein-1 (Caprin1), a well-known oncogene, was directly targeted by miR-199a-5p. It was also observed that Caprin1 was upregulated, and inversely correlated with miR-199a-5p levels in CRC tissues. Further investigations revealed that knockdown of Caprin1 by siRNA has similar role with miR-199a-5p overexpression in CRC cells, suggesting the oncogenic role of Caprin1 in CRC. In the contrast, we found that overexpression of Caprin1 reversed the suppressive effects of miR-199a-5p on CRC cells. Collectively, our study suggests that miR-199a-5p/Caprin1 axis may serve as potential therapeutic targets for the treatment of CRC.
Collapse
|
14
|
Ai C, Ma G, Deng Y, Zheng Q, Gen Y, Li W, Li Y, Zu L, Zhou Q. Nm23-H1 inhibits lung cancer bone-specific metastasis by upregulating miR-660-5p targeted SMARCA5. Thorac Cancer 2020; 11:640-650. [PMID: 32022430 PMCID: PMC7049508 DOI: 10.1111/1759-7714.13308] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 02/05/2023] Open
Abstract
Background Nm23‐H1 gene has been found to be an inhibitor of tumor metastasis in lung cancer. MicroRNAs (miRNAs) play key roles in tumor metastasis through multiple signaling pathways. This study explored whether the nm23‐H1 gene could inhibit invasion and metastasis of lung cancer cells by regulating miRNA‐660‐5p targets. Methods Quantitative real‐time PCR (qRT‐PCR) and western blots were used to measure the expression of nm23‐H1 and miR‐660‐5p of various human lung cancer cell lines. Cell counting kit‐8 (CCK‐8), wound‐healing and transwell assay were carried out to assess cell proliferation, migration and invasion of each cell line. Xenograft were applied to determine in vivo effects of miR‐660‐5p among nude mice. Luciferase assay and western blot were performed to determine the target gene of miR‐660‐5p. Results We found that high expression of nm23‐H1 correlated with decreased miRNA‐660‐5p expression. Inhibiting miR‐660‐5p suppressed lung cancer cells progression significantly in vitro, whereas overexpression of miR‐660‐5p facilitated tumor growth and bone metastasis in vivo. In addition, as the potential target gene of miR‐660‐5p, SMARCA5 overexpression in vitro suppressed tumor progression and osteolytic metastasis associated RANKL signaling, which is congruent with the effect of nm23‐H1 on the lung cancer cells. Conclusion Nm23‐H1 inhibits tumor progression and bone‐specific metastasis of lung cancer by regulating miR‐660‐5p/SMARCA5/RANKL axis, which indicates the related genes may serve as potential targets for the treatment of human lung cancer. Key points Significant findings of the study High expression of nm23‐H1 correlated with decreased miRNA‐660‐5p expression. Further, downregulation of miR‐660‐5p significantly suppressed the tumor progression and bone‐specific metastasis of lung cancer cells. What this study adds This is the first study to show an inverse association between nm23‐H1 and miR‐660‐5p, and confirm that nm23‐H1 inhibits tumor progression and bone‐specific metastasis of lung cancer by regulating miR‐660‐5p/SMARCA5/RANKL axis.
Collapse
Affiliation(s)
- Cheng Ai
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiothoracic Surgery, Panzhihua Central Hospital of Sichuan, Panzhihua, China
| | - Guangzhi Ma
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yunfu Deng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiangqiang Zheng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yingcai Gen
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Li
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinghua Zhou
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
15
|
Skrzypek K, Majka M. Interplay among SNAIL Transcription Factor, MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Regulation of Tumor Growth and Metastasis. Cancers (Basel) 2020; 12:E209. [PMID: 31947678 PMCID: PMC7017348 DOI: 10.3390/cancers12010209] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
SNAIL (SNAI1) is a zinc finger transcription factor that binds to E-box sequences and regulates the expression of genes. It usually acts as a gene repressor, but it may also activate the expression of genes. SNAIL plays a key role in the regulation of epithelial to mesenchymal transition, which is the main mechanism responsible for the progression and metastasis of epithelial tumors. Nevertheless, it also regulates different processes that are responsible for tumor growth, such as the activity of cancer stem cells, the control of cell metabolism, and the regulation of differentiation. Different proteins and microRNAs may regulate the SNAIL level, and SNAIL may be an important regulator of microRNA expression as well. The interplay among SNAIL, microRNAs, long non-coding RNAs, and circular RNAs is a key event in the regulation of tumor growth and metastasis. This review for the first time discusses different types of regulation between SNAIL and non-coding RNAs with a focus on feedback loops and the role of competitive RNA. Understanding these mechanisms may help develop novel therapeutic strategies against cancer based on microRNAs.
Collapse
Affiliation(s)
- Klaudia Skrzypek
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Wielicka 265, 30-663 Cracow, Poland
| | - Marcin Majka
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Wielicka 265, 30-663 Cracow, Poland
| |
Collapse
|
16
|
Liu J, Huang Y, Cheng Q, Wang J, Zuo J, Liang Y, Yuan G. miR-1-3p suppresses the epithelial-mesenchymal transition property in renal cell cancer by downregulating Fibronectin 1. Cancer Manag Res 2019; 11:5573-5587. [PMID: 31417307 PMCID: PMC6594013 DOI: 10.2147/cmar.s200707] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/14/2019] [Indexed: 12/23/2022] Open
Abstract
Purpose Renal cell cancer (RCC) is one of the primary causes of malignancy deaths all over the world. The most important cause of RCC-related mortality is metastasis. Epithelial-mesenchymal transition (EMT) plays an important role in metastasis of malignant tumors including RCC. miR-1-3p is confirmed to be decreased in many types of cancer. Nevertheless, the function of miR-1-3p in RCC metastasis and EMT process was still unclear. Materials and methods In this study, information from clinical investigation, in vitro study, and in vivo study discovered miR-1-3p expression character and its status in RCC. The character of miR-1-3p in invasive and metastatic properties in vitro and in vivo was also inspected in RCC cells and xenograft tumor model, and expression levels of EMT markers were evaluated in RCC cells and tissues. Results miR-1-3p was proved to be decreased in RCC cell lines and tissues compared with normal renal cells and tissues. miR-1-3p expression level in RCC tissues was closely related with capsulation, lymph node metastasis, and vascular invasion. miR-1-3p was found to be able to block the EMT process in A498 and CAKI-1 RCC cells and tumors. Luciferase reporter assay and expression level rescue assays were employed to reveal that miR-1-3p inhibited the invasion and migration property of RCC cells by directly targeting Fibronectin 1. Upregulation of Fibronectin 1 partially reversed the suppressive effect of miR-1-3p on EMT process. Conclusion In brief, this study has verified that miR-1-3p blocked the EMT process of RCC cells by reducing Fibronectin 1 expression. miR-1-3p/Fibronectin 1 axis may be considered as a new target for drug development of RCC.
Collapse
Affiliation(s)
- Jianghui Liu
- Department of Emergency and Internal Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Yingxiong Huang
- Department of Emergency and Internal Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Quanyong Cheng
- Department of Emergency and Internal Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Jifei Wang
- Department of Emergency and Internal Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Jidong Zuo
- Department of Emergency and Internal Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Ying Liang
- Department of Nephrology, The Eighth People's Hospital of Guangzhou, Guangdong 510060, People's Republic of China
| | - Gang Yuan
- Department of Emergency and Internal Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| |
Collapse
|
17
|
Abstract
RNA-binding proteins serve an essential role in post-transcriptional gene regulation. Cytoplasmic activation/proliferation-associated protein-1 (caprin-1) is an RNA-binding protein that participates in the regulation of cell cycle control-associated genes. Caprin-1 acts alone or in combination with other RNA-binding proteins, such as RasGAP SH3-domain-binding protein 1 and fragile X mental retardation protein. In the tumorigenesis process, caprin-1 primarily functions by activating cell proliferation and upregulating the expression of immune checkpoint proteins. Through the formation of stress granules, caprin-1 is also involved in the process by which tumor cells adapt to adverse conditions, which contributes to radiation and chemotherapy resistance. Given its role in various clinical malignancies, caprin-1 holds the potential to be used as a biomarker and a target for the development of novel therapeutics. The present review describes this newly identified putative oncogenic protein and its possible impact on tumorigenesis.
Collapse
|
18
|
Fujii R, Osaka E, Sato K, Tokuhashi Y. MiR-1 Suppresses Proliferation of Osteosarcoma Cells by Up-regulating p21 via PAX3. Cancer Genomics Proteomics 2019; 16:71-79. [PMID: 30587501 DOI: 10.21873/cgp.20113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIM miRNA-1(miR-1) is down-regulated in various cancer cells including osteosarcoma cells. This study was conducted to analyze the function of miR-1 in osteosarcoma cells. MATERIALS AND METHODS miR-1 expression in osteosarcoma cells was evaluated by qRT-PCR. Cell proliferation was evaluated after transfecting miR-1 by WST8 assay and FACS analysis, both in vitro and in vivo. RESULTS Overexpression of miR-1 suppressed cell proliferation and induced cell-cycle arrest in the G0-G1 phase by increasing p21 levels via a p53-independent pathway. Overexpression of miR-1 down-regulated PAX3, a potential p21-regulating gene. Moreover, knockdown of PAX3 suppressed cell proliferation by increasing p21 levels, and induced arrest at the G0/G1 phase. Administration of miR-1 showed an in vivo antitumor effect. CONCLUSION Overexpression of miR-1 suppressed cell proliferation and induced arrest in the G0/G1 phase by increasing p21 levels via a p53-independent pathway through PAX3 suppression. These results indicate that miR-1 could be a therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Ryota Fujii
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Eiji Osaka
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kentaro Sato
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuaki Tokuhashi
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Meng X, Li Z, Zhou S, Xiao S, Yu P. miR-194 suppresses high glucose-induced non-small cell lung cancer cell progression by targeting NFAT5. Thorac Cancer 2019; 10:1051-1059. [PMID: 30900402 PMCID: PMC6500961 DOI: 10.1111/1759-7714.13038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Background Diabetes mellitus (DM) is linked to an increased risk of lung cancer; however, the exact molecular basis is unclear. Methods We used a microarray method and found a group of microRNAs differently expressed in lung cancer cells at high or low glucose treatment. Results Among these, miR‐194 changed significantly, which indicated further analysis. miR‐194 was significantly downregulated in non‐small cell lung cancer (NSCLC) cells cultured in high glucose (HG) medium and clinical NSCLC tissues with DM. The introduction of miR‐194 significantly suppressed the proliferation, migration, and invasion of lung cancer cells induced by HG, suggesting that miR‐194 may be a suppressor during HG‐induced NSCLC progression. Further analysis indicated that NFAT5 was a direct target gene of miR‐194, evidenced by the direct binding of miR‐194 with the 3’untranslated region of NFAT5. MiR‐194 could decrease the expression of NFAT5 at both messenger RNA and protein levels, while overexpression of NFAT5 reversed the decreased proliferation, migration, and invasion ability mediated by miR‐194 in lung cancer cells. Conclusion Our findings provide new insight into the mechanism of NSCLC progression. Therapeutically, miR‐194 may serve as a potential target for the treatment of lung cancer patients with DM.
Collapse
Affiliation(s)
- Xuying Meng
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Disease, The Metabolic Disease Hospital of Tianjin Medical University, Tianjin, China.,Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhenjin Li
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Disease, The Metabolic Disease Hospital of Tianjin Medical University, Tianjin, China.,Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Saijun Zhou
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Disease, The Metabolic Disease Hospital of Tianjin Medical University, Tianjin, China
| | - Shumin Xiao
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Disease, The Metabolic Disease Hospital of Tianjin Medical University, Tianjin, China
| | - Pei Yu
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormone and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Disease, The Metabolic Disease Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
20
|
Pan H, Hong Y, Yu B, Li L, Zhang X. miR-4429 Inhibits Tumor Progression and Epithelial-Mesenchymal Transition Via Targeting CDK6 in Clear Cell Renal Cell Carcinoma. Cancer Biother Radiopharm 2019; 34:334-341. [PMID: 30844301 DOI: 10.1089/cbr.2018.2697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC), as the commonest type among renal cell cancers, is featured with easy relapse and metastasis. Despite mounting achievements on its treatment and diagnosis, the identification of new biomarkers remains urgent. Purposes: Present study aimed to explore the role of microRNA-4429 (miR-4429) in ccRCC. Methods: The expression of miR-4429 and cyclin-dependent kinase 6 (CDK6) was evaluated by real-time polymerase chain reaction and Western blot. Cell proliferation, migration and invasion was evaluated by MTT and transwell assays. The interaction between miR-4429 and CDK6 was assessed by luciferase reporter assay. Prognostic significance of miR-4429 was evaluated by Kaplan-Meier analysis. Correlation between miR-4429 and CDK6 was determined by Spearman's correlation analysis. Results: Firstly, the downregulation of miR-4429 and upregulation of CDK6 in ccRCC tissues and cells were uncovered by quantitative real-time polymerase chain reaction. The prognostic significance of miR-4429 in ccRCC patients was proved by Kaplan-Meier analysis. Gain- and loss-of-function assays validated the suppressive effect of miR-4429 on cell proliferation, migration, invasion, as well as epithelial-mesenchymal transition (EMT) progression. The interaction between miR-4429 and CDK6 was predicted by bioinformatics tool and confirmed by luciferase reporter assay. And the negative expression correlation between miR-4429 and CDK6 was verified by Spearman's correlation analysis. Rescue assays confirmed the role of miR-4429/CDK6 in proliferation, metastasis and EMT progression in ccRCC. Conclusions: Present study revealed that miR-4429 suppressed ccRCC tumor progression and EMT by targeting CDK6.
Collapse
Affiliation(s)
- Hong Pan
- 1 Department of Nephropathy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yejing Hong
- 1 Department of Nephropathy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Biying Yu
- 1 Department of Nephropathy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Li Li
- 1 Department of Nephropathy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xiaojian Zhang
- 2 Department of Internal Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
21
|
Kim HS, Yoon YM, Meang MK, Park YE, Lee JY, Lee TH, Lee JE, Kim IH, Youn BS. Reversion of in vivo fibrogenesis by novel chromone scaffolds. EBioMedicine 2019; 39:484-496. [PMID: 30611717 PMCID: PMC6355727 DOI: 10.1016/j.ebiom.2018.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Myofibroblasts are known to play a key role in the development of idiopathic pulmonary fibrosis (IPF). Two drugs, pirfenidone and nintedanib, are the only approved therapeutic options for IPF, but their applications are limited due to their side effects. Thus, curative IPF drugs represent a huge unmet medical need. METHODS A mouse hepatic stellate cell (HSC) line was established that could robustly differentiate into myofibroblasts upon treatment with TGF-β. Eupatilin was assessed in diseased human lung fibroblasts from IPF patients (DHLFs) as well as in human lung epithelial cells (HLECs). The drug's performance was extensively tested in a bleomycin-induced lung fibrosis model (BLM). Global gene expression studies and proteome analysis were performed. FINDINGS Eupatilin attenuated disease severity of BLM in both preventative and therapeutic studies. The drug inhibited the in vitro transdifferantiation of DHLFs to myofibroblasts upon stimulation with TGF-β. No such induction of the in vitro transdifferantiation was observed in TGF-β treated HLECs. Specific carbons of eupatilin were essential for its anti-fibrotic activity. Eupatilin was capable of dismantling latent TGF-β complex, specifically by eliminating expression of the latent TGF-β binding protein 1 (LTBP1), in ECM upon actin depolymerization. Unlike eupatilin, pirfenidone was unable to block fibrosis of DHLFs or HSCs stimulated with TGF-β. Eupatilin attenuated phosphorylation of Smad3 by TGF-β. Eupatilin induced myofibroblasts to dedifferentiate into intermediate HCS-like cells. INTERPRETATION Eupatilin may act directly on pathogenic myofibroblasts, disarming them, whereas the anti-fibrotic effect of pirfenidone may be indirect. Eupatilin could increase the efficacy of IPF treatment to curative levels.
Collapse
Affiliation(s)
- Han-Soo Kim
- Department of Biomedical Sciences, Catholic Kwandong University College of Medicine, Gangneung-si, Gangwon-do 25601, Republic of Korea; Basic Research Division, Biomedical Institute of Mycological Resource, College of Medicine,Catholic Kwandong University, Gangneung-si, Gangwon-do, 25601, Republic of Korea
| | | | - Moon Kee Meang
- OsteoNeuroGenInc, Seoul 08501, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yae Eun Park
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji Yong Lee
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do 26426, Republic of Korea
| | - Tae Hee Lee
- School of Oriental Medicine, Formulae Pharmacology Department, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korean Institute of Science and Technology, Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ik-Hwan Kim
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | | |
Collapse
|
22
|
Kim JY, Lee WJ, Park HY, Kim A, Shin DH, Lee CH. Differential MicroRNA Expression between EGFR T790M and L858R Mutated Lung Cancer. J Pathol Transl Med 2018; 52:275-282. [PMID: 30114862 PMCID: PMC6166019 DOI: 10.4132/jptm.2018.07.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/29/2018] [Indexed: 01/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) are short, non-coding RNAs that mediate post-transcriptional gene regulation. They are commonly deregulated in human malignancies, including non-small cell lung cancer (NSCLC). The aim of this study is to investigate miRNA expression in T790M-mutated NSCLC resistant to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. Methods Six cases of resected NSCLC harboring the T790M mutation were examined. We performed miRNA time polymerase chain reaction (PCR) array profiling using EGFR T790M-mutated NSCLC and L858R-mutated NSCLC. Once identified, miRNAs that were differentially expressed between the two groups were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Results miRNA PCR array profiling revealed three up-regulated miRNAs whose expression levels were altered 4.0-fold or more in the EGFR T790M mutation group than in the L858R group: miR-1 (fold change, 4.384), miR-196a (fold change, 4.138), and miR-124 (fold change, 4.132). The three differentially expressed miRNAs were validated by qRT-PCR, and they were found to be overexpressed in the T790M group relative to L858R group. In particular, expression levels of miR-1 and miR-124 were significantly higher in the T790M group (p-value of miR-1 = .004, miR-124 = .007, miR-196a = .096). Conclusions MiR-1, miR-124, and miR-196a are overexpressed in EGFR T790M mutated NSCLC.
Collapse
Affiliation(s)
- Ji Yeon Kim
- Department of Pathology, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Woo Jeong Lee
- Pusan National University School of Medicine, Yangsan, Korea
| | - Ha Young Park
- Department of Pathology, Inje University Busan Paik Hospital, Busan, Korea
| | - Ahrong Kim
- Department of Pathology, Pusan National University Hospital, Busan, Korea
| | - Dong Hoon Shin
- Department of Pathology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Chang Hun Lee
- Department of Pathology, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
23
|
|
24
|
Zhu D, Sun Y, Zhang D, Dong M, Jiang G, Zhang X, Zhou J. miR‑1 inhibits the progression of colon cancer by regulating the expression of vascular endothelial growth factor. Oncol Rep 2018; 40:589-598. [PMID: 29845255 PMCID: PMC6072287 DOI: 10.3892/or.2018.6463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNA (miR)-1 is associated with various human malignancies through repressing tumor growth, migration and angiogenesis. Recently, high-throughput transcriptional profiling confirmed that miR-1 is markedly downregulated in metastatic colorectal cancer; however, its biological functions and the specific underlying mechanisms in colorectal cancer (CRC) require further investigation. In this study, the expression of miR-1 in 111 CRC and paired normal tissue samples was measured using quantitative polymerase chain reaction analysis, and the association between miR-1 expression and clinical characteristics was evaluated. miR-1 was found to be significantly downregulated in CRC tissues compared with paired normal tissues, and in CRC cell lines compared with non-cancer cells (P<0.001), and was negatively associated with tumor size (P=0.001), differentiation (P=0.011), lymph node metastasis (P=0.001) and TNM stage (P=0.001). Further experiments revealed that miR-1 inhibited the migration and invasion of HCT116 and ClonA1 cells, and inhibited cell proliferation by affecting the cell cycle. Vascular endothelial growth factor (VEGF) was found to be a potential target of miR-1 by biological prediction, and further investigation confirmed that miR-1 significantly inhibited the expression and paracrine function of VEGF. In CRC tissues, the expression of VEGF was negatively correlated with miR-1. The low expression of miR-1 in CRC may be one of the reasons for the abnormally high expression of VEGF; the upregulation of miR-1 expression may inhibit cancer progression by downregulating VEGF. These findings indicate that treatment with miR-1 may be a novel method of tumor suppression, and provide a theoretical and experimental basis for the further targeted treatment of CRC through the regulation of miR-1 and VEGF expression.
Collapse
Affiliation(s)
- Dehua Zhu
- Department of General Surgery, Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yefei Sun
- Department of General Surgery, Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Danhua Zhang
- Department of General Surgery, Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ming Dong
- Department of General Surgery, Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guiyang Jiang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning, P.R. China
| | - Xiupeng Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning, P.R. China
| | - Jianping Zhou
- Department of General Surgery, Gastrointestinal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
25
|
Ahrend H, Kaul A, Ziegler S, Brandenburg LO, Zimmermann U, Mustea A, Burchardt M, Ziegler P, Stope MB. MicroRNA-1 and MicroRNA-21 Individually Regulate Cellular Growth of Non-malignant and Malignant Renal Cells. ACTA ACUST UNITED AC 2018; 31:625-630. [PMID: 28652429 DOI: 10.21873/invivo.11103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM Due to its poor prognosis, it is increasingly necessary to understand the biology of renal cell cancer (RCC). Therefore, we investigated the role of microRNAs miR-1 and miR-21 in the growth of RCC cells compared to that of non-malignant renal cells. MATERIALS AND METHODS Four malignant cell lines (Caki-1, 786-O, RCC4, A498) were examined regarding their cell growth, microRNA and telomerase expression, and were compared to non-malignant RC-124 renal cells. RESULTS Inconsistencies appeared in the panel of RCC cells regarding antiproliferative and proliferative properties of miR-1 and miR-21, respectively. Notably, and most likely due to immortaliziation, non-malignant RC-124 cells exhibited telomerase expression and activity. CONCLUSION miR-1 and miR-21 functionality in cancer progression, particularly in tumor growth, may be more dependent on the individual cellular context and may reflect RCC heterogeneity. Thus, both microRNAs, in combination with other stratifying biomarkers, may be useful in terms of RCC diagnosis, prognosis, or treatment response.
Collapse
Affiliation(s)
- Hannes Ahrend
- Department of Urology, University of Medicine Greifswald, Greifswald, Germany
| | - Anne Kaul
- Department of Gynaecology and Obstetrics, University of Medicine Greifswald, Greifswald, Germany
| | - Susanne Ziegler
- Institute for Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany
| | | | - Uwe Zimmermann
- Department of Urology, University of Medicine Greifswald, Greifswald, Germany
| | - Alexander Mustea
- Department of Gynaecology and Obstetrics, University of Medicine Greifswald, Greifswald, Germany
| | - Martin Burchardt
- Department of Urology, University of Medicine Greifswald, Greifswald, Germany
| | - Patrick Ziegler
- Institute for Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany
| | - Matthias B Stope
- Department of Urology, University of Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
26
|
Zhao H, Zhao H, Xia X, Liu X. MicroRNA-599 targets high-mobility group AT-hook 2 to inhibit cell proliferation and invasion in clear cell renal carcinoma. Mol Med Rep 2018; 17:7451-7459. [PMID: 29568870 DOI: 10.3892/mmr.2018.8755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/06/2018] [Indexed: 11/05/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) is associated with the occurrence and development of clear cell renal cell carcinoma (ccRCC) through their participation in a number of critical biological processes. Therefore, an in‑depth investigation into miRNAs and their biological roles within ccRCC may provide useful insights and lead to the identification of novel therapeutic methods for patients with ccRCC. miRNA‑599 (miR‑599) serves critical roles in different types of human cancer. However, the expression pattern, biological function and molecular mechanism of miR‑599 in ccRCC remain unknown. The present study aimed to detect the expression level of miR‑599 in ccRCC, examine its effect on ccRCC progression and further explore the possible underlying mechanisms. It was observed that miR‑599 was significantly underexpressed in ccRCC tissues and cell lines compared with the control. Functional assays revealed that restored expression of miR‑599 restricted the proliferation and invasion of ccRCC cells. Bioinformatics analysis, luciferase reporter assay, reverse transcription‑quantitative polymerase chain reaction and western blot analysis demonstrated that high‑mobility group AT‑hook 2 (HMGA2) was a direct target of miR‑599 in ccRCC. HMGA2 knockdown simulated the suppressive effects caused by miR‑599 overexpression in ccRCC. Recovered HMGA2 expression partially rescued the miR‑599‑mediated inhibition of ccRCC proliferation and invasion. These results suggest that miR‑599 may serve tumour suppressive roles in ccRCC by directly targeting HMGA2, indicating that miR‑599 may have potential as a treatment for patients with ccRCC.
Collapse
Affiliation(s)
- Hailing Zhao
- Department of Pediatrics, Yidu Central Hospital of Weifang, Weifang, Shandong 262550, P.R. China
| | - Huizhen Zhao
- Department of Pediatrics, Yidu Central Hospital of Weifang, Weifang, Shandong 262550, P.R. China
| | - Xiaolin Xia
- Department of Pediatrics, Yidu Central Hospital of Weifang, Weifang, Shandong 262550, P.R. China
| | - Xiujuan Liu
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
27
|
Role of miR-1 expression in clear cell renal cell carcinoma (ccRCC): A bioinformatics study based on GEO, ArrayExpress microarrays and TCGA database. Pathol Res Pract 2018; 214:195-206. [DOI: 10.1016/j.prp.2017.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 12/16/2022]
|
28
|
Korde A, Jin L, Zhang JG, Ramaswamy A, Hu B, Kolahian S, Guardela BJ, Herazo-Maya J, Siegfried JM, Stabile L, Pisani MA, Herbst RS, Kaminski N, Elias JA, Puchalski JT, Takyar SS. Lung Endothelial MicroRNA-1 Regulates Tumor Growth and Angiogenesis. Am J Respir Crit Care Med 2017; 196:1443-1455. [PMID: 28853613 DOI: 10.1164/rccm.201610-2157oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Vascular endothelial growth factor down-regulates microRNA-1 (miR-1) in the lung endothelium, and endothelial cells play a critical role in tumor progression and angiogenesis. OBJECTIVES To examine the clinical significance of miR-1 in non-small cell lung cancer (NSCLC) and its specific role in tumor endothelium. METHODS miR-1 levels were measured by Taqman assay. Endothelial cells were isolated by magnetic sorting. We used vascular endothelial cadherin promoter to create a vascular-specific miR-1 lentiviral vector and an inducible transgenic mouse. KRASG12D mut/Trp53-/- (KP) mice, lung-specific vascular endothelial growth factor transgenic mice, Lewis lung carcinoma xenografts, and primary endothelial cells were used to test the effects of miR-1. MEASUREMENTS AND MAIN RESULTS In two cohorts of patients with NSCLC, miR-1 levels were lower in tumors than the cancer-free tissue. Tumor miR-1 levels correlated with the overall survival of patients with NSCLC. miR-1 levels were also lower in endothelial cells isolated from NSCLC tumors and tumor-bearing lungs of KP mouse model. We examined the significance of lower miR-1 levels by testing the effects of vascular-specific miR-1 overexpression. Vector-mediated delivery or transgenic overexpression of miR-1 in endothelial cells decreased tumor burden in KP mice, reduced the growth and vascularity of Lewis lung carcinoma xenografts, and decreased tracheal angiogenesis in vascular endothelial growth factor transgenic mice. In endothelial cells, miR-1 level was regulated through phosphoinositide 3-kinase and specifically controlled proliferation, de novo DNA synthesis, and ERK1/2 activation. Myeloproliferative leukemia oncogene was targeted by miR-1 in the lung endothelium and regulated tumor growth and angiogenesis. CONCLUSIONS Endothelial miR-1 is down-regulated in NSCLC tumors and controls tumor progression and angiogenesis.
Collapse
Affiliation(s)
- Asawari Korde
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and
| | - Lei Jin
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and.,2 Cleveland Clinic Cole Eye Institute and Lerner Research Institute, Cleveland, Ohio
| | - Jian-Ge Zhang
- 3 Department of Medicinal Chemistry, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, China
| | | | - Buqu Hu
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and
| | - Saeed Kolahian
- 4 Department of Pharmacology and Experimental Therapy, University of Tübingen, Tübingen, Germany
| | | | | | - Jill M Siegfried
- 5 Department of Pharmacology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Laura Stabile
- 6 Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania; and
| | | | - Roy S Herbst
- 7 Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | | | - Jack A Elias
- 8 Division of Biology and Medicine, Warren Alpert School of Medicine at Brown University, Providence, Rhode Island
| | | | | |
Collapse
|
29
|
Sysol JR, Chen J, Singla S, Zhao S, Comhair S, Natarajan V, Machado RF. Micro-RNA-1 is decreased by hypoxia and contributes to the development of pulmonary vascular remodeling via regulation of sphingosine kinase 1. Am J Physiol Lung Cell Mol Physiol 2017; 314:L461-L472. [PMID: 29167124 DOI: 10.1152/ajplung.00057.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Sphingosine kinase 1 (SphK1) upregulation is associated with pathologic pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), but the mechanisms controlling its expression are undefined. In this study, we sought to characterize the regulation of SphK1 expression by micro-RNAs (miRs). In silico analysis of the SphK1 3'-untranslated region identified several putative miR binding sites, with miR-1-3p (miR-1) being the most highly predicted target. Therefore we further investigated the role of miR-1 in modulating SphK1 expression and characterized its effects on the phenotype of pulmonary artery smooth muscle cells (PASMCs) and the development of experimental pulmonary hypertension in vivo. Our results demonstrate that miR-1 is downregulated by hypoxia in PASMCs and can directly inhibit SphK1 expression. Overexpression of miR-1 in human PASMCs inhibits basal and hypoxia-induced proliferation and migration. Human PASMCs isolated from PAH patients exhibit reduced miR-1 expression. We also demonstrate that miR-1 is downregulated in mouse lung tissues during experimental hypoxia-mediated pulmonary hypertension (HPH), consistent with upregulation of SphK1. Furthermore, administration of miR-1 mimics in vivo prevented the development of HPH in mice and attenuated induction of SphK1 in PASMCs. These data reveal the importance of miR-1 in regulating SphK1 expression during hypoxia in PASMCs. A pivotal role is played by miR-1 in pulmonary vascular remodeling, including PASMC proliferation and migration, and its overexpression protects from the development of HPH in vivo. These studies improve our understanding of the molecular mechanisms underlying the pathogenesis of pulmonary hypertension.
Collapse
Affiliation(s)
- Justin R Sysol
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois.,Department of Pharmacology, University of Illinois at Chicago , Chicago, Illinois.,Medical Scientist Training Program, University of Illinois at Chicago , Chicago, Illinois
| | - Jiwang Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Sunit Singla
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | - Shuangping Zhao
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois
| | | | - Viswanathan Natarajan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago , Chicago, Illinois.,Department of Pharmacology, University of Illinois at Chicago , Chicago, Illinois
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University , Indianapolis, Indiana
| |
Collapse
|
30
|
Xiao H, Bao L, Xiao W, Ruan H, Song Z, Qu Y, Chen K, Zhang X, Yang H. Long non-coding RNA Lucat1 is a poor prognostic factor and demonstrates malignant biological behavior in clear cell renal cell carcinoma. Oncotarget 2017; 8:113622-113634. [PMID: 29371934 PMCID: PMC5768351 DOI: 10.18632/oncotarget.21185] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/29/2017] [Indexed: 12/30/2022] Open
Abstract
Background Many long intergenic noncoding RNAs (lincRNAs) are encoded in the human genome. However, their biological functions, molecular mechanisms and prognostic values associated with clear cell renal cell carcinoma (ccRCC) have yet to be elucidated. Methods We screened the lncRNAs’ profile in ccRCC from The Cancer Genome Atlas (TCGA) database, and selected Lucat1 for further study. MTS, colony formation assay and transwell assay were performed to examine the effect of Lucat1 on proliferation and metastasis of ccRCC. The Chip and Rip assay was performed to verify that Lucat1 can bind to polycomb PRC2 complex and suppress p57 expression. Results In this study, we found that lncRNA Lucat1 expression was significantly up regulated in tumor tissues compared to matched adjacent non-tumor tissues. The Lucat1 expression level was also associated with grade, the clinical pathological stage and the survival time. Functional assays showed that Lucat1 can promote renal cancer cell proliferation in vitro and in vivo. Further analysis showed that Lucat1 can bind to polycomb PRC2 complex and suppress p57 expression. Conclusions Taken together, our results suggest that Lucat1, as a regulator of proliferation, may serve as a candidate prognostic biomarker and target for novel therapies in human ccRCC.
Collapse
Affiliation(s)
- Haibing Xiao
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengshuai Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Qu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
31
|
Kang M, Li Y, Zhao Y, He S, Shi J. miR-33a inhibits cell proliferation and invasion by targeting CAND1 in lung cancer. Clin Transl Oncol 2017; 20:457-466. [PMID: 28871425 DOI: 10.1007/s12094-017-1730-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/28/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Lung cancer continues to be one of the top five causes of cancer-related mortality. This study aims to identify down- and upregulated miRNAs and mRNA which can be used as potential biomarkers and/or therapeutic targets for lung cancer. METHODS Integrated analysis of differential expression profiles of miRNA and mRNA in lung cancer was performed by searching Gene Expression Omnibus datasets. Based on miRNA expression profiles, direct mRNA targets of miRNAs with experimental support were identified through miRTarBase. The levels of representative miRNAs and mRNAs were confirmed through qualitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). RESULTS The miR-33a was decreased in non-small cell lung cancer (NSCLC) tissues compared with the para-carcinoma tissues, whereas its target mRNA of cullin-associated NEDD8-dissociated protein 1 (CAND1) was increased in NSCLC tissues. Further research has shown that miR-33a can inhibit lung cancer cell proliferation, cell cycle progression, and migration by targeting CAND1. Moreover, the CAND1 knockout lung cancer cells showed similar results as cells transfected with miR-33a mimic. CONCLUSIONS These results suggested that the data mining based on online databases was an effective method in finding novel target in cancer research, and the miR-33a and CAND1 played an important role in lung cancer proliferation and cell migration.
Collapse
Affiliation(s)
- M Kang
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China
| | - Y Li
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China
| | - Y Zhao
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China
| | - S He
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China.
| | - J Shi
- Department of Medical Oncology, The Affiliated Hospital of Guilin Medical College, No. 15 Lequn Road, Guilin, 541001, China.
| |
Collapse
|
32
|
Cheng Q, Han LH, Zhao HJ, Li H, Li JB. Abnormal alterations of miR-1 and miR-214 are associated with clinicopathological features and prognosis of patients with PDAC. Oncol Lett 2017; 14:4605-4612. [PMID: 29085459 PMCID: PMC5649611 DOI: 10.3892/ol.2017.6819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating malignant disease with a poor prognosis. PDAC is known to be difficult to diagnose at an early stage and to exhibit poor recurrence-free prognosis, but there is also a lack of effective treatment and limited knowledge of its biological characteristics. Therefore, there is an urgent requirement for an improved understanding of the cellular or molecular properties associated with PDAC, and to explore novel avenues for the diagnosis and treatment of this disease. In the present study, the microRNA (miRNA/miR) profiles of sera and tumor samples from patients with PDAC and healthy controls were investigated by miRNA microarray, and the potential role of miR-1 expression in PDAC was determined. A total of 43 patients attending the clinic diagnosed with PDAC at Changzhi City People's Hospital were invited to participate. Blood and surgical tumor samples were obtained for analysis by miRNA microarray and the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The surgical tumor tissue was additionally used to determine miRNAs status by in situ hybridization (ISH). The results of microarray revealed that: i) 27 miRNAs in the sera and 23 miRNAs in the tumor tissues obtained from patients with PDAC were different compared with their matched controls; ii) miR-1, miR-10b and miR-214 were significantly altered in the PDAC group, either in the sera or tumor tissue samples. Results from the RT-qPCR, which detected the levels of miRNAs in patients with PDAC, confirmed those obtained from the miRNA microarray. In particular, the results of the present study revealed that decreased miR-1 and increased miR-214 in the PDAC tissues were associated with the clinicopathological features and survival rates of patients with PDAC. The results of the present study indicated that miRNAs serve an important role in PDAC carcinogenic progression and supplied useful markers, including miR-1, miR-214 and miR-10b, for determining PDAC prognosis using noninvasive methods.
Collapse
Affiliation(s)
- Qing Cheng
- Gerontology Department, Changzhi City People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Li-Hua Han
- Gerontology Department, Changzhi City People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Hai-Juan Zhao
- Gerontology Department, Changzhi City People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Hui Li
- Gerontology Department, Changzhi City People's Hospital, Changzhi, Shanxi 046000, P.R. China
| | - Jian-Bing Li
- Gerontology Department, Changzhi City People's Hospital, Changzhi, Shanxi 046000, P.R. China
| |
Collapse
|
33
|
Yang QS, Jiang LP, He CY, Tong YN, Liu YY. Up-Regulation of MicroRNA-133a Inhibits the MEK/ERK Signaling Pathway to Promote Cell Apoptosis and Enhance Radio-Sensitivity by Targeting EGFR in Esophageal Cancer In Vivo and In Vitro. J Cell Biochem 2017; 118:2625-2634. [PMID: 27933650 DOI: 10.1002/jcb.25829] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Qing-Shan Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Li-Peng Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Chun-Yan He
- Department of Prosthodontics, Second Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, P.R. China
| | - Yu-Na Tong
- Department of Radiation Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Yuan-Yuan Liu
- Department of Internal Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, P.R. China
| |
Collapse
|
34
|
Xie J, Zhu C, Wu J, Li C, Luo L, Xia L, Li X, Gui Y, Cai Z, Li Z. Down-regulation of C12orf59 is associated with a poor prognosis and VHL mutations in renal cell carcinoma. Oncotarget 2017; 7:6824-34. [PMID: 26758419 PMCID: PMC4872751 DOI: 10.18632/oncotarget.6829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/26/2015] [Indexed: 01/13/2023] Open
Abstract
C12orf59 is newly identified gene in kidney. However, the relation of C12orf59 expression and clinic features is unknown. Here, our study showed that C12orf59 was broadly expressed in normal human tissues with high expression levels in kidney while its expression is beyond detectable in a panel of cancer cell lines. C12orf59 expression in RCC was significantly decreased compared with corresponding adjacent noncancerous tissues (P < 0.01). The decreased C12orf59 expression was correlated with lymph node status (P < 0.05), distant metastases (P < 0.05), poor survival (P < 0.001) (HR 3.00; 95% CI, 1.29–7.53), VHL non-sense mutations or frame-shift mutations (P < 0.01), and UMPP gene non-sense mutations or frame-shift mutations (P = 0.01). Thus, we propose that the decreased C12orf59 expression status is a prognostic biomarker of ccRCC and cooperates with the loss of VHL all the while promoting renal carcinogenesis.
Collapse
Affiliation(s)
- Jun Xie
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China.,Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chuangzhi Zhu
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianting Wu
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China.,Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Cailing Li
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Liya Luo
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Lingling Xia
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Xianxin Li
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yaoting Gui
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhiming Cai
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Zesong Li
- Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| |
Collapse
|
35
|
Wen F, Xu JZ, Wang XR. Increased expression of miR-15b is associated with clinicopathological features and poor prognosis in cervical carcinoma. Arch Gynecol Obstet 2017; 295:743-749. [PMID: 28091743 DOI: 10.1007/s00404-016-4286-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/27/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The aims of this study were to explore the expression of microRNA-15b (miR-15b) in cervical carcinoma and to correlate its expression with clinicopathological characteristics and prognosis. METHODS Quantitative reverse transcriptase polymerase chain reaction analysis was conducted to quantify the expression level of miR-15b in 607 cervical tissues, including 185 cervical carcinoma tissues, 124 CIN I lesions, 148 CIN II-III lesions, and 150 normal cervical tissues. The 5-year overall cumulative survival rates for all patients with cervical carcinoma were calculated using Kaplan-Meier survival analysis, and multivariate survival analysis of these patients was completed using the stepwise Cox proportional hazards regression model. RESULTS The expression of miR-15b gradually increased from normal cervical tissues to CIN lesions and then to cervical carcinoma tissues (all P < 0.05), and it was strongly correlated with degree of differentiation, clinical stage, tumor diameter, and lymph-node metastases (all P < 0.05). When the median value of miR-15b expression was used as the cut-off point, patients with high miR-15b expression (above the median) had worse 5-year overall cumulative survival rates than those who exhibited low miR-15b expression (below the median; P < 0.05). Multivariate analysis using the Cox regression model identified miR-15b expression, clinical stage, tumor diameter, and lymph-node metastasis as independent risk factors for cervical carcinoma prognosis (all P < 0.05). CONCLUSION Our results indicate that elevated miRNA-15b expression is a typical feature in cervical carcinoma, which could be a useful clinical predictor for the early diagnosis and evaluation of cervical carcinoma prognosis.
Collapse
Affiliation(s)
- Fang Wen
- Department of Gynecology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, No. 60, Jingzhong Road, Jingzhou District, Jingzhou, 434020, Hubei, People's Republic of China
| | - Jia-Zhen Xu
- Department of Gynecology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, No. 60, Jingzhong Road, Jingzhou District, Jingzhou, 434020, Hubei, People's Republic of China
| | - Xian-Rong Wang
- Department of Gynecology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, No. 60, Jingzhong Road, Jingzhou District, Jingzhou, 434020, Hubei, People's Republic of China.
| |
Collapse
|
36
|
Li S, Wang C, Yu X, Wu H, Hu J, Wang S, Ye Z. miR-3619-5p inhibits prostate cancer cell growth by activating CDKN1A expression. Oncol Rep 2016; 37:241-248. [DOI: 10.3892/or.2016.5250] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/24/2016] [Indexed: 11/06/2022] Open
|
37
|
Identification of the Key Genes and Pathways in Esophageal Carcinoma. Gastroenterol Res Pract 2016; 2016:2968106. [PMID: 27818681 PMCID: PMC5080515 DOI: 10.1155/2016/2968106] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/01/2016] [Accepted: 07/11/2016] [Indexed: 12/17/2022] Open
Abstract
Objective. Esophageal carcinoma (EC) is a frequently common malignancy of gastrointestinal cancer in the world. This study aims to screen key genes and pathways in EC and elucidate the mechanism of it. Methods. 5 microarray datasets of EC were downloaded from Gene Expression Omnibus. Differentially expressed genes (DEGs) were screened by bioinformatics analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) network construction were performed to obtain the biological roles of DEGs in EC. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the expression level of DEGs in EC. Results. A total of 1955 genes were filtered as DEGs in EC. The upregulated genes were significantly enriched in cell cycle and the downregulated genes significantly enriched in Endocytosis. PPI network displayed CDK4 and CCT3 were hub proteins in the network. The expression level of 8 dysregulated DEGs including CDK4, CCT3, THSD4, SIM2, MYBL2, CENPF, CDCA3, and CDKN3 was validated in EC compared to adjacent nontumor tissues and the results were matched with the microarray analysis. Conclusion. The significantly DEGs including CDK4, CCT3, THSD4, and SIM2 may play key roles in tumorigenesis and development of EC involved in cell cycle and Endocytosis.
Collapse
|
38
|
Xiao H, Tang K, Liu P, Chen K, Hu J, Zeng J, Xiao W, Yu G, Yao W, Zhou H, Li H, Pan Y, Li A, Ye Z, Wang J, Xu H, Huang Q. LncRNA MALAT1 functions as a competing endogenous RNA to regulate ZEB2 expression by sponging miR-200s in clear cell kidney carcinoma. Oncotarget 2016; 6:38005-15. [PMID: 26461224 PMCID: PMC4741980 DOI: 10.18632/oncotarget.5357] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA (lncRNAs) play a critical role in the development of cancers. LncRNA metastasis-associated lung adenocarcinoma transcript 1(MALAT1) has recently been identified to be involved in tumorigenesis of several cancers such as lung cancer, bladder cancer and so on. Here, we found that MALAT1 exist a higher fold change (Tumor/Normal) in clear cell kidney carcinoma (KIRC) from The Cancer Genome Atlas (TCGA) Data Portal and a negative correlation with miR-200s family. We further demonstrated MALAT1 promote KIRC proliferation and metastasis through sponging miR-200s in vitro and in vivo. In addition, miR-200c can partly reverse the MALAT1's stimulation on proliferation and metastasis in KIRC. In summary we unveil a branch of the MALAT1/miR-200s/ZEB2 pathway that regulates the progression of KIRC. The inhibition of MALAT1 expression may be a promising strategy for KIRC therapy.
Collapse
Affiliation(s)
- Haibing Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peijun Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Junhui Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jin Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Xiao
- Translational Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiming Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Anping Li
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ji Wang
- Department of Cell Death and Cancer Genetics, The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qihong Huang
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
39
|
García-Donas J, Beuselinck B, Inglada-Pérez L, Graña O, Schöffski P, Wozniak A, Bechter O, Apellániz-Ruiz M, Leandro-García LJ, Esteban E, Castellano DE, González Del Alba A, Climent MA, Hernando S, Arranz JA, Morente M, Pisano DG, Robledo M, Rodriguez-Antona C. Deep sequencing reveals microRNAs predictive of antiangiogenic drug response. JCI Insight 2016; 1:e86051. [PMID: 27699216 DOI: 10.1172/jci.insight.86051] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The majority of metastatic renal cell carcinoma (RCC) patients are treated with tyrosine kinase inhibitors (TKI) in first-line treatment; however, a fraction are refractory to these antiangiogenic drugs. MicroRNAs (miRNAs) are regulatory molecules proven to be accurate biomarkers in cancer. Here, we identified miRNAs predictive of progressive disease under TKI treatment through deep sequencing of 74 metastatic clear cell RCC cases uniformly treated with these drugs. Twenty-nine miRNAs were differentially expressed in the tumors of patients who progressed under TKI therapy (P values from 6 × 10-9 to 3 × 10-3). Among 6 miRNAs selected for validation in an independent series, the most relevant associations corresponded to miR-1307-3p, miR-155-5p, and miR-221-3p (P = 4.6 × 10-3, 6.5 × 10-3, and 3.4 × 10-2, respectively). Furthermore, a 2 miRNA-based classifier discriminated individuals with progressive disease upon TKI treatment (AUC = 0.75, 95% CI, 0.64-0.85; P = 1.3 × 10-4) with better predictive value than clinicopathological risk factors commonly used. We also identified miRNAs significantly associated with progression-free survival and overall survival (P = 6.8 × 10-8 and 7.8 × 10-7 for top hits, respectively), and 7 overlapped with early progressive disease. In conclusion, this is the first miRNome comprehensive study, to our knowledge, that demonstrates a predictive value of miRNAs for TKI response and provides a new set of relevant markers that can help rationalize metastatic RCC treatment.
Collapse
Affiliation(s)
- Jesús García-Donas
- Oncology Unit, HM Hospitales - Centro Integral Oncológico HM Clara Campal, Madrid, Spain.,Spanish Oncology Genitourinary Group, Madrid, Spain
| | - Benoit Beuselinck
- Department of General Medical Oncology, University Hospitals Leuven, and.,Laboratory for Experimental Oncology, KU Leuven, Leuven, Belgium
| | - Lucía Inglada-Pérez
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Osvaldo Graña
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Patrick Schöffski
- Department of General Medical Oncology, University Hospitals Leuven, and.,Laboratory for Experimental Oncology, KU Leuven, Leuven, Belgium
| | | | - Oliver Bechter
- Department of General Medical Oncology, University Hospitals Leuven, and.,Laboratory for Experimental Oncology, KU Leuven, Leuven, Belgium
| | - Maria Apellániz-Ruiz
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Luis Javier Leandro-García
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Emilio Esteban
- Spanish Oncology Genitourinary Group, Madrid, Spain.,Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Daniel E Castellano
- Spanish Oncology Genitourinary Group, Madrid, Spain.,Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Aranzazu González Del Alba
- Spanish Oncology Genitourinary Group, Madrid, Spain.,Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Miguel Angel Climent
- Spanish Oncology Genitourinary Group, Madrid, Spain.,Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Susana Hernando
- Spanish Oncology Genitourinary Group, Madrid, Spain.,Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - José Angel Arranz
- Spanish Oncology Genitourinary Group, Madrid, Spain.,Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Manuel Morente
- Tumour Bank Unit, Spanish National Cancer Research Centre, Madrid, Spain
| | - David G Pisano
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Cristina Rodriguez-Antona
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| |
Collapse
|
40
|
Xiao H, Xiao W, Cao J, Li H, Guan W, Guo X, Chen K, Zheng T, Ye Z, Wang J, Xu H. miR-206 functions as a novel cell cycle regulator and tumor suppressor in clear-cell renal cell carcinoma. Cancer Lett 2016; 374:107-116. [PMID: 26808577 DOI: 10.1016/j.canlet.2016.01.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/31/2015] [Accepted: 01/18/2016] [Indexed: 01/15/2023]
Abstract
PURPOSE In this study we tried to systematically investigate the tumor suppressing microRNAs in ccRCC. MATERIALS AND METHODS The MTS cell viability and colony formation assay were used to systematically detect the tumor suppressing ability of down-regulated miRNAs in ccRCC. Then miR-206 expression was detected by RT-qPCR and in situ hybridization in ccRCC cell lines and clinical samples. Oligonucleotides were used to overexpress or down-regulate miR-206. MTS cell viability, EdU cell proliferation, colony formation assay, flow cytometry, Xenograft subcutaneously and orthotopic implantations were done to examine tumor suppressing effects of miR-206 in vitro and in vivo. Luciferase assay was performed to verify the precise target of miR-206. RESULTS We reviewed and experimentally analyzed the currently available miRNA expression profiles data of ccRCC and identified miR-206 as one of the most critical tumor-suppressing microRNAs in ccRCC. In addition, miR-206 inhibited ccRCC cell proliferation through inducing cell cycle arrest by directly targeting cell cycle related gene CDK4, CDK9 and CCND1. CONCLUSIONS All these results suggested that miR-206 functioned as a novel cell cycle regulator and tumor suppressor in ccRCC and could be considered as a potential target for ccRCC therapy.
Collapse
Affiliation(s)
- Haibing Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Xiao
- Translational Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Cao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Guan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Zheng
- Department of Urology, Puai Hospital, Wuhan, 430033, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ji Wang
- Department of Cell Death and Cancer Genetics, The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA.
| | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
41
|
Chen X, Shi J, Zhong J, Huang Z, Luo X, Huang Y, Feng S, Shao J, Liu D. miR-1, regulated by LMP1, suppresses tumour growth and metastasis by targeting K-ras in nasopharyngeal carcinoma. Int J Exp Pathol 2016; 96:427-32. [PMID: 26852690 DOI: 10.1111/iep.12162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/18/2015] [Indexed: 01/18/2023] Open
Abstract
There is evidence to show that downregulation of miR-1 expression is closely related to cancer progression, including in nasopharyngeal carcinoma (NPC). However, the molecular mechanisms underlying miR-1 downregulation in NPC remain largely unknown, especially its association with Epstein-Barr virus (EBV). In this study we found that restoration of miR-1 dramatically inhibited cell invasion in vitro, together with tumour growth and metastasis in vivo. Importantly, we found that LMP1, an Epstein-Barr virus (EBV)-associated protein, suppressed miR-1 expression. Furthermore, we identified K-ras as a novel direct target of miR-1. Our results demonstrated for the first time that miR-1 was suppressed by LMP1 and its tumour-suppressive effects were mediated chiefly by repressing K-ras expression. We propose that miR-1 could serve as an independent biomarker to identify patients with different clinical characteristics.
Collapse
Affiliation(s)
- Xi Chen
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingxuan Shi
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jianwen Zhong
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhenyun Huang
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xi Luo
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yaping Huang
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shuang Feng
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jianbo Shao
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dabo Liu
- Department of Otorhinolaryngology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
42
|
Li Y, Chen P, Zu L, Liu B, Wang M, Zhou Q. MicroRNA-338-3p suppresses metastasis of lung cancer cells by targeting the EMT regulator Sox4. Am J Cancer Res 2016; 6:127-140. [PMID: 27186391 PMCID: PMC4859648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023] Open
Abstract
Metastasis remains the leading cause of the majority of cancer-related mortality. MicroRNAs (miRNAs) have frequently emerged as tumor metastatic regulator by acting on multiple signaling pathways. In the present study, we demonstrated that miR-338-3p was significantly downregulated in highly metastatic NSCLC cell lines and clinical metastatic tissues. Then, we found that introduction of miR-338-3p significantly suppressed the migration and invasion of lung cancer cells both in vitro and in vivo, suggesting that miR-338-3p may be a novel tumor suppressor. Further studies indicated that the EMT-related transcription factor Sox4 was one direct target gene of miR-338-3p, evidenced by the direct binding of miR-338-3p with the 3'untranslated region (3'UTR) of Sox4. Furthermore, miR-338-3p could decrease the expression of Sox4 both at mRNA and protein levels. Notably, the EMT marker E-cadherin or vimentin, a downstream regulator of Sox4, was also down-regulated or up-regulated upon miR-338-3p treatment. Additionally, over-expressing or silencing Sox4 could elevate or inhibit the migration and invasion of lung cancer cells, parallel to the effect of miR-338-3p on the lung cancer cells. Meanwhile, knockdown of Sox4 reversed the enhanced migration and invasion mediated by miR-338-3p. These results indicated that miR-338-3p suppressed the migration and invasion of NSCLC cells through targeting Sox4 involving in the EMT process. Thus, our finding provides new insight into the mechanism of NSCLC progression. Therapeutically, miR-338-3p may serve as a potential target in the treatment of human lung cancer.
Collapse
Affiliation(s)
- Yang Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| | - Peirui Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| | - Bin Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| | - Min Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital Tianjin 300052, China
| |
Collapse
|
43
|
Yuan W, Tang C, Zhu W, Zhu J, Lin Q, Fu Y, Deng C, Xue Y, Yang M, Wu S, Shan Z. CDK6 mediates the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy. Mol Cell Biochem 2015; 412:289-96. [PMID: 26699910 DOI: 10.1007/s11010-015-2635-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/15/2015] [Indexed: 01/21/2023]
Abstract
MicroRNA-1 (miR-1) is approved involved in cardiac hypertrophy, but the underlying molecular mechanisms of miR-1 in cardiac hypertrophy are not well elucidated. The present study aimed to investigate the potential role of miR-1 in modulating CDKs-Rb pathway during cardiomyocyte hypertrophy. A rat model of hypertrophy was established with abdominal aortic constriction, and a cell model of hypertrophy was also achieved based on PE-promoted neonatal rat ventricular cardiomyocytes (NRVCs). We demonstrated that miR-1 expression was markedly decreased in hypertrophic myocardium and hypertrophic cardiomyocytes. Dual luciferase reporter assays revealed that miR-1 interacted with the 3'UTR of CDK6, and miR-1 was verified to inhibit CDK6 expression at the posttranscriptional level. CDK6 protein expression was observed increased in hypertrophic myocardium and hypertrophic cardiomyocytes. Morover, miR-1 mimic, in parallel to CDK6 siRNA, could inhibit PE-induced hypertrophy of NRVCs, with decreases in cell size, newly transcribed RNA, expressions of ANF and β-MHC, and the phosphorylated pRb. Taken together, our results reveal that derepression of CDK6 and activation of Rb pathway contributes to the effect of attenuation of miR-1 on provoking cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Weiwei Yuan
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chunmei Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Wensi Zhu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jiening Zhu
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Qiuxiong Lin
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yongheng Fu
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chunyu Deng
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Yumei Xue
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Min Yang
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shulin Wu
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Zhixin Shan
- Medical Research Department of Guangdong General Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
44
|
Oncogenic MicroRNAs Characterization in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2015; 16:29219-25. [PMID: 26670229 PMCID: PMC4691105 DOI: 10.3390/ijms161226160] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 12/19/2022] Open
Abstract
A key challenge for the improvement of clear cell renal cell carcinoma (ccRCC) management could derive from a deeper characterization of the biology of these neoplasms that could greatly improve the diagnosis, prognosis and treatment choice. The aim of this study was to identify specific miRNAs that are deregulated in tumor vs. normal kidney tissues and that could impact on the biology of ccRCC. To this end we selected four miRNAs (miR-21-5p, miR-210-3p, miR-185-5p and miR-221-3p) and their expression has been evaluated in a retrospective cohort of formalin-fixed paraffin-embedded (FFPE) tissues from 20 ccRCC patients who underwent surgical nephrectomy resection. miR-21-5p and miR-210-3p resulted the most significantly up-regulated miRNAs in this patient cohort, highlighting these onco-miRNAs as possible relevant players involved in ccRCC tumorigenesis. Thus, this study reports the identification of specific oncogenic miRNAs that are altered in ccRCC tissues and suggests that they might be useful biomarkers in ccRCC management.
Collapse
|
45
|
Wu RL, Ali S, Sarkar FH, Beydoun R. Identification of Differentially Expressed miRNAs in Appendiceal Mucinous Cystadenocarcinoma from Mucinous Cystadenoma. ACTA ACUST UNITED AC 2015; 7:328-335. [PMID: 26807210 PMCID: PMC4720386 DOI: 10.4172/1948-5956.1000371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objective Mucinous cystadenocarcinoma of appendix is a rare entity. Differentiating mucinous cystadenocarcinoma from mucinous cystadenoma is very challenging and depends on establishing the presence of malignant cells in the appendix wall. The invasion may be very difficult to assess in some cases, especially in early stages of the disease, which could have devastating prognostic effects on patients. Therefore, it is necessary to develop an ancillary test that can differentiate the mucinous cystadenocarcinoma from mucinous cystadenoma. So far, there is no report available about the role of differentially expressed miRNAs in the diagnosis of appendiceal mucinous cystadenocarcinoma. Materials and Methods Six confirmed mucinous appendiceal cystadenocarcinoma and twelve mucinous appendiceal cystadenoma cases were selected. The total RNAs were extracted from the formalin-fixed paraffin-embedded specimen of these cases. The comprehensive miRNA microarray expression profiling from pooled aliquots of RNA samples from these two entities were analyzed to detect the differentially expressed miRNAs in mucinous cystadenocarcinoma. The best seven differentially expressed miRNAs were validated in individual cases by quantitative reverse transcriptase PCR (qRT-PCR). Results The microarray miRNA expression profiling analysis revealed 646 miRNAs that were differentially expressed in the mucinous cystadenocarcinoma. Among these differentially expressed miRNAs, the expression of 80 miRNAs showed statistical difference (p<0.01). The quantitative RT-PCR validated that the expression of miR-1, miR-4328 was significantly down regulated in mucinous cystadenocarcinoma compared to the mucinous cystadenoma (p<0.05). On the other hand, the expression of miR-200b, miR-200c, miR-451, miR-223 and miR-21 were significantly upregulated in mucinous cystadenocarcinoma (p<0.05). Conclusion The expression levels of miRNAs tested were significantly altered in the appendiceal mucinous cystadenocarcinoma samples compared to the mucinous cystadenoma. These data suggest that the miRNA expression in mucinous appendiceal neoplasm may help to supplement the morphological evaluation in distinguishing benign from malignant tumors.
Collapse
Affiliation(s)
- Richard Licheng Wu
- Department of Pathology, Jackson Memorial Hospital, University of Miami, Miami, Florida, USA
| | - Shadan Ali
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Fazlul H Sarkar
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA; Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Rafic Beydoun
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
46
|
Zhang S, Zhang D, Yi C, Wang Y, Wang H, Wang J. MicroRNA-22 functions as a tumor suppressor by targeting SIRT1 in renal cell carcinoma. Oncol Rep 2015; 35:559-67. [PMID: 26499759 DOI: 10.3892/or.2015.4333] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/30/2015] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence demonstrates that microRNA-22 (miR-22) was deregulated in many types of cancers and was involved in various cellular processes related to carcinogenesis. However, the exact roles and mechanisms of miR-22 remain unknown in human renal cell carcinoma (RCC). Here, the relationship between miR-22 expression pattern and clinicopathological features of patients with EOC were determined by real-time quantitative RT-PCR (qRT-PCR). Furthermore, the role of miR-22 and possible molecular mechanisms in EOC were investigated by several in vitro approaches and in a nude mouse model. Results from qRT-PCR showed that miR-22 was significantly downregulated in RCC samples compared with corresponding non-cancerous tissues, which was significantly associated with tumor stage and lymph node metastasis. Functional study demonstrated that enforced overexpression of miR-22 in renal cancer cells inhibited proliferation, migration and invasion, and induced cell apoptosis in vitro, and suppressed tumor growth in vivo. In addition, SIRT1 was identified as a direct target of miR-22 by a luciferase reporter assay. Overexpression of miR-22 activated p53 and its downstream target p21 and PUMA, and the apoptosis markers cleaved CASP3 and PARP, and inhibited epithelial-mesenchymal transition (EMT). These findings showed that miR-22 functioned as tumor suppressor in RCC and blocked RCC growth and metastasis by directly targeting SIRT1 in RCC, indicating a potential novel therapeutic role in RCC treatment.
Collapse
Affiliation(s)
- Shoulin Zhang
- Internal Medicine Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Dongmei Zhang
- Scientific Research Office, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Chunguang Yi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun Jingyue National High-Tech Industrial Development Zone, Changchun, Jilin 130117, P.R. China
| | - Yinping Wang
- Internal Medicine Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Hongan Wang
- Internal Medicine Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Jian Wang
- Internal Medicine Department, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
47
|
Li S, Qin X, Li Y, Zhang X, Niu R, Zhang H, Cui A, An W, Wang X. MiR-133a suppresses the migration and invasion of esophageal cancer cells by targeting the EMT regulator SOX4. Am J Transl Res 2015; 7:1390-1403. [PMID: 26396670 PMCID: PMC4568795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/01/2015] [Indexed: 06/05/2023]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs which can function as oncogenes or tumor suppressor genes in human cancers. In the present study, we demonstrated that the expression ofmiR-133a was dramatically decreased in examined esophageal squamous cell carcinoma (ESCC) cell lines and clinical ESCC tissue samples. Additionally, miR-133a expression was inversely correlated with tumor progression in ESCCs. We have found that over-expression of miR-133a significantly suppressed the proliferation, migration and invasion of ESCC cells in vitro. miR-133a over-expression also significantly suppressed the aggressive phenotype of ESCC in vivo, suggesting that miR-133a may function as a novel tumor suppressor. Further studies indicated that the EMT-related transcription factor Sox4 was a direct target gene of miR-133a, evidenced by the direct binding of miR-133a with the 3'UTR of Sox4. Notably, the EMT marker E-cadherin or vimentin, a downstream of Sox4, was also down-regulated or upregulated upon miR-133a treatment. We have also shown that over-expressing or silencing Sox4 was able to elevate or inhibit the migration and invasion of ESCC cells, similar to the effect of miR-133a on the ESCC cells. Moreover, knockdown of Sox4 reversed the enhanced migration and invasion mediated by anti-miR-133a. These results demonstrate that miR-133a acts as a tumor suppressor in ESCC through targeting Sox4 and the EMT process. miR-133a may serve as a potential target in the treatment of human esophageal cancer.
Collapse
Affiliation(s)
- Shujun Li
- Department of Thoracic Surgery, Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Xuebo Qin
- Department of Thoracic Surgery, Hebei Chest HospitalShijiazhuang, China
| | - Yang Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital TianjinChina
| | - Xun Zhang
- Department of Thoracic Surgery, Tianjin Chest HospitalShijiazhuang, China
| | - Ren Niu
- Department of Cancer Center, Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Helin Zhang
- Department of Thoracic Surgery, Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Airong Cui
- Department of Pathology, Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Wenting An
- Central Laboratory, Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Xiaolu Wang
- Department of Cancer Center, Second Hospital of Hebei Medical UniversityShijiazhuang, China
| |
Collapse
|