1
|
Altamirano FG, Castro-Pascual I, Ponce IT, Coria-Lucero CD, Cargnelutti E, Ferramola ML, Delgado MS, Anzulovich AC, Lacoste MG. Late-Onset Caloric Restriction Improves Cognitive Performance and Restores Circadian Patterns of Neurotrophic, Clock, and Epigenetic Factors in the Hippocampus of Old Male Rats. J Gerontol A Biol Sci Med Sci 2024; 80:glae252. [PMID: 39447038 DOI: 10.1093/gerona/glae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Indexed: 10/26/2024] Open
Abstract
Aging is a complex multifactorial process that results in a general functional decline, including cognitive impairment. Caloric restriction (CR) can positively influence the aging processes and delay cognitive decline. There is a rhythmic variation in memory and learning processes throughout the day, indicating the involvement of the circadian clock in the regulation of these processes. Despite growing evidence on the efficacy of CR, it has not yet been fully determined whether starting this strategy at an advanced age is beneficial for improving quality of life and eventually, for protection against age-related diseases. Here, we investigated the effect of late-onset CR on the temporal organization of the molecular clock machinery, molecules related to cognitive processes and epigenetic regulation, in the hippocampus of old male rats maintained under constant darkness conditions. Our results evidenced the existence of a highly coordinated temporal organization of Bmal1, Clock, Bdnf, Trkb, Dnmts, Sirt1, and Pgc-1α in the hippocampus of young adult rats. We observed that aging led to cognitive deficits and loss of circadian oscillations of all the above variables. Interestingly, CR restored circadian rhythmicity in all cases and, in addition, improved the cognitive performance of the old animals. This work would highlight the importance of the circadian clock and its synchronization with feeding signals, as the basis of the beneficial effects of CR. Thus, lifestyle modifications, such as CR, might be a powerful intervention to preserve hippocampal circadian organization and cognitive health during aging.
Collapse
Affiliation(s)
- Fernando Gabriel Altamirano
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Scientific and Technical Research (CONICET), San Luis, Argentina
- Faculty of Chemistry, Biochemistry and Pharmacy (FQByF), National University of San Luis (UNSL), San Luis, Argentina
| | - Ivanna Castro-Pascual
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Scientific and Technical Research (CONICET), San Luis, Argentina
- Faculty of Chemistry, Biochemistry and Pharmacy (FQByF), National University of San Luis (UNSL), San Luis, Argentina
| | - Ivana Tamara Ponce
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Scientific and Technical Research (CONICET), San Luis, Argentina
- Faculty of Chemistry, Biochemistry and Pharmacy (FQByF), National University of San Luis (UNSL), San Luis, Argentina
| | - Cinthia Daiana Coria-Lucero
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Scientific and Technical Research (CONICET), San Luis, Argentina
- Faculty of Chemistry, Biochemistry and Pharmacy (FQByF), National University of San Luis (UNSL), San Luis, Argentina
| | - Ethelina Cargnelutti
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Scientific and Technical Research (CONICET), San Luis, Argentina
- Faculty of Chemistry, Biochemistry and Pharmacy (FQByF), National University of San Luis (UNSL), San Luis, Argentina
| | - Mariana Lucila Ferramola
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Scientific and Technical Research (CONICET), San Luis, Argentina
- Faculty of Chemistry, Biochemistry and Pharmacy (FQByF), National University of San Luis (UNSL), San Luis, Argentina
| | - Marcela Silvia Delgado
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Scientific and Technical Research (CONICET), San Luis, Argentina
- Faculty of Chemistry, Biochemistry and Pharmacy (FQByF), National University of San Luis (UNSL), San Luis, Argentina
| | - Ana Cecilia Anzulovich
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Scientific and Technical Research (CONICET), San Luis, Argentina
- Faculty of Chemistry, Biochemistry and Pharmacy (FQByF), National University of San Luis (UNSL), San Luis, Argentina
| | - María Gabriela Lacoste
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research - San Luis (IMIBIO-SL), National Council for Scientific and Technical Research (CONICET), San Luis, Argentina
- Faculty of Chemistry, Biochemistry and Pharmacy (FQByF), National University of San Luis (UNSL), San Luis, Argentina
| |
Collapse
|
2
|
Tabuchi M. Dynamic neuronal instability generates synaptic plasticity and behavior: Insights from Drosophila sleep. Neurosci Res 2024; 198:1-7. [PMID: 37385545 PMCID: PMC11033711 DOI: 10.1016/j.neures.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
How do neurons encode the information that underlies cognition, internal states, and behavior? This review focuses on the neural circuit mechanisms underlying sleep in Drosophila and, to illustrate the power of addressing neural coding in this system, highlights a specific circuit mediating the circadian regulation of sleep quality. This circuit exhibits circadian cycling of sleep quality, which depends solely on the pattern (not the rate) of spiking. During the night, the stability of spike waveforms enhances the reliability of spike timing in these neurons to promote sleep quality. During the day, instability of the spike waveforms leads to uncertainty of spike timing, which remarkably produces synaptic plasticity to induce arousal. Investigation of the molecular and biophysical basis of these changes was greatly facilitated by its study in Drosophila, revealing direct connections between genes, molecules, spike biophysical properties, neural codes, synaptic plasticity, and behavior. Furthermore, because these patterns of neural activity change with aging, this model system holds promise for understanding the interplay between the circadian clock, aging, and sleep quality. It is proposed here that neurophysiological investigations of the Drosophila brain present an exceptional opportunity to tackle some of the most challenging questions related to neural coding.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
3
|
Malik MZ, Dashti M, Fatima Y, Channanath A, John SE, Singh RKB, Al-Mulla F, Thanaraj TA. Disruption in the regulation of casein kinase 2 in circadian rhythm leads to pathological states: cancer, diabetes and neurodegenerative disorders. Front Mol Neurosci 2023; 16:1217992. [PMID: 37475884 PMCID: PMC10354274 DOI: 10.3389/fnmol.2023.1217992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Circadian rhythm maintains the sleep-wake cycle in biological systems. Various biological activities are regulated and modulated by the circadian rhythm, disruption of which can result in onset of diseases. Robust rhythms of phosphorylation profiles and abundances of PERIOD (PER) proteins are thought to be the master keys that drive circadian clock functions. The role of casein kinase 2 (CK2) in circadian rhythm via its direct interactions with the PER protein has been extensively studied; however, the exact mechanism by which it affects circadian rhythms at the molecular level is not known. Methods Here, we propose an extended circadian rhythm model in Drosophila that incorporates the crosstalk between the PER protein and CK2. We studied the regulatory role of CK2 in the dynamics of PER proteins involved in circadian rhythm using the stochastic simulation algorithm. Results We observed that variations in the concentration of CK2 in the circadian rhythm model modulates the PER protein dynamics at different cellular states, namely, active, weakly active, and rhythmic death. These oscillatory states may correspond to distinct pathological cellular states of the living system. We find molecular noise at the expression level of CK2 to switch normal circadian rhythm to any of the three above-mentioned circadian oscillatory states. Our results suggest that the concentration levels of CK2 in the system has a strong impact on its dynamics, which is reflected in the time evolution of PER protein. Discussion We believe that our findings can contribute towards understanding the molecular mechanisms of circadian dysregulation in pathways driven by the PER mutant genes and their pathological states, including cancer, obesity, diabetes, neurodegenerative disorders, and socio-psychological disease.
Collapse
Affiliation(s)
- Md. Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohammed Dashti
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Yasmin Fatima
- Department of Computational Biology and Bioinformatics, Sam Higginbottom Institute of Agriculture, Technology and Sciences (Formerly Allahabad Agricultural Institute-Deemed University), Allahabad, India
| | - Arshad Channanath
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sumi Elsa John
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - R. K. Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | |
Collapse
|
4
|
Shukla M, Vincent B. Melatonin as a Harmonizing Factor of Circadian Rhythms, Neuronal Cell Cycle and Neurogenesis: Additional Arguments for Its Therapeutic Use in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:1273-1298. [PMID: 36918783 PMCID: PMC10286584 DOI: 10.2174/1570159x21666230314142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 03/16/2023] Open
Abstract
The synthesis and release of melatonin in the brain harmonize various physiological functions. The apparent decline in melatonin levels with advanced aging is an aperture to the neurodegenerative processes. It has been indicated that down regulation of melatonin leads to alterations of circadian rhythm components, which further causes a desynchronization of several genes and results in an increased susceptibility to develop neurodegenerative diseases. Additionally, as circadian rhythms and memory are intertwined, such rhythmic disturbances influence memory formation and recall. Besides, cell cycle events exhibit a remarkable oscillatory system, which is downstream of the circadian phenomena. The linkage between the molecular machinery of the cell cycle and complex fundamental regulatory proteins emphasizes the conjectural regulatory role of cell cycle components in neurodegenerative disorders such as Alzheimer's disease. Among the mechanisms intervening long before the signs of the disease appear, the disturbances of the circadian cycle, as well as the alteration of the machinery of the cell cycle and impaired neurogenesis, must hold our interest. Therefore, in the present review, we propose to discuss the underlying mechanisms of action of melatonin in regulating the circadian rhythm, cell cycle components and adult neurogenesis in the context of AD pathogenesis with the view that it might further assist to identify new therapeutic targets.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Present Address: Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
5
|
Hart DA, Zernicke RF, Shrive NG. Homo sapiens May Incorporate Daily Acute Cycles of “Conditioning–Deconditioning” to Maintain Musculoskeletal Integrity: Need to Integrate with Biological Clocks and Circadian Rhythm Mediators. Int J Mol Sci 2022; 23:ijms23179949. [PMID: 36077345 PMCID: PMC9456265 DOI: 10.3390/ijms23179949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Human evolution required adaptation to the boundary conditions of Earth, including 1 g gravity. The bipedal mobility of Homo sapiens in that gravitational field causes ground reaction force (GRF) loading of their lower extremities, influencing the integrity of the tissues of those extremities. However, humans usually experience such loading during the day and then a period of relative unloading at night. Many studies have indicated that loading of tissues and cells of the musculoskeletal (MSK) system can inhibit their responses to biological mediators such as cytokines and growth factors. Such findings raise the possibility that humans use such cycles of acute conditioning and deconditioning of the cells and tissues of the MSK system to elaborate critical mediators and responsiveness in parallel with these cycles, particularly involving GRF loading. However, humans also experience circadian rhythms with the levels of a number of mediators influenced by day/night cycles, as well as various levels of biological clocks. Thus, if responsiveness to MSK-generated mediators also occurs during the unloaded part of the daily cycle, that response must be integrated with circadian variations as well. Furthermore, it is also possible that responsiveness to circadian rhythm mediators may be regulated by MSK tissue loading. This review will examine evidence for the above scenario and postulate how interactions could be both regulated and studied, and how extension of the acute cycles biased towards deconditioning could lead to loss of tissue integrity.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
- Correspondence:
| | - Ronald F. Zernicke
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109-5328, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48108-1048, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2099, USA
| | - Nigel G. Shrive
- Department of Surgery, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Institute for Bone & Joint Health Research, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 4V8, Canada
| |
Collapse
|
6
|
Deibel SH, Lewis LM, Cleary J, Cassell TTS, Skinner DM, Thorpe CM. Unpredictable mealtimes rather than social jetlag affects acquisition and retention of hippocampal dependent memory. Behav Processes 2022; 201:104704. [PMID: 35842197 DOI: 10.1016/j.beproc.2022.104704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/15/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022]
Abstract
Some degree of circadian rhythm disruption is hard to avoid in today's society. Along, with many other deleterious effects, circadian rhythm disruption impairs memory. One way to study this is to expose rats to daylengths that are outside the range of entrainment. As a result, circadian processes and behaviours occur during phases of the light dark cycle in which they typically would not. Even brief exposures to these day lengths can impair hippocampal dependent memory. In a recent report, we created an unentrainable light dark cycle that was intended to resemble aspects of social jetlag. As predictable mealtime impacts circadian entrainment, in that report, we also created an unpredictable meal schedule with the idea that failure to entrain to a meal might afford a disadvantage in some instances. Both of these manipulations impaired retention in a spatial water plus-maze task. Using the same manipulations, the present study investigated their effects on acquisition in distributed and massed spatial water plus-maze paradigms. As in other reports with unentrainable daylengths, acquisition was not affected by our lighting manipulation. Conversely, in accordance with our past report, unpredictable mealtimes had a harmful effect on hippocampal dependent memory. Notably, impaired acquisition in the distributed version, and impaired retention in the massed version. In tandem, these data suggest that failure to consolidate or retrieve the information is the likely culprit. The unpredictable mealtime manipulation offers a unique opportunity to study the effects of circadian entrainment on memory.
Collapse
Affiliation(s)
- Scott H Deibel
- Department of Psychology, University of New Brunswick, Canada.
| | - Leanna M Lewis
- Department of Psychology, Memorial University of Newfoundland, Canada
| | - Jillian Cleary
- Department of Psychology, Memorial University of Newfoundland, Canada
| | | | - Darlene M Skinner
- Department of Psychology, Memorial University of Newfoundland, Canada
| | | |
Collapse
|
7
|
Babaei P, Azari HB. Exercise Training Improves Memory Performance in Older Adults: A Narrative Review of Evidence and Possible Mechanisms. Front Hum Neurosci 2022; 15:771553. [PMID: 35153701 PMCID: PMC8829997 DOI: 10.3389/fnhum.2021.771553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
As human life expectancy increases, cognitive decline and memory impairment threaten independence and quality of life. Therefore, finding prevention and treatment strategies for memory impairment is an important health concern. Moreover, a better understanding of the mechanisms involved underlying memory preservation will enable the development of appropriate pharmaceuticals drugs for those who are activity limited. Exercise training as a non-pharmacological tool, has been known to increase the mean lifespan by maintaining general body health and improving the cardiovascular and nervous systems function. Among different exercise training protocols, aerobic exercise has been reported to prevent the progression of memory decline, provided adequate exertion level, duration, and frequency. Mechanisms underlying exercise training effects on memory performance have not been understood yet. Convergent evidence suggest several direct and indirect mechanisms at molecular and supramolecular levels. The supramolecular level includes improvement in blood circulation, synaptic plasticity and neurogenesis which are under controls of complex molecular signaling of neurotransmitters, neurotrophic factors, exerkines, and epigenetics factors. Among these various factors, irisin/BDNF signaling seems to be one of the important mediators of crosstalk between contracted skeletal muscles and the brain during exercise training. This review provides an affordable and effective method to improve cognitive function in old ages, particularly those who are most vulnerable to neurodegenerative disorders.
Collapse
Affiliation(s)
- Parvin Babaei
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Helya Bolouki Azari
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Polverino A, Sorrentino P, Pesoli M, Mandolesi L. Nutrition and cognition across the lifetime: an overview on epigenetic mechanisms. AIMS Neurosci 2021; 8:448-476. [PMID: 34877399 PMCID: PMC8611190 DOI: 10.3934/neuroscience.2021024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/12/2021] [Indexed: 12/28/2022] Open
Abstract
The functioning of our brain depends on both genes and their interactions with environmental factors. The close link between genetics and environmental factors produces structural and functional cerebral changes early on in life. Understanding the weight of environmental factors in modulating neuroplasticity phenomena and cognitive functioning is relevant for potential interventions. Among these, nutrition plays a key role. In fact, the link between gut and brain (the gut-brain axis) is very close and begins in utero, since the Central Nervous System (CNS) and the Enteric Nervous System (ENS) originate from the same germ layer during the embryogenesis. Here, we investigate the epigenetic mechanisms induced by some nutrients on the cognitive functioning, which affect the cellular and molecular processes governing our cognitive functions. Furthermore, epigenetic phenomena can be positively affected by specific healthy nutrients from diet, with the possibility of preventing or modulating cognitive impairments. Specifically, we described the effects of several nutrients on diet-dependent epigenetic processes, in particular DNA methylation and histones post-translational modifications, and their potential role as therapeutic target, to describe how some forms of cognitive decline could be prevented or modulated from the early stages of life.
Collapse
Affiliation(s)
- Arianna Polverino
- Institute of Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy.,Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.,Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
| | - Matteo Pesoli
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Laura Mandolesi
- Department of Humanities Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Asadian N, Parsaie H, Vafaei AA, Dadkhah M, Omoumi S, Sedaghat K. Chronic light deprivation induces different effects on spatial and fear memory and hippocampal BDNF/TRKB expression during light and dark phases of rat diurnal rhythm. Behav Brain Res 2021; 418:113638. [PMID: 34695541 DOI: 10.1016/j.bbr.2021.113638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 09/11/2021] [Accepted: 10/18/2021] [Indexed: 11/02/2022]
Abstract
Disruptions in light/dark cycle have been associated with an altered ability to form and retrieve memory in human and animals. Animal studies have shown that chronic light deprivation disrupts the light/dark cycle and alters the neural connections that mediate hippocampal memory formation. In order to better understand how light deprivation affects the formation and retrieval of memory in adult rats, we examined the effect of total darkness on spatial and auditory fear learning and memory formation and BDNF/TRKB protein levels during the light and dark phases of the rat circadian cycle. Male Wistar rats (n = 60), were randomly divided into two main groups: normal rearing (NR, 12 h light/dark cycle for 3 weeks) and dark rearing (DR, kept in constant darkness for 3 weeks); and each of these groups had a "light (day)" and "dark (night)" sub-group. After 3 weeks, the Morris Water maze and auditory fear conditioning were used to assess spatial and fear memory acquisition and retrieval, respectively. BDNF and TRKB protein levels in the hippocampus of rats from the four sub-groups were measured by Western blot, at the completion of the 3 week constant darkness exposure and after the behavioral experiments. These studies revealed that DR for 3 weeks impaired spatial memory retrieval and enhanced extinction of auditory fear memory specifically during the light (day) phase. DR also eliminated the normal fluctuations in BDNF/TRKB levels observed in the hippocampus across the light/dark cycle.
Collapse
Affiliation(s)
- Nader Asadian
- Department of Biophysics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Houman Parsaie
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Masoumeh Dadkhah
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Samira Omoumi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Katayoun Sedaghat
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
10
|
Yi Lee PM, Ling Kwok BH, Ting Ma JY, Tse LA. A population-based prospective study on rest-activity rhythm and mild cognitive impairment among Hong Kong healthy community-dwelling older adults. Neurobiol Sleep Circadian Rhythms 2021; 10:100065. [PMID: 33997474 PMCID: PMC8091051 DOI: 10.1016/j.nbscr.2021.100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 01/13/2023] Open
Abstract
Background Relatively few studies investigated the association between rest-activity circadian rhythm and cognitive impairment in population-based study, and the evidence from Asian populations is sparse. We aimed to examine the relationship of actigraphy measured rest-activity circadian rhythm with mild cognitive impairment (MCI) or cognitive impairment in Hong Kong healthy community-dwelling older adults. Methods We recruited 174 Hong Kong healthy adults aged ≥65 years (36 male vs. 138 female) during April-September 2018, and followed up them for 12 months. Participants were invited to wear wrist actigraphy for 7 days in both baseline and follow-up study. We used the actigraph data to calculate their midline statistic of rhythm (MESOR), amplitude, acrophase and percent rhythm. Montreal Cognitive Assessment (MoCA) was used to assess their cognitive scores at baseline and follow-up. Multivariate logistic regression model was performed to estimate the association of rest-activity circadian rhythm parameters with MCI; whilst multinomial logistic regression model was used to examine the association between rhythm parameters and changes of cognitive scores (i.e., worsen: <-1, stable: -1 to 1, better cognition: ≥2) after 12-months follow-up respectively. Results There was no association between rest-activity circadian rhythm parameters and MCI or cognitive impairment at baseline. Compared to those with an averaged value of acrophase (1:24pm-3:00pm), results of multinominal logistic regression showed that participants with a delayed acrophase (after 3:00pm) were less likely to have better cognition (adjusted odds ratio (AOR) = 0.32, 95% confidence interval (CI) = 0.11-0.88). Upon one year of follow-up, participants who delayed their acrophase for 24 min than their baseline measurements were also less likely to have better cognitive functions (AOR = 0.26, 95%CI = 0.08-0.79). Conclusions Results from both the baseline survey and follow-up study consistently confirmed that older adults, especially in light of the majority of participants being the females, with delayed acrophase were less likely to have better cognition in the Asian population.
Collapse
Affiliation(s)
- Priscilla Ming Yi Lee
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Bonnie Ho Ling Kwok
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Julie Yuen Ting Ma
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Lap Ah Tse
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
11
|
Lehr AB, McDonald RJ, Thorpe CM, Tetzlaff C, Deibel SH. A local circadian clock for memory? Neurosci Biobehav Rev 2021; 127:946-957. [PMID: 33476672 DOI: 10.1016/j.neubiorev.2020.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
The master clock, suprachiasmatic nucleus, is believed to control peripheral circadian oscillators throughout the brain and body. However, recent data suggest there is a circadian clock involved in learning and memory, potentially housed in the hippocampus, which is capable of acting independently of the master clock. Curiously, the hippocampal clock appears to be influenced by the master clock and by hippocampal dependent learning, while under certain conditions it may also revert to its endogenous circadian rhythm. Here we propose a mechanism by which the hippocampal clock could locally determine the nature of its entrainment. We introduce a novel theoretical framework, inspired by but extending beyond the hippocampal memory clock, which provides a new perspective on how circadian clocks throughout the brain coordinate their rhythms. Importantly, a local clock for memory would suggest that hippocampal-dependent learning at the same time every day should improve memory, opening up a range of possibilities for non-invasive therapies to alleviate the detrimental effects of circadian rhythm disruption on human health.
Collapse
Affiliation(s)
- Andrew B Lehr
- Department of Computational Neuroscience, University of Göttingen, Germany; Bernstein Center for Computational Neuroscience, University of Göttingen, Germany
| | | | | | - Christian Tetzlaff
- Department of Computational Neuroscience, University of Göttingen, Germany; Bernstein Center for Computational Neuroscience, University of Göttingen, Germany
| | - Scott H Deibel
- Department of Psychology, Memorial University of Newfoundland, Canada.
| |
Collapse
|
12
|
Ferrer A, Costas J, Gratacos M, Martínez‐Amorós È, Labad J, Soriano‐Mas C, Palao D, Menchón JM, Crespo JM, Urretavizcaya M, Soria V. Clock gene polygenic risk score and seasonality in major depressive disorder and bipolar disorder. GENES BRAIN AND BEHAVIOR 2020; 19:e12683. [DOI: 10.1111/gbb.12683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Alex Ferrer
- Department of Mental Health ParcTaulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT) Sabadell Spain
- Department of Clinical Sciences, School of Medicine Universitat de Barcelona Barcelona Spain
| | - Javier Costas
- Instituto de Investigación Sanitaria (IDIS) de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS) Servizo Galego de Saúde (SERGAS), Santiago de Compostela Galicia Spain
| | - Mònica Gratacos
- Genetic Causes of Disease Group Centre for Genomic Regulation Barcelona Spain
| | - Èrika Martínez‐Amorós
- Department of Mental Health ParcTaulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT) Sabadell Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Carlos III Health Institute Madrid Spain
| | - Javier Labad
- Department of Mental Health ParcTaulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT) Sabadell Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Carlos III Health Institute Madrid Spain
- Department of Psychiatry and Legal Medicine Universitat Autònoma de Barcelona Barcelona Spain
| | - Carles Soriano‐Mas
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Carlos III Health Institute Madrid Spain
- Department of Psychiatry, Bellvitge University Hospital Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group – Psychiatry and Mental Health Barcelona Spain
- Department of Psychobiology and Methodology of Health Sciences Universitat Autònoma de Barcelona Barcelona Spain
| | - Diego Palao
- Department of Mental Health ParcTaulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT) Sabadell Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Carlos III Health Institute Madrid Spain
- Department of Psychiatry and Legal Medicine Universitat Autònoma de Barcelona Barcelona Spain
| | - Jose Manuel Menchón
- Department of Clinical Sciences, School of Medicine Universitat de Barcelona Barcelona Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Carlos III Health Institute Madrid Spain
- Department of Psychiatry, Bellvitge University Hospital Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group – Psychiatry and Mental Health Barcelona Spain
| | - Jose Manuel Crespo
- Department of Clinical Sciences, School of Medicine Universitat de Barcelona Barcelona Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Carlos III Health Institute Madrid Spain
- Department of Psychiatry, Bellvitge University Hospital Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group – Psychiatry and Mental Health Barcelona Spain
| | - Mikel Urretavizcaya
- Department of Clinical Sciences, School of Medicine Universitat de Barcelona Barcelona Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Carlos III Health Institute Madrid Spain
- Department of Psychiatry, Bellvitge University Hospital Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group – Psychiatry and Mental Health Barcelona Spain
| | - Virginia Soria
- Department of Clinical Sciences, School of Medicine Universitat de Barcelona Barcelona Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Carlos III Health Institute Madrid Spain
- Department of Psychiatry, Bellvitge University Hospital Bellvitge Biomedical Research Institute (IDIBELL), Neurosciences Group – Psychiatry and Mental Health Barcelona Spain
| |
Collapse
|
13
|
Didikoglu A, Maharani A, Canal MM, Pendleton N, Payton A. Interactions between season of birth, chronological age and genetic polymorphisms in determining later-life chronotype. Mech Ageing Dev 2020; 188:111253. [PMID: 32371234 DOI: 10.1016/j.mad.2020.111253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 01/19/2023]
Abstract
Human chronotype, the temporal pattern of daily behaviors, is influenced by postnatal seasonal programming and ageing. The aim of this study was to investigate genetic variants that are associated with season of birth programming and longitudinal chronotype change. Longitudinal sleep timing and genotype data from 1449 participants were collected for up to 27 years. Gene-environment interaction analysis was performed for 445 candidate single nucleotide polymorphisms that have previously been associated with chronotype. Associations were tested using linear mixed model. We identified 67 suggestively significant genomic loci that have genotype-ageing interaction and 25 genomic loci that may have genotype-season of birth interaction in determining chronotype. We attempted to replicate the results using longitudinal data of the UK Biobank from approximately 30,000 participants. Biological functions of these genes suggest that epigenetic regulation of gene expression and neural development may have roles in these processes. The strongest associated gene for sleep trajectories was ALKBH5, which has functions of DNA repair and epigenetic regulation. A potential candidate gene for postnatal seasonal programming was SIRT1, which has previously been implicated in postnatal programming, ageing and longevity. Genetic diversity may explain the heterogeneity in ageing-related change of sleep timing and postnatal environmental programming of later-life chronotype.
Collapse
Affiliation(s)
- Altug Didikoglu
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK(2).
| | - Asri Maharani
- Division of Nursing, Midwifery & Social Work, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Maria Mercè Canal
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK(2)
| | - Neil Pendleton
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK(2)
| | - Antony Payton
- Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| |
Collapse
|
14
|
Deibel SH, McDonald RJ, Kolla NJ. Are Owls and Larks Different When it Comes to Aggression? Genetics, Neurobiology, and Behavior. Front Behav Neurosci 2020; 14:39. [PMID: 32256322 PMCID: PMC7092663 DOI: 10.3389/fnbeh.2020.00039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the contribution of circadian rhythms to aggression with a multifaceted approach incorporating genetics, neural networks, and behavior. We explore the hypothesis that chronic circadian misalignment is contributing to increased aggression. Genes involved in both circadian rhythms and aggression are discussed as a possible mechanism for increased aggression that might be elicited by circadian misalignment. We then discuss the neural networks underlying aggression and how dysregulation in the interaction of these networks evoked by circadian rhythm misalignment could contribute to aggression. The last section of this review will present recent human correlational data demonstrating the association between chronotype and/or circadian misalignment with aggression. With circadian rhythms and aggression being a burgeoning area of study, we hope that this review initiates more interest in this promising and topical area.
Collapse
Affiliation(s)
- Scott H Deibel
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Robert J McDonald
- Department of Neuroscience, University of Lethbridge, Lethbridge, AL, Canada
| | - Nathan J Kolla
- Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada.,Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Lewis LM, Deibel SH, Cleary J, Viguers KB, Jones KA, Skinner DM, Hallett D, Thorpe CM. Learning and memory in a rat model of social jetlag that also incorporates mealtime. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2020.1716557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Leanna M. Lewis
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Scott H. Deibel
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Jillian Cleary
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Kayla B. Viguers
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Karen A. Jones
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Darlene M. Skinner
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Darcy Hallett
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| | - Christina M. Thorpe
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL, USA
| |
Collapse
|
16
|
Deibel SH, Young B, Mohajerani MH, McDonald RJ. Activity Rhythms Are Largely Intact in APPNL-G-F Alzheimer's Disease Mice. J Alzheimers Dis 2019; 71:213-225. [PMID: 31356203 DOI: 10.3233/jad-190102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Circadian rhythm dysfunction is present in Alzheimer's disease. Animal models of Alzheimer's disease have been employed to investigate whether this dysfunction is a risk factor or symptom of the disease. The circadian phenotype in mouse models of Alzheimer's disease is very disparate in terms of the degree and timing of the dysfunction. This is likely a result of some models elevating amyloid-β protein precursor instead of just the amyloid-β fragment present in human Alzheimer's disease. We characterized activity rhythms in a novel knock-in mouse model (APPNL-G-F) of Alzheimer's disease that elevates amyloid-β without overexpressing amyloid-β protein precursor. Despite increased rhythm amplitude, total activity, and a shortening of free-running period at 15 months of age, all other aspects of the activity rhythm were similar to controls from three to fifteen months of age. At two months of age, these mice were also able to entrain to a light-dark cycle with a period right on the edge of entrainment, which further suggests a healthy functioning circadian system. These data open the possibility that circadian rhythm disruptions in transgenic models of Alzheimer's disease could be a result of these models having an artificial phenotype caused by overexpression of amyloid-β protein precursor.
Collapse
Affiliation(s)
- Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada.,Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Bryant Young
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
17
|
Deibel SH, Hong NS, Moore K, Mysyk T, McDonald RJ. Hippocampal-dependent memory retention is unaffected by a T21 light–dark cycle in female Fischer brown Norway rats. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1616454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Scott H. Deibel
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Department of Psychology, SHD is currently at Memorial University of Newfoundland, Newfoundland, Canada
| | - Nancy S. Hong
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Kevan Moore
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Tyler Mysyk
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J. McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
18
|
Occelli F, Hasselmann F, Bourien J, Eybalin M, Puel J, Desvignes N, Wiszniowski B, Edeline JM, Gourévitch B. Age-related Changes in Auditory Cortex Without Detectable Peripheral Alterations: A Multi-level Study in Sprague–Dawley Rats. Neuroscience 2019; 404:184-204. [DOI: 10.1016/j.neuroscience.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 01/31/2023]
|
19
|
Wall K, Lewis LM, Deibel SH, Hallett D, Skinner DM, Thorpe CM. Consistent meal times improve performance on a daily time-place learning task. Behav Processes 2019; 160:26-32. [PMID: 30664921 DOI: 10.1016/j.beproc.2019.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 01/23/2023]
Abstract
The ability of an animal to learn the spatiotemporal variability of stimuli is known as time-place learning (TPL). The present study investigated the role of the food-entrainable oscillator (FEO) in TPL. Rats were trained in an operant conditioning chamber which contained two levers that distributed a food reward, such that one lever provided food rewards in morning sessions, while the other lever provided food rewards in afternoon sessions. We expected that having access to the FEO would provide rats with more accurate depictions of time of day, leading to better performance. Rats received either one meal per day (1M group), which permitted FEO access, or many meals per day (MM group), which prevented FEO access. As predicted, 1M rats had a significantly higher percentage of correct first presses than MM rats. Once rats successfully learned the task, probe tests were conducted to determine the timing strategy used. Of the 10 rats that successfully learned the time-place discrimination, six used a circadian timing strategy. Future research should determine whether the advantage in learning seen in the rats having access to the FEO is specific to the daily TPL task used in this study, or to learning and memory tasks more generally.
Collapse
Affiliation(s)
- Kayla Wall
- Department of Psychology, Memorial University of Newfoundland, Canada
| | - Leanna M Lewis
- Department of Psychology, Memorial University of Newfoundland, Canada
| | - Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Canada
| | - Darcy Hallett
- Department of Psychology, Memorial University of Newfoundland, Canada
| | - Darlene M Skinner
- Department of Psychology, Memorial University of Newfoundland, Canada
| | | |
Collapse
|
20
|
Epigenetic regulation of the circadian gene Per1 contributes to age-related changes in hippocampal memory. Nat Commun 2018; 9:3323. [PMID: 30127461 PMCID: PMC6102273 DOI: 10.1038/s41467-018-05868-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 07/27/2018] [Indexed: 01/13/2023] Open
Abstract
Aging is accompanied by impairments in both circadian rhythmicity and long-term memory. Although it is clear that memory performance is affected by circadian cycling, it is unknown whether age-related disruption of the circadian clock causes impaired hippocampal memory. Here, we show that the repressive histone deacetylase HDAC3 restricts long-term memory, synaptic plasticity, and experience-induced expression of the circadian gene Per1 in the aging hippocampus without affecting rhythmic circadian activity patterns. We also demonstrate that hippocampal Per1 is critical for long-term memory formation. Together, our data challenge the traditional idea that alterations in the core circadian clock drive circadian-related changes in memory formation and instead argue for a more autonomous role for circadian clock gene function in hippocampal cells to gate the likelihood of long-term memory formation. Circadian rhythms are known to modulate memory, but it’s not known whether clock genes in the hippocampus are required for memory consolidation. Here, the authors show that epigenetic regulation of clock gene Period1 in the hippocampus regulates memory and contributes to age-related memory decline, independent of circadian rhythms.
Collapse
|
21
|
Mandolesi L, Polverino A, Montuori S, Foti F, Ferraioli G, Sorrentino P, Sorrentino G. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Front Psychol 2018; 9:509. [PMID: 29755380 PMCID: PMC5934999 DOI: 10.3389/fpsyg.2018.00509] [Citation(s) in RCA: 424] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/26/2018] [Indexed: 12/26/2022] Open
Abstract
Much evidence shows that physical exercise (PE) is a strong gene modulator that induces structural and functional changes in the brain, determining enormous benefit on both cognitive functioning and wellbeing. PE is also a protective factor for neurodegeneration. However, it is unclear if such protection is granted through modifications to the biological mechanisms underlying neurodegeneration or through better compensation against attacks. This concise review addresses the biological and psychological positive effects of PE describing the results obtained on brain plasticity and epigenetic mechanisms in animal and human studies, in order to clarify how to maximize the positive effects of PE while avoiding negative consequences, as in the case of exercise addiction.
Collapse
Affiliation(s)
- Laura Mandolesi
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Arianna Polverino
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy.,Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy
| | - Simone Montuori
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| | - Francesca Foti
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Giampaolo Ferraioli
- Department of Science and Technology, Parthenope University of Naples, Naples, Italy
| | | | - Giuseppe Sorrentino
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy.,Istituto di Diagnosi e Cura Hermitage Capodimonte, Naples, Italy.,Institute of Applied Sciences and Intelligent Systems, CNR, Pozzuoli, Italy
| |
Collapse
|
22
|
Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population. Oncotarget 2018; 8:24088-24098. [PMID: 28412756 PMCID: PMC5421829 DOI: 10.18632/oncotarget.15493] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Previous animal studies have indicated associations between circadian clock genes and cognitive impairment . In this study, we assessed whether 11 circadian clockgenes are associated with cognitive aging independently and/or through complex interactions in an old Taiwanese population. We also analyzed the interactions between environmental factors and these genes in influencing cognitive aging. A total of 634 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examinations (MMSE) were administered to all subjects, and MMSE scores were used to evaluate cognitive function. Our data showed associations between cognitive aging and single nucleotide polymorphisms (SNPs) in 4 key circadian clock genes, CLOCK rs3749473 (p = 0.0017), NPAS2 rs17655330 (p = 0.0013), RORA rs13329238 (p = 0.0009), and RORB rs10781247 (p = 7.9 × 10−5). We also found that interactions between CLOCK rs3749473, NPAS2 rs17655330, RORA rs13329238, and RORB rs10781247 affected cognitive aging (p = 0.007). Finally, we investigated the influence of interactions between CLOCK rs3749473, RORA rs13329238, and RORB rs10781247 with environmental factors such as alcohol consumption, smoking status, physical activity, and social support on cognitive aging (p = 0.002 ∼ 0.01). Our study indicates that circadian clock genes such as the CLOCK, NPAS2, RORA, and RORB genes may contribute to the risk of cognitive aging independently as well as through gene-gene and gene-environment interactions.
Collapse
|
23
|
Kang YK, Lee BY, Bucci LR, Stohs SJ. Effect of a Fibroin Enzymatic Hydrolysate on Memory Improvement: A Placebo-Controlled, Double-Blind Study. Nutrients 2018; 10:E233. [PMID: 29462997 PMCID: PMC5852809 DOI: 10.3390/nu10020233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 01/18/2023] Open
Abstract
The consumption of a specifically prepared silk fibroin protein enzymatic hydrolysate (FPEH) has been reported to improve cognitive function in healthy humans. The objective of the current study is to evaluate the dose-dependent effects of the FPEH on memory. Healthy adults with an average age of approximately 55 years were administered doses of 0, 280, 400 and 600 mg of FPEH per day in two divided doses for 3 weeks. The Rey-Kim Auditory Verbal Learning Test and the Rey-Kim Complex Figure Test of the Rey-Kim Memory Test were used to evaluate memory at baseline and after 3 weeks. The scores for each test were combined into the memory quotient score (MQ). Learning gradient, memory maintenance, retrieval efficacy, and drawing/recall scores were also compared. After 3 weeks of FPEH, dose-dependent increases were observed for the MQ, the learning gradient, the numbers of words remembered, the retrieval efficiency, and drawing/recall. The optimal dose for FPEH was 400 or 600 mg, depending on the end point measured. No adverse effects were reported. FPEH significantly improved measurements of memory in healthy adults by 3 weeks at doses over 280 mg daily, with an apparent plateau effect at 400-600 mg daily.
Collapse
Affiliation(s)
- Yong Koo Kang
- BrainOn Inc., Ltd., 403 Isbiz Tower, 23 Seonyuro49-gil, Youngdeungpo-gu, Seoul 07206, Korea.
| | - Boo Yong Lee
- BrainOn Inc., Ltd., 403 Isbiz Tower, 23 Seonyuro49-gil, Youngdeungpo-gu, Seoul 07206, Korea.
| | | | - Sidney J Stohs
- School of Pharmacy and Health Professions, Creighton University Medical Center, Omaha 68178 NE, USA.
| |
Collapse
|
24
|
Abstract
Nicotinic acid and nicotinamide, collectively referred to as niacin, are nutritional precursors of the bioactive molecules nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). NAD and NADP are important cofactors for most cellular redox reactions, and as such are essential to maintain cellular metabolism and respiration. NAD also serves as a cosubstrate for a large number of ADP-ribosylation enzymes with varied functions. Among the NAD-consuming enzymes identified to date are important genetic and epigenetic regulators, e.g., poly(ADP-ribose)polymerases and sirtuins. There is rapidly growing knowledge of the close connection between dietary niacin intake, NAD(P) availability, and the activity of NAD(P)-dependent epigenetic regulator enzymes. It points to an exciting role of dietary niacin intake as a central regulator of physiological processes, e.g., maintenance of genetic stability, and of epigenetic control mechanisms modulating metabolism and aging. Insight into the role of niacin and various NAD-related diseases ranging from cancer, aging, and metabolic diseases to cardiovascular problems has shifted our view of niacin as a vitamin to current views that explore its potential as a therapeutic.
Collapse
Affiliation(s)
- James B Kirkland
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
25
|
Yu Y, Zhao Y, Teng F, Li J, Guan Y, Xu J, Lv X, Guan F, Zhang M, Chen L. Berberine Improves Cognitive Deficiency and Muscular Dysfunction via Activation of the AMPK/SIRT1/PGC-1a Pathway in Skeletal Muscle from Naturally Aging Rats. J Nutr Health Aging 2018; 22:710-717. [PMID: 29806860 DOI: 10.1007/s12603-018-1015-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The manifestations of aging include cognitive deficits and muscular dysfunction, which are closely linked to impairment of mitochondrial biogenesis. Berberine, an isoquinoline alkaloid, presents multiple anti-diabetic pharmacological effects. Evidence has indicated that insulin resistance and cognitive impairment share the same pathogenesis, and berberine could reverse glucose metabolism abnormalities and muscle mitochondrial dysfunction induced by a high-fat diet. This study was used to investigate whether berberine could be used as an anti-aging drug to prevent cognitive deficits and muscular dysfunction in natural aging. METHODS Biochemical indicators and an intraperitoneal glucose tolerance test were tested in 5-month-old rats (5 mo group), 24-month-old rats (24 mo group) and 24-month-old rats that had undergone 6 months of berberine treatment (BBR group). A Morris water maze test was conducted to assess the cognitive ability of the rats. Insulin resistance in whole-body was evaluated by intraperitoneal glucose tolerance test (IPGTT). The morphology of the skeletal muscle tissue was observed by hematoxylin-eosin (HE) staining. The levels of total cholesterol, triglyceride, ATP and reactive oxygen species (ROS) were assessed with corresponding reagent kits. The protein expressions of GLUT4, AMPK, SIRT1 and PGC-1α in skeletal muscle were examined by Western blot. RESULTS The results showed that administration of berberine for 6 months significantly improved cognitive deficits and insulin resistance in naturally aging rats (p<0.01). Furthermore, berberine treatment helped normalize the disordered alignment and the decreased number of muscle fibers (p<0.01) in the skeletal muscle of 24 mo rats. Berberine decreased the levels of ROS in both the serum and the skeletal muscle of 24 mo rats (p<0.01). Berberine increased the protein expression of p-AMPK, SIRT1 and PGC-1α and increased the production of ATP in the skeletal muscle of aging rats (p<0.01). CONCLUSIONS Berberine markedly ameliorates aging-related reductions in cognitive ability and muscular function, and the activation of the AMPK/SIRT1/PGC-1α pathway in skeletal muscle may be the underlying protective mechanism of berberine on muscular function.
Collapse
Affiliation(s)
- Y Yu
- Dr. Ming Zhang, Associate Professor, Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, 126 Xin Min Street, Changchun, Jilin 130021, China. E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev 2017; 79:66-86. [PMID: 28476525 DOI: 10.1016/j.neubiorev.2017.04.030] [Citation(s) in RCA: 366] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
Aging is a natural process that is associated with cognitive decline as well as functional and social impairments. One structure of particular interest when considering aging and cognitive decline is the hippocampus, a brain region known to play an important role in learning and memory consolidation as well as in affective behaviours and mood regulation, and where both functional and structural plasticity (e.g., neurogenesis) occur well into adulthood. Neurobiological alterations seen in the aging hippocampus including increased oxidative stress and neuroinflammation, altered intracellular signalling and gene expression, as well as reduced neurogenesis and synaptic plasticity, are thought to be associated with age-related cognitive decline. Non-invasive strategies such as caloric restriction, physical exercise, and environmental enrichment have been shown to counteract many of the age-induced alterations in hippocampal signalling, structure, and function. Thus, such approaches may have therapeutic value in counteracting the deleterious effects of aging and protecting the brain against age-associated neurodegenerative processes.
Collapse
Affiliation(s)
- Luis E B Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Luckshi Rajendran
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; UBC Island Medical program, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
27
|
Budni J, Pacheco R, da Silva S, Garcez ML, Mina F, Bellettini-Santos T, de Medeiros J, Voss BC, Steckert AV, Valvassori SDS, Quevedo J. Oral administration of d-galactose induces cognitive impairments and oxidative damage in rats. Behav Brain Res 2015; 302:35-43. [PMID: 26748256 DOI: 10.1016/j.bbr.2015.12.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/20/2015] [Accepted: 12/25/2015] [Indexed: 12/12/2022]
Abstract
d-Galactose (d-gal) is a reducing sugar that can be used to mimic the characteristics of aging in rodents; however, the effects of d-gal administration by oral route are not clear. Therefore, the aim of this study was to elucidate if the oral administration of d-gal induces cognitive impairments, neuronal loss, and oxidative damage, mimicking an animal model of aging. Male adult Wistar rats (4 months old) received d-gal (100mg/kg) via the oral route for a period of 1, 2, 4, 6 or 8 weeks. The results showed cognitive impairments in the open-field test in the 4th and 6th weeks after d-gal administration, as well as an impairment in spatial memory in the radial maze test after the 6th week of d-gal administration. The results indicated increase of levels of thiobarbituric acid reactive species-TBARS-and carbonyl group content in the prefrontal cortex from the 4th week, and in all weeks of d-gal administration, respectively. An increase in the levels of TBARS and carbonyl group content was observed in the hippocampus over the entire period of d-gal treatment. In the 8th week of d-gal administration, we also observed reductions in synaptophysin and TAU protein levels in the prefrontal cortex. Thus, d-gal given by oral route caused cognitive impairments which were accompanied by oxidative damage. Therefore, these results indicate that orally administered d-gal can induce the behavioral and neurochemical alterations that are observed in the natural aging process. However, oral d-gal effect in rats deserve further studies to be better described.
Collapse
Affiliation(s)
- Josiane Budni
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil.
| | - Robson Pacheco
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Sabrina da Silva
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Michelle Lima Garcez
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Francielle Mina
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Tatiani Bellettini-Santos
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Jesiel de Medeiros
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Bruna Constantino Voss
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Doenças Neurodegenerativas, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Amanda Valnier Steckert
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Samira da Silva Valvassori
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Laboratório de Sinalização Neural e Psicofarmacologia, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA; Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|