1
|
Kong R, Shi J, Xie K, Wu H, Wang X, Zhang Y, Wang Y. A Study of JUN's Promoter Region and Its Regulators in Chickens. Genes (Basel) 2024; 15:1351. [PMID: 39457475 PMCID: PMC11508107 DOI: 10.3390/genes15101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The Jun proto-oncogene (JUN), also referred to as C-JUN, is an integral component of the JNK signaling pathway, which is crucial for the formation and differentiation of spermatogonial stem cells (SSCs). Investigations into the transcriptional regulation of chicken JUN can offer a molecular foundation for elucidating its mechanistic role in SSCs. Methods: In this study, we successfully cloned a 2000 bp upstream sequence of the JUN transcription start site and constructed a series of pGL3 recombinant vectors containing JUN promoters of varying lengths. Results: We verified the promoter activity of the 2000 bp upstream sequence by assessing the fluorescence intensity of DF-1 and identified the promoter activities of different regions via dual-luciferase assays. The transcription of JUN and its promoter region spanning -700 to 0 bp was modulated by an activator of the JNK signaling pathway. Bioinformatics analysis revealed that this -700 to 0 bp region was highly conserved among avian species and predicted the presence of binding sites for Wilms tumor 1 (WT1) and CCAAT/enhancer binding protein alpha (CEBPA). The JNK signaling pathway activator was found to upregulate the expression of these transcription factors in DF-1 cells. Through the deletion of binding sites and the overexpression of WT1 and CEBPA, we demonstrated that WT1 inhibited the transcription of JUN, while CEBPA promoted it. Conclusions: In conclusion, the -700 to 0 bp region is the key region of the JUN promoter, with WT1 inhibiting JUN transcription. The results of the study not only provide ideas for exploring the regulatory mechanism of JUN in chicken SSCs, but also lay an important foundation for the study of avian SSCs.
Collapse
Affiliation(s)
- Ruihong Kong
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.K.); (J.S.); (K.X.); (H.W.); (X.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jieyao Shi
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.K.); (J.S.); (K.X.); (H.W.); (X.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ke Xie
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.K.); (J.S.); (K.X.); (H.W.); (X.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Han Wu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.K.); (J.S.); (K.X.); (H.W.); (X.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xu Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.K.); (J.S.); (K.X.); (H.W.); (X.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yani Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009, China;
| | - Yingjie Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (R.K.); (J.S.); (K.X.); (H.W.); (X.W.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
2
|
Li P, Yang L, Park SY, Liu F, Li AH, Zhu Y, Sui H, Gao F, Li L, Ye L, Zou Y, Tian Z, Zhao Y, Costa M, Sun H, Zhao X. Stabilization of MOF (KAT8) by USP10 promotes esophageal squamous cell carcinoma proliferation and metastasis through epigenetic activation of ANXA2/Wnt signaling. Oncogene 2024; 43:899-917. [PMID: 38317006 DOI: 10.1038/s41388-024-02955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Dysregulation of MOF (also known as MYST1, KAT8), a highly conserved H4K16 acetyltransferase, plays important roles in human cancers. However, its expression and function in esophageal squamous cell carcinoma (ESCC) remain unknown. Here, we report that MOF is highly expressed in ESCC tumors and predicts a worse prognosis. Depletion of MOF in ESCC significantly impedes tumor growth and metastasis both in vitro and in vivo, whereas ectopic expression of MOF but not catalytically inactive mutant (MOF-E350Q) promotes ESCC progression, suggesting that MOF acetyltransferase activity is crucial for its oncogenic activity. Further analysis reveals that USP10, a deubiquitinase highly expressed in ESCC, binds to and deubiquitinates MOF at lysine 410, which protects it from proteosome-dependent protein degradation. MOF stabilization by USP10 promotes H4K16ac enrichment in the ANXA2 promoter to stimulate ANXA2 transcription in a JUN-dependent manner, which subsequently activates Wnt/β-Catenin signaling to facilitate ESCC progression. Our findings highlight a novel USP10/MOF/ANXA2 axis as a promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Chest Cancer, The Second Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Lingxiao Yang
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Sun Young Park
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, 10010, USA
| | - Fanrong Liu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Alex H Li
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, 10010, USA
| | - Yilin Zhu
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huacong Sui
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fengyuan Gao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lingbing Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lan Ye
- Cancer Center, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhongxian Tian
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Chest Cancer, The Second Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yunpeng Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Max Costa
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, 10010, USA
| | - Hong Sun
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York, 10010, USA.
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Chest Cancer, The Second Hospital, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Chang L, Yuan W, Zhu L. β-cantenin is potentially involved in the regulation of c-Jun signaling following bovine herpesvirus 1 infection. Vet Microbiol 2020; 248:108804. [PMID: 32827927 PMCID: PMC7414362 DOI: 10.1016/j.vetmic.2020.108804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
BoHV-1 infection promotes nucleus accumulation of p-c-Jun(S73) and p-β-catenin(S552) The association between β-catenin and c-Jun in in nucleus is readily detected following BoHV-1 infection. BoHV-1 infection stimulates the expression and activation of c-Jun potentially through β-catenin. BoHV-1 infection leads to relocalization of nucleus c-Jun to form specific foci.
C-Jun, activated by various extracellular signals, is important for cell differentiation, proliferation, apoptosis, and inflammatory responses. We have previously reported that bovine herpesvirus 1 (BoHV-1) infection in MDBK cells stimulates the c-Jun NH2-terminal kinase (JNK)/c-Jun cascade for efficient replication. However, the mechanisms regarding the regulation of c-Jun following BoHV-1 infection remain unknown. In this study, we show that virus infection increases accumulation of p-c-Jun(S73) (phosphorylated c-Jun at Ser73) and p-β-catenin(S552) in the nucleus, resulting in relocalized nuclear p-c-Jun(S73) to assemble in highlighted punctum via a confocal microscope assay. An association between β-catenin and c-Jun in the nucleus was readily detected in virus-infected, but not mock-infected cells. Interestingly, β-catenin was found to be involved in the regulation of c-Jun signaling in virus-infected cells as iCRT14, a β-catenin-specific inhibitor that can inhibit β-catenin-dependent transcriptional activity, was able to decrease protein expression and phosphorylation of c-Jun. Furthermore, we suggest that BoHV-1 infection stimulates c-Jun phosphorylation regulated by β-catenin via both c-Jun NH2-terminal kinase (JNK)-dependent and JNK-independent mechanisms. These data add to our knowledge regarding the regulation of c-Jun following virus infection and further support the important roles of β-catenin signaling playing in BoHV-1 infection.
Collapse
Affiliation(s)
- Long Chang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Weifeng Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liqian Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Sheikh BN, Guhathakurta S, Akhtar A. The non-specific lethal (NSL) complex at the crossroads of transcriptional control and cellular homeostasis. EMBO Rep 2019; 20:e47630. [PMID: 31267707 PMCID: PMC6607013 DOI: 10.15252/embr.201847630] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
The functionality of chromatin is tightly regulated by post-translational modifications that modulate transcriptional output from target loci. Among the post-translational modifications of chromatin, reversible ε-lysine acetylation of histone proteins is prominent at transcriptionally active genes. Lysine acetylation is catalyzed by lysine acetyltransferases (KATs), which utilize the central cellular metabolite acetyl-CoA as their substrate. Among the KATs that mediate lysine acetylation, males absent on the first (MOF/KAT8) is particularly notable for its ability to acetylate histone 4 lysine 16 (H4K16ac), a modification that decompacts chromatin structure. MOF and its non-specific lethal (NSL) complex members have been shown to localize to gene promoters and enhancers in the nucleus, as well as to microtubules and mitochondria to regulate key cellular processes. Highlighting their importance, mutations or deregulation of NSL complex members has been reported in both human neurodevelopmental disorders and cancer. Based on insight gained from studies in human, mouse, and Drosophila model systems, this review discusses the role of NSL-mediated lysine acetylation in a myriad of cellular functions in both health and disease. Through these studies, the importance of the NSL complex in regulating core transcriptional and signaling networks required for normal development and cellular homeostasis is beginning to emerge.
Collapse
Affiliation(s)
- Bilal N Sheikh
- Max Planck Institute for Immunobiology and EpigeneticsFreiburg im BreisgauGermany
| | - Sukanya Guhathakurta
- Max Planck Institute for Immunobiology and EpigeneticsFreiburg im BreisgauGermany
- Faculty of BiologyAlbert Ludwig University of FreiburgFreiburgGermany
| | - Asifa Akhtar
- Max Planck Institute for Immunobiology and EpigeneticsFreiburg im BreisgauGermany
| |
Collapse
|
5
|
Wu D, Zhao L, Feng Z, Yu C, Ding J, Wang L, Wang F, Liu D, Zhu H, Xing F, Conaway JW, Conaway RC, Cai Y, Jin J. O-Linked N-acetylglucosamine transferase 1 regulates global histone H4 acetylation via stabilization of the nonspecific lethal protein NSL3. J Biol Chem 2017; 292:10014-10025. [PMID: 28450392 DOI: 10.1074/jbc.m117.781401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/25/2017] [Indexed: 01/16/2023] Open
Abstract
The human males absent on the first (MOF)-containing histone acetyltransferase nonspecific lethal (NSL) complex comprises nine subunits including the O-linked N-acetylglucosamine (O-GlcNAc) transferase, isoform 1 (OGT1). However, whether the O-GlcNAc transferase activity of OGT1 controls histone acetyltransferase activity of the NSL complex and whether OGT1 physically interacts with the other NSL complex subunits remain unclear. Here, we demonstrate that OGT1 regulates the activity of the NSL complex by mainly acetylating histone H4 Lys-16, Lys-5, and Lys-8 via O-GlcNAcylation and stabilization of the NSL complex subunit NSL3. Knocking down or overexpressing OGT1 in human cells remarkably affected the global acetylation of histone H4 residues Lys-16, Lys-5, and Lys-8. Because OGT1 is a subunit of the NSL complex, we also investigated the function of OGT1 in this complex. Co-transfection/co-immunoprecipitation experiments combined with in vitro O-GlcNAc transferase assays confirmed that OGT1 specifically binds to and O-GlcNAcylates NSL3. In addition, wheat germ agglutinin affinity purification verified the occurrence of O-GlcNAc modification on NSL3 in cells. Moreover, O-GlcNAcylation of NSL3 by wild-type OGT1 (OGT1-WT) stabilized NSL3. This stabilization was lost after co-transfection of NSL3 with an OGT1 mutant, OGT1C964A, that lacks O-GlcNAc transferase activity. Furthermore, stabilization of NSL3 by OGT1-WT significantly increased the global acetylation levels of H4 Lys-5, Lys-8, and Lys-16 in cells. These results suggest that OGT1 regulates the activity of the NSL complex by stabilizing NSL3.
Collapse
Affiliation(s)
| | | | | | - Chao Yu
- From the School of Life Sciences
| | | | | | - Fei Wang
- From the School of Life Sciences
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | | | | | - Joan W Conaway
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, and.,Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Lawrence, Kansas 66045
| | - Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, and.,Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Lawrence, Kansas 66045
| | - Yong Cai
- From the School of Life Sciences, .,National Engineering Laboratory for AIDS Vaccine, and.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun 130012, China
| | - Jingji Jin
- From the School of Life Sciences, .,National Engineering Laboratory for AIDS Vaccine, and.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Ferreyra Solari NE, Belforte FS, Canedo L, Videla-Richardson GA, Espinosa JM, Rossi M, Serna E, Riudavets MA, Martinetto H, Sevlever G, Perez-Castro C. The NSL Chromatin-Modifying Complex Subunit KANSL2 Regulates Cancer Stem-like Properties in Glioblastoma That Contribute to Tumorigenesis. Cancer Res 2016; 76:5383-94. [PMID: 27406830 DOI: 10.1158/0008-5472.can-15-3159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/24/2016] [Indexed: 12/17/2022]
Abstract
KANSL2 is an integral subunit of the nonspecific lethal (NSL) chromatin-modifying complex that contributes to epigenetic programs in embryonic stem cells. In this study, we report a role for KANSL2 in regulation of stemness in glioblastoma (GBM), which is characterized by heterogeneous tumor stem-like cells associated with therapy resistance and disease relapse. KANSL2 expression is upregulated in cancer cells, mainly at perivascular regions of tumors. RNAi-mediated silencing of KANSL2 in GBM cells impairs their tumorigenic capacity in mouse xenograft models. In clinical specimens, we found that expression levels of KANSL2 correlate with stemness markers in GBM stem-like cell populations. Mechanistic investigations showed that KANSL2 regulates cell self-renewal, which correlates with effects on expression of the stemness transcription factor POU5F1. RNAi-mediated silencing of POU5F1 reduced KANSL2 levels, linking these two genes to stemness control in GBM cells. Together, our findings indicate that KANSL2 acts to regulate the stem cell population in GBM, defining it as a candidate GBM biomarker for clinical use. Cancer Res; 76(18); 5383-94. ©2016 AACR.
Collapse
Affiliation(s)
- Nazarena E Ferreyra Solari
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Fiorella S Belforte
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lucía Canedo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Guillermo A Videla-Richardson
- Laboratorio de Investigación aplicada a Neurociencias (LIAN), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Joaquín M Espinosa
- Linda Crnic Institute for Down Syndrome, Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado
| | - Mario Rossi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Eva Serna
- Servicio Análisis Multigénico, Unidad Central de Investigación, Facultad de Medicina, Universidad de Valencia, Valencia, España
| | - Miguel A Riudavets
- Laboratorio de Biología Molecular, Departamento de Neuropatología y Biología Molecular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina. Laboratorio de Histopatología, Cuerpo Médico Forense, Tribunal Supremo de Justicia, Buenos Aires, Argentina
| | - Horacio Martinetto
- Laboratorio de Biología Molecular, Departamento de Neuropatología y Biología Molecular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Gustavo Sevlever
- Laboratorio de Biología Molecular, Departamento de Neuropatología y Biología Molecular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET -Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
7
|
The Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis. Int J Mol Sci 2016; 17:ijms17010099. [PMID: 26784169 PMCID: PMC4730341 DOI: 10.3390/ijms17010099] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/28/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs). As a catalytic subunit, MOF can form at least two distinct multiprotein complexes (MSL and NSL) in human cells. Both complexes can acetylate histone H4 at lysine 16 (H4K16); however, the NSL complex possesses broader substrate specificity and can also acetylate histone H4 at lysines 5 and 8 (H4K5 and H4K8), suggesting the complexity of the intracellular functions of MOF. Silencing of MOF in cells leads to genomic instability, inactivation of gene transcription, defective DNA damage repair and early embryonic lethality. Unbalanced MOF expression and its corresponding acetylation of H4K16 have been found in certain primary cancer tissues, including breast cancer, medulloblastoma, ovarian cancer, renal cell carcinoma, colorectal carcinoma, gastric cancer, as well as non-small cell lung cancer. In this review, we provide a brief overview of MOF and its corresponding histone acetylation, introduce recent research findings that link MOF functions to tumorigenesis and speculate on the potential role that may be relevant to tumorigenic pathways.
Collapse
|
8
|
Abstract
MOF was first identified in Drosophila melanogaster as an important component of the dosage compensation complex. As a member of MYST family of histone acetyltransferase, MOF specifically deposits the acetyl groups to histone H4 lysine 16. Throughout evolution, MOF and its mammalian ortholog have retained highly conserved substrate specificity and similar enzymatic activities. MOF plays important roles in dosage compensation, ESC self-renewal, DNA damage and repair, cell survival, and gene expression regulation. Dysregulation of MOF has been implicated in tumor formation and progression of many types of human cancers. This review will discuss the structure and activity of mammalian hMOF as well as its function in H4K16 acetylation, DNA damage response, stem cell pluripotency, and carcinogenesis.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY, USA
| | - Max Costa
- Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY, USA
| | - Hong Sun
- Department of Environmental Medicine, NYU School of Medicine, Tuxedo, NY, USA
| |
Collapse
|