1
|
Wu J, Gao H, Rui H, Xu P, Ni L, Zhang J, Wang L. Exploring the role of YBX3 in PEDV infection through the utilization of YBX3 knockout and overexpression cell lines. Virus Genes 2024; 60:667-673. [PMID: 39312036 DOI: 10.1007/s11262-024-02109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/14/2024] [Indexed: 11/16/2024]
Abstract
Porcine epidemic diarrhea (PED) is a highly contagious disease caused by the porcine epidemic diarrhea virus (PEDV), which results in significant economic losses. PEDV infection causes severe damage to the midgut barrier in the small intestine. YBX3, an important protein in tight junctions, promotes epithelial cell proliferation. However, its role in the process of PEDV infection remains unclear. In this study, we observed a significant increase in mRNA expression of YBX3 following PEDV infection. Additionally, the protein expression of YBX3 showed an initial increase followed by a decrease over time. Furthermore, treatment with 2% DSS resulted in a significant down-regulation of YBX3 mRNA and protein expression. Furthermore, we successfully generated knockout and overexpression cell lines of YBX3. Preliminary assays indicated that elevated expression of YBX3 inhibited the PEDV replication, while knockout of YBX3 had the opposite effect. In conclusion, our study has preliminarily revealed the functional role of YBX3 during PEDV infection. This finding lays the foundation for further investigation into its mechanism in future and also provides new insights into the mechanism of PEDV-host interactions.
Collapse
Affiliation(s)
- Jiayun Wu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 22530, China
| | - Huizhen Gao
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 22530, China
| | - Haoyu Rui
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 22530, China
| | - Pan Xu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 22530, China
| | - Ligang Ni
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 22530, China
| | - Junsheng Zhang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 22530, China
| | - Ligang Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 22530, China.
| |
Collapse
|
2
|
Rona G, Miwatani-Minter B, Zhang Q, Goldberg HV, Kerzhnerman MA, Howard JB, Simoneschi D, Lane E, Hobbs JW, Sassani E, Wang AA, Keegan S, Laverty DJ, Piett CG, Pongor LS, Xu ML, Andrade J, Thomas A, Sicinski P, Askenazi M, Ueberheide B, Fenyö D, Nagel ZD, Pagano M. CDK-independent role of D-type cyclins in regulating DNA mismatch repair. Mol Cell 2024; 84:1224-1242.e13. [PMID: 38458201 PMCID: PMC10997477 DOI: 10.1016/j.molcel.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.
Collapse
Affiliation(s)
- Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bearach Miwatani-Minter
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hailey V Goldberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marc A Kerzhnerman
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jesse B Howard
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ethan Lane
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - John W Hobbs
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Elizabeth Sassani
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Andrew A Wang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel J Laverty
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Cortt G Piett
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lorinc S Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Cancer Genomics and Epigenetics Core Group, Hungarian Centre of Excellence for Molecular Medicine, Szeged 6728, Hungary
| | - Miranda Li Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Joshua Andrade
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zachary D Nagel
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
3
|
Rona G, Miwatani-Minter B, Zhang Q, Goldberg HV, Kerzhnerman MA, Howard JB, Simoneschi D, Lane E, Hobbs JW, Sassani E, Wang AA, Keegan S, Laverty DJ, Piett CG, Pongor LS, Xu ML, Andrade J, Thomas A, Sicinski P, Askenazi M, Ueberheide B, Fenyö D, Nagel ZD, Pagano M. D-type cyclins regulate DNA mismatch repair in the G1 and S phases of the cell cycle, maintaining genome stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575420. [PMID: 38260436 PMCID: PMC10802603 DOI: 10.1101/2024.01.12.575420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The large majority of oxidative DNA lesions occurring in the G1 phase of the cell cycle are repaired by base excision repair (BER) rather than mismatch repair (MMR) to avoid long resections that can lead to genomic instability and cell death. However, the molecular mechanisms dictating pathway choice between MMR and BER have remained unknown. Here, we show that, during G1, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins shield p21 from its two ubiquitin ligases CRL1SKP2 and CRL4CDT2 in a CDK4/6-independent manner. In turn, p21 competes through its PCNA-interacting protein degron with MMR components for their binding to PCNA. This inhibits MMR while not affecting BER. At the G1/S transition, the CRL4AMBRA1-dependent degradation of D-type cyclins renders p21 susceptible to proteolysis. These timely degradation events allow the proper binding of MMR proteins to PCNA, enabling the repair of DNA replication errors. Persistent expression of cyclin D1 during S-phase increases the mutational burden and promotes microsatellite instability. Thus, the expression of D-type cyclins inhibits MMR in G1, whereas their degradation is necessary for proper MMR function in S.
Collapse
Affiliation(s)
- Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bearach Miwatani-Minter
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hailey V. Goldberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marc A. Kerzhnerman
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jesse B. Howard
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ethan Lane
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - John W. Hobbs
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Elizabeth Sassani
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Andrew A. Wang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Cortt G. Piett
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lorinc S. Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hungarian Centre of Excellence for Molecular Medicine, University of Szeged, Szeged, H-6728, Hungary
| | - Miranda Li Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Joshua Andrade
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zachary D. Nagel
- Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
4
|
Zhu S, Yang H, Liu L, Jiang Z, Ji J, Wang X, Zhong L, Liu F, Gao X, Wang H, Zhou Y. CDKs Functional Analysis in Low Proliferating Early-Stage Pancreatic Ductal Adenocarcinoma. JOURNAL OF BIOINFORMATICS AND SYSTEMS BIOLOGY : OPEN ACCESS 2023; 6:187-200. [PMID: 37744402 PMCID: PMC10516534 DOI: 10.26502/jbsb.5107060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with a poor prognosis and growing incidence. In this study, we explored the potential roles of CDK1, CDK2, CDK4, and CDK6 in the progression of early-stage PDAC. Clinicopathologic and mRNA expression data and treatment information of 140 patients identified with stage I/II PDAC who underwent pancreaticoduodenectomy were obtained from the Cancer Genome Atlas data set. Our bioinformatic analysis showed that higher CDK1, CDK2, CDK4, or CDK6 expression was associated with a shorter median survival of the early-stage PDAC patients. Of note, in the low-proliferating pancreatic cancer group, CDKs expressions were significantly associated with proteins functioning in apoptosis, metastasis, immunity, or stemness. Among the low-proliferating PDAC, higher expression of CDK1 was associated with the shorter survival of patients, suggesting that CDK1 may regulate PDAC progression through cell cycle-independent mechanisms. Our experimental data showed that CDK1 knockdown/inhibition significantly suppressed the expression levels of AHR and POU5F1, two critical proteins functioning in cancer cell metastasis and stemness, in low-proliferating, but not in high-proliferating pancreatic cancer cells. In all, our study suggests that CDKs regulate PDAC progression not only through cell proliferation but also through apoptosis, metastasis, immunity, and stemness.
Collapse
Affiliation(s)
- Shikai Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine,University of Electronic Science and Technology of China, Chengdu, China
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine,University of Electronic Science and Technology of China, Chengdu, China
| | - Huining Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine,University of Electronic Science and Technology of China, Chengdu, China
| | - Lingling Liu
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics
| | - Zhilin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine,University of Electronic Science and Technology of China, Chengdu, China
| | - Juanjuan Ji
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine,University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine,University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine,University of Electronic Science and Technology of China, Chengdu, China
| | - Fulin Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine,University of Electronic Science and Technology of China, Chengdu, China
| | - Xueliang Gao
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Haizhen Wang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine,University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
El-Sawy SA, Amin YA, El-Naggar SA, Abdelsadik A. Artemisia annua L. (Sweet wormwood) leaf extract attenuates high-fat diet-induced testicular dysfunctions and improves spermatogenesis in obese rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116528. [PMID: 37127141 DOI: 10.1016/j.jep.2023.116528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L., known as "sweet wormwood," is widely used in Egyptian folk medicine. Egyptians implement the aerial parts in the treatment of respiratory, digestive and sexual dysfunctions. However, the mechanism by which Artemisia annua improves testicular function is still being discovered. AIM OF THE STUDY This study aimed to evaluate the modulatory effects of the crude leaf extract of Artemisia annua (AAE) on a high-fat diet induced testicular dysfunction in rats and compare it with the antilipolytic drug Orlistat. MATERIAL AND METHODS Forty adult rats were randomly classified and assigned to four groups. The first group typically consumed a balanced diet and served as a negative control (GP1). A high-fat diet-induced obesity was applied to the other three groups for 12 weeks. A positive control remained on HFD for another 8 weeks, which is GP2. Other groups were administered for 8 consecutive weeks either with Orlistat (50 mg/kg body weight) or AAE (100 mg/kg body weight), which have been defined as GP3 and GP4, respectively. Testosterone (TST), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were determined in the sera of all groups. In addition, the oxidant/antioxidant biomarkers such as protein carbonyl, malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) activities, lactate dehydrogenase (LDH) and creatine kinase isoenzyme-B (CK-MB) were determined. An immunohistochemical stain with the apoptotic marker caspase-3 and the proliferating cell nuclear antigen (PCNA) were also investigated. RESULTS In the testes of the obese group, the results showed hormonal imbalance, an increase in oxidative stress biomarkers and apoptosis. In the group treated with orlistat (GP3), noticeably more perturbations were noted. The obese rats that had been treated with AAE (GP4) showed a significantly reduced level of oxidative stress, hormonal balance restoration and reduced apoptosis. CONCLUSIONS The crude leaf extract of A. annua is a potential herbal therapeutic for the treatment of obesity-related testicular dysfunction and the restoration of hormonal imbalance in obese rats.
Collapse
Affiliation(s)
- Samer A El-Sawy
- Biochemistry Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Yahia A Amin
- Theriogenology Department, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt.
| | - Sabry A El-Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ahmed Abdelsadik
- Zoology Department, Faculty of Science, Aswan University, Aswan, Egypt; Laboratory of Immunometabolism, Aswan University, Egypt
| |
Collapse
|
6
|
Nagare S, Lokhande KB, Swamy KV. Docking and simulation studies on cyclin D/CDK4 complex for targeting cell cycle arrest in cancer using flavanone and its congener. J Mol Model 2023; 29:90. [PMID: 36881272 DOI: 10.1007/s00894-023-05496-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Flavanone compounds are naturally occurring phytochemicals present in most of citrus fruits reported to be a potential anticancer moiety as it majorly participates in the inhibition of the cell cycle, apoptosis, and angiogenesis. Because of poor bioavailability, natural flavanones were not used as therapeutic targets so flavanone congeners were prepared by modifying at B-functional group using compound libraries such as PubChem Database. Cyclin-dependent kinase is primarily activating the cell cycle and potentiating the M phase, in order to control the cell cycle in cancer cyclin-dependent pathway was targeted and potential cyclin D/CDK4 receptor protein was retrieved from Protein Data Bank (PDBID:2W9Z). The binding site was determined using FlexX docking. Flavanone and its congeners were docked against the 2W9Z receptor protein with the docking software FlexX. For validation of docking results, molecular dynamics simulations of the best-fitting molecule were carried out using Desmond Package. Noncovalent interactions like hydrogen bonds, electrostatic interaction, and Van der walls potentials for stable conformations were calculated. Thus, upon docking and molecular dynamics studies, we discovered the potential flavanone derivatives such as Flavanone 20, Flavanone 25, and Flavanone 29, will become a potential drug target in controlling cell cycle arrest and may become a futuristic candidate in targeting cancer.
Collapse
Affiliation(s)
- Sagar Nagare
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, India, 400614.,Bioinformatics Research Laboratory, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade Campus, Tathawade, Pune, Maharashtra, India, 411033
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade Campus, Tathawade, Pune, Maharashtra, India, 411033.,Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, 201314, India
| | - K Venkateswara Swamy
- Bioinformatics and Drug Discovery Group, MIT School of Bioengineering Science and Research, MIT Art, Design and Technology University, Pune, Maharashtra, India, 412201.
| |
Collapse
|
7
|
Kolasa M, Czerczak K, Fraczyk J, Szymanski L, Lewicki S, Bednarowicz A, Tarzynska N, Sikorski D, Szparaga G, Draczynski Z, Cierniak S, Brzoskowska U, Galita G, Majsterek I, Bociaga D, Krol P, Kolesinska B. Evaluation of Polysaccharide-Peptide Conjugates Containing the RGD Motif for Potential Use in Muscle Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6432. [PMID: 36143745 PMCID: PMC9503514 DOI: 10.3390/ma15186432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
New scaffold materials composed of biodegradable components are of great interest in regenerative medicine. These materials should be: stable, nontoxic, and biodegrade slowly and steadily, allowing the stable release of biodegradable and biologically active substances. We analyzed peptide-polysaccharide conjugates derived from peptides containing RGD motif (H-RGDS-OH (1), H-GRGDS-NH2 (2), and cyclo(RGDfC) (3)) and polysaccharides as scaffolds to select the most appropriate biomaterials for application in regenerative medicine. Based on the results of MTT and Ki-67 assays, we can state that the conjugates containing calcium alginate and the ternary nonwoven material were the most supportive of muscle tissue regeneration. Scanning electron microscopy imaging and light microscopy studies with hematoxylin-eosin staining showed that C2C12 cells were able to interact with the tested peptide-polysaccharide conjugates. The release factor (Q) varied depending on both the peptide and the structure of the polysaccharide matrix. LDH, Alamarblue®, Ki-67, and cell cycle assays indicated that peptides 1 and 2 were characterized by the best biological properties. Conjugates containing chitosan and the ternary polysaccharide nonwoven with peptide 1 exhibited very high antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae. Overall, the results of the study suggested that polysaccharide conjugates with peptides 1 and 2 can be potentially used in regenerative medicine.
Collapse
Affiliation(s)
- Marcin Kolasa
- Military Institute of Hygiene and Epidemiology, Department of Pharmacology and Toxicology, Kozielska 4, 01-163 Warsaw, Poland
| | - Katarzyna Czerczak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Lukasz Szymanski
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland
| | - Slawomir Lewicki
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Postępu 36A, 05-552 Magdalenka, Poland
| | - Anna Bednarowicz
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Nina Tarzynska
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Dominik Sikorski
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Grzegorz Szparaga
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Zbigniew Draczynski
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | | | | | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Dorota Bociaga
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
| | - Paulina Krol
- Lukasiewicz Research Network-Textile Research Institute, Brzezinska 5/15, 92-103 Lodz, Poland
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
8
|
CCL3 Promotes Proliferation of Colorectal Cancer Related with TRAF6/NF-κB Molecular Pathway. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:2387192. [PMID: 35935327 PMCID: PMC9296340 DOI: 10.1155/2022/2387192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/28/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Chemokine C-C motif chemokine ligand 3 (CCL3) plays an important role in the invasion and metastasis of malignant tumors. For developing new therapeutic targets and antitumor drugs, the effect of chemokine CCL3 and the related cytokine network on colorectal cancer should be investigated. This study used cell, tissue, and animal experiments to prove that CCL3 is highly expressed in colorectal cancer and confirmed that CCL3 can promote the proliferation of cancer cells, and its expression is closely related to TRAF6/NF-κB molecular pathway. In addition, protein chip technology was used to examine colorectal cancer tissue samples and identify the key factors of chemokine CCL3 and the toll-like receptors/nuclear factor-κB (TLR/NF-κB) pathway in cancer and metastatic lymph nodes. Furthermore, the lentiviral vector technology was employed for transfection to construct interference and overexpression cell lines. The experimental results reveal the mechanism of CCL3 and TNF receptor-associated factor 6 (TRAF6)/NF-κB pathway-related factors and their effects on the proliferation of colon cancer cells. Finally, the expression and significance of CCL3 in colorectal cancer tissues and its correlation with clinical pathology were studied by immunohistochemistry. Also, the results confirmed that CCL3 and C-C motif chemokine receptor 5 (CCR5) were expressed in adjacent tissues, colorectal cancer tissues, and metastatic cancer. The expression level was correlated with the clinical stage and nerve invasion. The expression of chemokine CCL3 and receptor CCR5 was positively correlated with the expression of TRAF6 and NF-κB and could promote the proliferation, invasion, and migration of colorectal cancer cells through TRAF6 and NF-κB.
Collapse
|
9
|
Ghalib Farhood R, Abd Ali Al-Humairi I. Immunohistochemical Study of Ki-67 in Hyperplastic and Endometrium Carcinoma: A Comparative Study. ARCHIVES OF RAZI INSTITUTE 2022; 77:229-234. [PMID: 35891746 PMCID: PMC9288597 DOI: 10.22092/ari.2021.356540.1865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
Endometrial hyperplasia is defined as a common clinical disorder caused by the increased levels of estrogens with low levels of progesterone; therefore, this hormonal imbalance leads to an increase in the proliferation rate of the endometrial cells. Endometrial carcinoma is one of the most important malignancies affecting women all over the world "accounting for 37.7% of all other disorders affecting the female reproductive system". The expression of the Ki-67 protein is related to the proliferative behavior of malignant tumor cell populations of their own, allowing it to be used as a marker of tumor aggressiveness. The present study was conducted to examine the expression of the proliferation marker, Ki-67 in various endometrial lesions. Ki-67 expression was evaluated in 60 endometrial samples that resulted as either endometrial curetting or hysterectomy specimens, diagnosed with simple hyperplasia (n=10), complex hyperplasia (n=20), atypical hyperplasia (n=6), and endometrial carcinoma (n=24). In patients with endometrial carcinoma, there was an increased expression of Ki-67, compared to proliferative endometrium and simple hyperplasia (P-value=0.0001). There was no such discrepancy between atypical hyperplasia and endometrial carcinoma cases. The expression of Ki-67 showed a positive association with the degree of endometrial cancer (P-value=0.0013), however, not with the age of the patients (P-value>0.05). There is a wide range of variations in the proliferation rate within the development of different endometrial lesions, including benign and malignant lesions. Our findings may be of value in differential diagnosis and prognosis of endometrial hyperplasia and endometrial carcinoma.
Collapse
Affiliation(s)
- R Ghalib Farhood
- Department of Pathology, College of Medicine, University of Babylon, Babylon, Iraq
| | - I Abd Ali Al-Humairi
- Department of Pathology, Hammurabi College of Medicine, University of Babylon, Babylon, Iraq
| |
Collapse
|
10
|
Leydig Cells in Patients with Non-Obstructive Azoospermia: Do They Really Proliferate? Life (Basel) 2021; 11:life11111266. [PMID: 34833142 PMCID: PMC8624241 DOI: 10.3390/life11111266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Non-obstructive azoospermia (NOA) is a form of male infertility caused by disorders of the testicular parenchyma and impaired spermatogenesis. This study aimed to investigate the nature of Leydig cell changes in patients with NOA, especially whether their actual proliferation occurred. Methods: 48 testicular biopsies from infertile patients with NOA and 24 testicular biopsies originating from azoospermic patients suffering from obstructive azoospermia (OA) were included in the study. Leydig cells and their possible proliferative activity were analysed by immunohistochemistry and morphometry (stereology). Results: Unlike in the OA group, Leydig cells in NOA patients were sometimes organised into larger clusters and displayed an abundant cytoplasm/hypertrophy. Moreover, significant fibrosis of the interstitial compartment was demonstrated in some NOA samples, often accompanied by inflammatory cells. Stereological analysis showed no increase/proliferation of Leydig cells; on the contrary, these cells decreased in number in the NOA group. Conclusions: The decrease in the number of Leydig cells can be explained by previous inflammatory changes within the testicular interstitium and consequent interstitial fibrosis. The interstitial fibrosis might have a deteriorating effect on Leydig cells.
Collapse
|
11
|
Liu Q, Zhang J, Han X, Chen J, Zhai Y, Lin Y, Ma H, Feng F, He X, Li P. Huiyang Shengji decoction promotes wound healing in diabetic mice by activating the EGFR/PI3K/ATK pathway. Chin Med 2021; 16:111. [PMID: 34727961 PMCID: PMC8565039 DOI: 10.1186/s13020-021-00497-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/27/2021] [Indexed: 01/13/2023] Open
Abstract
Background Common chronic wounds include diabetic ulcers, venous ulcers, and pressure ulcers. The traditional Chinese medicine Huiyang Shengji decoction (HYSJD) has been shown to promote the healing of diabetic chronic wounds, however, its pharmacological mechanism is still unclear. Purpose This study aimed to determine the mechanism of HYSJD in promoting the healing of diabetic chronic skin ulcers. Methods Ultra-performance liquid chromatography was combined with tandem mass spectrometry (UPLC-MS/MS) to analyze the main components of HYSJD and the absorbed components in mouse serum at 30 min after oral administration of HYSJD. db/db mouse models for chronic skin ulcers were constructed by full-thickness skin resection. Wound tissues at day 7 post wound formation were used to perform microarray analysis of growth factors and chemokine expression. GO and KEGG enrichment analysis was performed on differentially expressed proteins. ELISA assays were used to measure differential expressed cytokines in the serum and Western blot analysis was used to determine the expression levels of related pathway proteins in the skin wounds. Results UPLC-MS/MS analysis showed that the main chemical components of HYSJD were flavonoids, terpenes, alkaloids, phenylpropanoids, and carbohydrates. At 30 min after oral administration of HYSJD, five absorbed components were detected in the serum, these included formononetin, calycosin, hypaconitine, calycosin-7-glucoside, and sinapic acid. HYSJD was found to increase the wound healing rate in chronic skin ulcers in db/db mice at days 3, 7, and 14 post wound formation, and promote the proliferation of epidermal cells. Two proteins that were differentially expressed between the different groups, i.e., IGF-1 and EGFR, were further validated. Serum ELISA assays showed that serum EGFR in the HYSJD treatment group was significantly increased. KEGG pathway analysis suggested that the PI3K/AKT pathway involved in HYSJD promoting the proliferation of epidermal cells in chronic wounds in db/db mice. Experimental verification showed that HYSJD activated the PI3K/AKT signaling pathway in mouse wound skin. Conclusion HYSJD promotes the proliferation of epidermal cells in chronic diabetic wounds by increasing EGFR expression in the wounds and activating the PI3K/AKT signaling pathway. Our study provides an experimental basis for the pharmacological mechanism of HYSJD. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00497-0.
Collapse
Affiliation(s)
- Qingwu Liu
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Jinchao Zhang
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuyang Han
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jia Chen
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yating Zhai
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yan Lin
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Huike Ma
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Fang Feng
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiujuan He
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Ping Li
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China. .,School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
12
|
Effects of 445 nm, 520 nm, and 638 nm Laser Irradiation on the Dermal Cells. Int J Mol Sci 2021; 22:ijms222111605. [PMID: 34769035 PMCID: PMC8584201 DOI: 10.3390/ijms222111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Background: The invention of non-ionizing emission devices revolutionized science, medicine, industry, and the military. Currently, different laser systems are commonly used, generating the potential threat of excessive radiation exposure, which can lead to adverse health effects. Skin is the organ most exposed to laser irradiation; therefore, this study aims to evaluate the effects of 445 nm, 520 nm, and 638 nm non-ionizing irradiation on keratinocytes and fibroblasts. Methods: Keratinocytes and fibroblasts were exposed to a different fluency of 445 nm, 520 nm, and 638 nm laser irradiation. In addition, viability, type of cell death, cell cycle distribution, and proliferation rates were investigated. Results: The 445 nm irradiation was cytotoxic to BJ-5ta (≥58.7 J/cm2) but not to Ker-CT cells. Exposure influenced the cell cycle distribution of Ker-CT (≥61.2 J/cm2) and BJ-5ta (≥27.6 J/cm2) cells, as well as the Bj-5ta proliferation rate (≥50.5 J/cm2). The 520 nm irradiation was cytotoxic to BJ-5ta (≥468.4 J/cm2) and Ker-CT (≥385.7 J/cm2) cells. Cell cycle distribution (≥27.6 J/cm2) of Ker-CT cells was also affected. The 638 nm irradiation was cytotoxic to BJ-5ta and Ker-CT cells (≥151.5 J/cm2). The proliferation rate and cell cycle distribution of BJ-5ta (≥192.9 J/cm2) and Ker-CT (13.8 and 41.3 J/cm2) cells were also affected. Conclusions: At high fluences, 455 nm, 520 nm, and 638 nm irradiation, representing blue, green, and red light spectra, are hazardous to keratinocytes and fibroblasts. However, laser irradiation may benefit the cells at low fluences by modulating the cell cycle and proliferation rate.
Collapse
|
13
|
Ko YJ. Treadmill exercise alleviates short-term memory impairments of pups born to old and obese mother rats. J Exerc Rehabil 2021; 17:153-157. [PMID: 34285891 PMCID: PMC8257433 DOI: 10.12965/jer.2142300.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022] Open
Abstract
Obesity causes atrophy of the brain, leading to deterioration in working memory, learning, and cognitive function. The status of short-term memory in rat pups born to older obese mother rats was verified, and the effect of treadmill exercise on short-term memory in rat pups was investigated. Step-down avoidance test for short-term memory, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining for apoptosis, and immunohistochemistry for Ki67 for new cell generation were done. The old female rats were fed with normal diet (5% of fat), and the old and obese female rats were fed with high-fat diet (60% of fat) for up to 50 weeks in age (for 44 weeks in experimental period). The newborn rats were divided into four groups according to the conditions of the mother rats as follows: the rat pups group born to old rats, the rat pups group born to old rats with exercise, the rat pups group born to old and obese rats, the rat pups group born to old and obese rats with exercise. Maternal exercise improved short-term memory, decreased TUNEL-positive cell number, and increased Ki67-positive cell number of the pups born to old and obese rats. Maternal exercise has been found to contribute to eliminating the health risks of fetuses born to old obese mothers.
Collapse
Affiliation(s)
- Young Jun Ko
- Major in Sport Service Practice, College of Welfare Convergence, Kangnam University, Yongin, Korea
| |
Collapse
|
14
|
Ameh-Mensah C, Duduyemi BM, Bedu-Addo K, Atta Manu E, Opoku F, Titiloye N. The Analysis of bcl-2 in Association with p53 and Ki-67 in Triple Negative Breast Cancer and Other Molecular Subtypes in Ghana. JOURNAL OF ONCOLOGY 2021; 2021:7054134. [PMID: 34188682 PMCID: PMC8195641 DOI: 10.1155/2021/7054134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Little is known about the role of apoptosis in the tumorigenesis and prognosis of breast cancer in Ghana. Chemotherapeutic drug efficacy partially relates to apoptosis induction, rendering it a vital target in cancer therapy with unique biomarker opportunities that have not been exploited. Aberrations in this pathway are central to tumorigenesis, tumor progression, overall tumor growth, and regression during treatment therapies. Antiapoptotic bcl-2 (gene) and p53 are known to play roles in apoptosis while Ki-67 is a proliferative marker. The aim of our study is to determine the association of bcl-2 (protein) with p53 and Ki-67 in 203 consecutive breast cancer cases over a 10-year period. METHOD A retrospective cross-sectional study on archival FFPE tissue blocks over a 9-year period with abstraction of clinicopathologic data. Two hundred and three consecutive and suitable FFPE blocks were selected for tissue microarray (TMA) construction, and IHC (bcl-2 (protein), Ki-67, p53, cyclin D, pan cytokeratins A and E, ER, PR, and HER2/neu) was done. Expressions of bcl-2 (protein), p53, and Ki-67 were related to histological grade, lymphovascular invasion, and molecular subtypes. SPSS version 23 was used to analyze results. RESULTS Most of our cases were in the fifth decade of life (31%); invasive carcinoma of no special type (NST) was predominant (87%); histological grade III (38%) was the highest; and Luminal A (19.8%), Luminal B (9.9%), HER2 (16%), and TNBC (54.3%) constituted the molecular classes. bcl-2 expression was found in 38% of the cases. Our cases also showed mutation in p53 (36.7%) and ki-67 expression (62.5%). bcl-2 (protein) and p53 significantly correlated with Luminal B and TNBC (p < 0.01). Ki-67 also correlated significantly with Luminal A and B and HER2 overexpression (p < 0.01). Premenopausal age (40-49) and histological grade inversely correlated with bcl-2 (protein) expression. p53 statistically correlated with Ki-67 (p < 0.05). CONCLUSION Our results show high expression of bcl-2 (protein) suggesting an important role of apoptosis in Ghanaian breast cancer cases. bcl-2 (protein), p53, and Ki-67 expressions emerged interdependently from this research and can thus be manipulated in prediction and prognosis of breast cancers in our setting.
Collapse
Affiliation(s)
- Charity Ameh-Mensah
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Babatunde Moses Duduyemi
- Departments of Pathology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Anatomic Pathology, University of Sierra Leone Teaching Hospital Complex College of Medicine & Allied Health Sciences, Freetown, Sierra Leone
| | - Kweku Bedu-Addo
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Elijah Atta Manu
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Francis Opoku
- Department of Physiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nicholas Titiloye
- Departments of Pathology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
15
|
Romayor I, Badiola I, Olaso E. Inhibition of DDR1 reduces invasive features of human A375 melanoma, HT29 colon carcinoma and SK-HEP hepatoma cells. Cell Adh Migr 2021; 14:69-81. [PMID: 32090682 PMCID: PMC7153652 DOI: 10.1080/19336918.2020.1733892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
DDR1 is a receptor tyrosine kinases for collagen and an adverse prognostic factor in primary and metastatic tumors.Despite this, DDR1 signaling and its functional consequences in tumor development remain unclear. RT-PCR and Western blot show that A375, colon carcinoma HT29 and liver carcinoma SK-HEP human cell lines express functional DDR1 that phosphorylates in response to collagen type I. Chemical inhibition of DDR1 phosphorylation or DDR1 mRNA silencing reduced AKT and ERK phosphorylation, expression of ICAM1 and VCAM1, Ki67 and secretion of MMP9. DDR1 silenced cells showed reduced adhesion to collagen type I, MMP-dependent invasion, and chemotactic and proliferative responses to collagen type I. Our work indicates an essential role for DDR1 signaling in key prometastatic features of collagen type I in human carcinoma cells.
Collapse
Affiliation(s)
- Irene Romayor
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Iker Badiola
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| | - Elvira Olaso
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Spain
| |
Collapse
|
16
|
Xie X, Zhang L, Li X, Liu W, Wang P, Lin Y, Han X, Li P. Liangxue Jiedu Formula Improves Psoriasis and Dyslipidemia Comorbidity via PI3K/Akt/mTOR Pathway. Front Pharmacol 2021; 12:591608. [PMID: 33762935 PMCID: PMC7982894 DOI: 10.3389/fphar.2021.591608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/14/2021] [Indexed: 01/18/2023] Open
Abstract
The pathological mechanism of psoriasis and dyslipidemia comorbidity is unclear, and there are few reports on therapy. By establishing an animal model of ApoE-/- mice induced by imiquimod (IMQ), we explored the effects of Liangxue Jiedu formula (LXJDF), a traditional Chinese herb medicine, on psoriasis and dyslipidemia comorbidity through PI3K/Akt/mTOR pathway. The experiment was divided into a control group, a model group, an LXJDF high-dose group, an LXJDF low-dose group, and a positive drug (atorvastatin) group. Each group of mice was given continuous oral administration once a day. After 3 weeks, the mice dorsal skins were smeared with 62.5 mg of 5% IMQ cream for five consecutive days and continued to be given the corresponding drugs. We observed the effects of LXJDF on skin lesion changes, PASI score, pathological characteristics, blood lipid levels (TC, TG, LDL, HDL, and oxLDL), liver pathology, inflammatory factors in the skin, and the protein expression of PI3K/Akt/mTOR pathway in both the skin and liver. The results showed that LXJDF could significantly improve the psoriasiform skin lesions of IMQ-induced ApoE-/- mice, including the reduction of PASI, thinning of epidermal thickness, inhibition of hyperkeratosis and parakeratosis, and inflammatory infiltration in the dermis, and reduce lipid accumulation in the epidermal. LXJDF could regulate blood lipid levels, reduce liver inflammation, and protect the liver. LXJDF could significantly decrease the gene expressions of inflammatory factors IL-17A, IL-23, IL-6, and TNF-α in the skin. LXJDF showed specific inhibition of PI3K, Akt, mTOR protein, and its phosphorylation expressions. In conclusion, LXJDF exerts an intervention effect on psoriasis and dyslipidemia comorbidity via PI3K/Akt/mTOR and its phosphorylation pathway.
Collapse
Affiliation(s)
- Xinran Xie
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Lei Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Xue Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Weihong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Ping Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yan Lin
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Xuyang Han
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Chen J, Zhao CC, Chen FR, Feng GW, Luo F, Jiang T. KIF20B Promotes Cell Proliferation and May Be a Potential Therapeutic Target in Pancreatic Cancer. JOURNAL OF ONCOLOGY 2021; 2021:5572402. [PMID: 34539784 PMCID: PMC8445734 DOI: 10.1155/2021/5572402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/02/2021] [Accepted: 08/11/2021] [Indexed: 12/23/2022]
Abstract
KIFs have been reported to play a critical role in a variety of tumors, and KIF20B is a protein in KFIs. In this research, KIF20B was highly expressed in the GEO database and our hospital's data, and high expression of KIF20B suggested poor prognosis. We detect the expression of KIF20B in pancreatic cancer and adjacent normal tissues using immunohistochemistry. Knockdown of KIF20B in pancreatic cancer cell lines, PANC-1 and BxPC-3 cells, inhibited cell proliferation which are detected by colony formation assays, CCK8, and western bolt of Ki-67 and PCNA. Xenograft assay showed a similar result in vivo. KIF20B is a potential therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Jing Chen
- 1Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, No. 24, Binshui Street, Hexi District, Tianjin 300060, China
| | - Cui-Cui Zhao
- 2Department of VIP Ward, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, No. 24, Binshui Street, Hexi District, Tianjin 300060, China
| | - Fei-Ran Chen
- 3Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, No. 24, Binshui Street, Hexi District, Tianjin 300060, China
| | - Guo-Wei Feng
- 3Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, No. 24, Binshui Street, Hexi District, Tianjin 300060, China
| | - Fei Luo
- 4Department of Urology, Tianjin People's Hospital, No. 190, Jieyuan Road, Hongqiao District, Tianjin 300121, China
| | - Tao Jiang
- 5Department of General Surgery, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang, Dongcheng District, Beijing 100700, China
| |
Collapse
|
18
|
Jin H, Zhang L, Wang S, Qian L. BST2 promotes growth and induces gefitinib resistance in oral squamous cell carcinoma via regulating the EGFR pathway. Arch Med Sci 2021; 17:1772-1782. [PMID: 34900059 PMCID: PMC8641506 DOI: 10.5114/aoms.2019.86183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/18/2019] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Gefitinib, well known as a new antitumor agent, has been applied in various cancers such as oral squamous cell carcinoma (OSCC). However, most patients eventually acquire resistance to gefitinib, and the molecular mechanism of gefitinib resistance is not well described. Bone marrow stromal cell antigen 2 (BST2) has been reported to promote tumor cell growth and confer chemotherapy resistance in various cancers. However, the roles of BST2 in OSCC still need to be fully understood. MATERIAL AND METHODS We determined the expression of BST2 in OSCC tissues using qRT-PCR, immunohistochemistry and western blot. Next, we used MTT assay, flow cytometry and western blot to determine the roles of BST2 in OSCC cell proliferation, cycle progression and apoptosis, respectively. Furthermore, we evaluated the effect of BST2 on gefitinib resistance in OSCC cells and explored the related molecular mechanism. RESULTS BST2 expression was up-regulated in OSCC tissues compared with the adjacent normal tissues. BST2 overexpression significantly enhanced OSCC cell proliferation, mediated the cell cycle progression and inhibited cell apoptosis. Additionally, the results showed that BST2 overexpression effectively induced gefitinib resistance in OSCC cells. Subsequent analysis revealed that the underlying mechanism was associated with activation of the EGFR pathway. CONCLUSIONS Our study indicated that BST2 promoted growth and induced gefitinib resistance in OSCC cells, at least partially, through regulating the EGFR pathway. Thus, BST2 could be used as a therapeutic target for gefitinib resistance in OSCC.
Collapse
Affiliation(s)
- Huang Jin
- Department of Stomatology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Lianping Zhang
- Department of Stomatology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Shufang Wang
- Department of Stomatology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Lei Qian
- Department of Stomatology, Shanghai Songjiang District Central Hospital, Shanghai, China
| |
Collapse
|
19
|
Interferon-λ Enhances the Differentiation of Naive B Cells into Plasmablasts via the mTORC1 Pathway. Cell Rep 2020; 33:108211. [DOI: 10.1016/j.celrep.2020.108211] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 01/21/2023] Open
|
20
|
The crosstalk between platelets and body fat: A reverse translational study. Clin Nutr 2020; 40:2025-2034. [PMID: 33008652 DOI: 10.1016/j.clnu.2020.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/18/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Our previous study found that platelet counts were positively associated with body fat percentage in human. In the present study, we conducted a reverse translational study to explore the role of platelets in modulating pre-adipocyte proliferation in mice. METHODS Mouse pre-adipocyte cell line (3T3-L1) and human pre-adipocytes harvested from female subcutaneous fat were used. Pre-adipocytes were co-cultured with platelets or platelet releasate, which were isolated from mice or humans. The cell viability and proliferative ability of the pre-adipocytes were examined by MTT and flow cytometry assays. Western blotting analysis was used to determine the phosphorylation levels of proteins in the mTOR pathway. RESULTS The number of platelets in the adipose tissues from obese mice was significantly higher than that from lean mice. Platelets and collagen-activated platelet releasate stimulated the proliferation of human pre-adipocytes and 3T3-L1 cells in vitro. Besides, platelets from obese mice were more potent in stimulating pre-adipocyte proliferation than those from lean control mice. Mechanistically, platelets enhanced pre-adipocyte proliferation through the acceleration of cell cycle progression from G0/G1 to S phase cell cycle progression. At the molecular level, platelets promoted pre-adipocyte proliferation through mTOR pathway-mediated upregulation of cyclin D1 expression. CONCLUSION In conclusion, platelets and platelet releasate play an important role in the proliferation of pre-adipocytes. Our study may provide new clues and the molecular mechanism of the causal pathways between platelets and body fat to explain the finding we observed in population study.
Collapse
|
21
|
Steroid receptor RNA activator inhibits the migration, invasion and stemness characteristics of renal cell carcinoma cells. Int J Mol Med 2020; 46:1765-1776. [PMID: 33000206 PMCID: PMC7521558 DOI: 10.3892/ijmm.2020.4730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) has a high mortality rate among urological malignancies, and its underlying mechanisms remain unclear. Steroid receptor RNA coactivator (SRA) belongs to the long non-coding RNAs (lncRNAs) and has been demonstrated to be closely related to various types of cancer. In the present study, the decreased expression level of SRA was first confirmed in RCC tissues and cell lines by RT-qPCR. Using knockdown or overexpression systems, it was then found that SRA inhibited the proliferation of RCC cell lines and promoted their apoptosis. In addition, SRA suppressed the migration and invasion, and altered EMT-related markers in RCC cells. More importantly, it was demonstrated that SRA reduced percentage of CD44+/CD24− cells and the sphere-forming efficiency. SRA also attenuated the expression levels of CD44, SOX-2, ABCG2 and OCT-4, which are all associated with cancer cell stemness characteristics. Although SRA increased the phosphorylation of extracellular-regulated protein kinase (ERK), the ERK1/2 pathway could not further interfere with the alteration of EMT-related markers mediated by SRA. Notably, the ERK inhibitor, PD98059, abolished ERK1/2 phosphorylation, whereas it did not exert any marked effects on cell proliferation and EMT-related markers mediated by SRA. Taken together, the findings of the present study indicate that SRA is an important molecule that inhibits the migration, invasion and stem cell characteristics of RCC cells; the ERK signaling pathway may not be involved in this process.
Collapse
|
22
|
Alikhani V, Beheshti F, Ghasemzadeh Rahbardar M, Marefati N, Mansouritorghabeh F, Hosseini M. Inducible nitric oxide synthase inhibitor, aminoguanidine improved Ki67 as a marker of neurogenesis and learning and memory in juvenile hypothyroid rats. Int J Dev Neurosci 2020; 80:429-442. [PMID: 32479691 DOI: 10.1002/jdn.10042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION In the present study, the effect of inducible nitric oxide (NO) synthase inhibitor, aminoguanidine (AG) on neurogenesis indicators, learning and memory, and oxidative stress status in juvenile hypothyroid (Hypo) rats was evaluated. METHOD The studied groups were including: (a) Control, (b) Hypo, (c-e) Hypo-AG 10, Hypo-AG 20, and Hypo-AG 30. Hypothyroidism was induced in the groups 2-5 by adding propylthiouracil in drinking water (0.05%). AG (10, 20, or 30 mg/kg) was daily injected intraperitoneally in the groups 3-5. The rats of the groups 1 and 2 were injected by saline instead of AG. After 6 weeks treatment, Morris water maze (MMW) and passive avoidance (PA) tests were done. Deep anesthesia was then induced and the brain tissue was excised for biochemical parameters measuring. RESULTS Ki67 as a maker of neurogenesis and thiol, superoxide dismutase (SOD), and catalase (CAT) as oxidative stress indicators were decreased in the brain of Hypo group, whereas malondialdehyde (MDA) and NO metabolites were enhanced. AG improved Ki67, thiol, CAT, and SOD while decreased MDA and NO metabolites. The escape latency in the MWM test increased in the Hypo group. The spending time in the target quadrant in the probe test of MWM and step-through latency in the PA test in the Hypo group was lower than Control group. AG reversed all the negative behavioral effects of hypothyroidism. CONCLUSION These results revealed that AG improved neurogenesis, learning and memory impairments, and oxidative imbalance in the brain juvenile Hypo rats.
Collapse
Affiliation(s)
- Vajiheh Alikhani
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | - Narges Marefati
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Cagala M, Pavlikova L, Seres M, Kadlecikova K, Breier A, Sulova Z. Development of Resistance to Endoplasmic Reticulum Stress-Inducing Agents in Mouse Leukemic L1210 Cells. Molecules 2020; 25:molecules25112517. [PMID: 32481618 PMCID: PMC7321222 DOI: 10.3390/molecules25112517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Four new variants of L1210 cells resistant to endoplasmic reticulum (ER) stressors, tunicamycin (STun), thapsigargin (SThap), bortezomib (SBor), and MG-132 (SMG-132), were developed via an 18-month periodic cultivation in culture medium with a gradual increase in substance concentration. Multidrug resistance was generated for STun (to tunicamycin, bortezomib and MG-132), SThap (to tunicamycin, thapsigargin and MG-132), SBor (to bortezomib and MG-132), and SMG-132 (to bortezomib and MG-132). These cells were compared to the original L1210 cells and another two variants, which expressed P-gp due to induction with vincristine or transfection with the gene encoding P-gp, in terms of the following properties: sensitivity to either vincristine or the ER stressors listed above, proliferative activity, expression of resistance markers and proteins involved in the ER stress response, and proteasome activity. The resistance of the new cell variants to ER stressors was accompanied by a decreased proliferation rate and increased proteasome activity. The most consistent change in protein expression was the elevation of GRP78/BiP at the mRNA and protein levels in all resistant variants of L1210 cells. In conclusion, the mechanisms of resistance to these stressors have certain common features, but there are also specific differences.
Collapse
Affiliation(s)
- Martin Cagala
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (M.C.); (M.S.)
| | - Lucia Pavlikova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (M.C.); (M.S.)
- Correspondence: (L.P.); (A.B.); (Z.S.); Tel.: +421-2-593-25-514 (A.B.); +421-2-32295510 (Z.S.)
| | - Mario Seres
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (M.C.); (M.S.)
| | - Karolina Kadlecikova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia;
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (M.C.); (M.S.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia;
- Correspondence: (L.P.); (A.B.); (Z.S.); Tel.: +421-2-593-25-514 (A.B.); +421-2-32295510 (Z.S.)
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia; (M.C.); (M.S.)
- Correspondence: (L.P.); (A.B.); (Z.S.); Tel.: +421-2-593-25-514 (A.B.); +421-2-32295510 (Z.S.)
| |
Collapse
|
24
|
Šereš M, Pavlíková L, Boháčová V, Kyca T, Borovská I, Lakatoš B, Breier A, Sulová Z. Overexpression of GRP78/BiP in P-Glycoprotein-Positive L1210 Cells is Responsible for Altered Response of Cells to Tunicamycin as a Stressor of the Endoplasmic Reticulum. Cells 2020; 9:cells9040890. [PMID: 32268491 PMCID: PMC7226765 DOI: 10.3390/cells9040890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
P-glycoprotein (P-gp, ABCB1 member of the ABC (ATP-binding cassette) transporter family) localized in leukemia cell plasma membranes is known to reduce cell sensitivity to a large but well-defined group of chemicals known as P-gp substrates. However, we found previously that P-gp-positive sublines of L1210 murine leukemia cells (R and T) but not parental P-gp-negative parental cells (S) are resistant to the endoplasmic reticulum (ER) stressor tunicamycin (an N-glycosylation inhibitor). Here, we elucidated the mechanism of tunicamycin resistance in P-gp-positive cells. We found that tunicamycin at a sublethal concentration of 0.1 µM induced retention of the cells in the G1 phase of the cell cycle only in the P-gp negative variant of L1210 cells. P-gp-positive L1210 cell variants had higher expression of the ER stress chaperone GRP78/BiP compared to that of P-gp-negative cells, in which tunicamycin induced larger upregulation of CHOP (C/EBP homologous protein). Transfection of the sensitive P-gp-negative cells with plasmids containing GRP78/BiP antagonized tunicamycin-induced CHOP expression and reduced tunicamycin-induced arrest of cells in the G1 phase of the cell cycle. Taken together, these data suggest that the resistance of P-gp-positive cells to tunicamycin is due to increased levels of GRP78/BiP, which is overexpressed in both resistant variants of L1210 cells.
Collapse
Affiliation(s)
- Mário Šereš
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (L.P.); (V.B.); (T.K.); (I.B.)
- Correspondence: (M.Š.); (A.B.); (Z.S.); Tel.: +421-2-322-95-574 (M.Š.); +421-2-593-25-514 (A.B.); +421-2-322-95-510 (Z.S.)
| | - Lucia Pavlíková
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (L.P.); (V.B.); (T.K.); (I.B.)
| | - Viera Boháčová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (L.P.); (V.B.); (T.K.); (I.B.)
| | - Tomáš Kyca
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (L.P.); (V.B.); (T.K.); (I.B.)
| | - Ivana Borovská
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (L.P.); (V.B.); (T.K.); (I.B.)
| | - Boris Lakatoš
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia;
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (L.P.); (V.B.); (T.K.); (I.B.)
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia;
- Correspondence: (M.Š.); (A.B.); (Z.S.); Tel.: +421-2-322-95-574 (M.Š.); +421-2-593-25-514 (A.B.); +421-2-322-95-510 (Z.S.)
| | - Zdena Sulová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia; (L.P.); (V.B.); (T.K.); (I.B.)
- Correspondence: (M.Š.); (A.B.); (Z.S.); Tel.: +421-2-322-95-574 (M.Š.); +421-2-593-25-514 (A.B.); +421-2-322-95-510 (Z.S.)
| |
Collapse
|
25
|
Suppression of KIF22 Inhibits Cell Proliferation and Xenograft Tumor Growth in Tongue Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6387545. [PMID: 32090103 PMCID: PMC6996685 DOI: 10.1155/2020/6387545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/26/2019] [Accepted: 11/12/2019] [Indexed: 01/24/2023]
Abstract
Background Oral carcinoma is the sixth most common cancer and is a serious public health problem, and tongue squamous cell carcinoma (TSCC) is the most common type of oral carcinoma. Kinesin family member 22 (KIF22), also called as kinesin-like DNA binding protein (KID), is a microtubule-based motor protein and binds to both microtubules and chromosomes, transporting organelles, protein, and mRNA. This research aimed at investigating the prognostic significance of KIF22 in TSCC. Patients and Methods. This retrospective research collected 82 paired tissues with TSCC. KIF22 protein expression level was detected by immunohistochemical staining. Suppression of KIF22 with shRNA in CAL-27 and SCC-15 cells was to observe cell proliferation in vitro and xenograft tumor growth in vivo. Results In TSCC tissues, the protein expression level of KIF22 was increased and correlated with tumor stage, clinical stage, and lymphatic metastasis (P=0.013, P=0.013, P=0.013, Conclusion KIF22 might play an important role in the progression of TSCC and could serve as a therapeutic target for TSCC.
Collapse
|
26
|
Li B, Zhu FC, Yu SX, Liu SJ, Li BY. Suppression of KIF22 Inhibits Cell Proliferation and Xenograft Tumor Growth in Colon Cancer. Cancer Biother Radiopharm 2019; 35:50-57. [PMID: 31657617 DOI: 10.1089/cbr.2019.3045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Kinesin family member 22 (KIF22) is known as a regulator of cell mitosis and cellular vesicle transport. The alterations of KIF22 are associated with a series of tumors; however, its possible role in the progression of colon cancer is still unclear. Materials and Methods: This retrospective research collected 82 paired tissues with colon cancer. KIF22 protein and mRNA expression levels were detected by immunohistochemistry assays and Immunoblot assays, respectively. Short hairpin RNA (shRNA) plasmids were used to suppress the expression of KIF22 in HCT116 and HT29 cells, and the silencing efficiencies of shRNA plasmids targeted KIF22 were detected by quantitative PCR assays and immunoblot assays. In addition, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assays and xenograft tumor growth assays were performed to observe cell proliferation in vitro and in vivo. Results: In human colon cancer tissues, the expression level of KIF22 was increased and correlated with clinical pathological features, including tumor stage and clinical stage (p = 0.034, and p = 0.015, respectively). Suppression of KIF22 inhibited cell proliferation and xenograft tumor growth. Conclusion: KIF22 might play an important role in the regulation of cell proliferation in colon cancer and might therefore serve as a promising therapeutic target.
Collapse
Affiliation(s)
- Bing Li
- Department of Anorectal Surgery, Tangxian People's Hospital in Hebei Province, Baoding, China
| | - Feng-Chi Zhu
- Department of Anorectal Surgery, Baoding Second Hospital, Baoding, China
| | - Su-Xiang Yu
- Department of Pathology, Tangxian People's Hospital in Hebei Province, Baoding, China
| | - Sheng-Jia Liu
- Medical Record Room, Tangxian People's Hospital in Hebei Province, Baoding, China
| | - Bao-Yu Li
- Department of General Surgery, The Secondary Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
27
|
Lee MYWT, Zhang S, Wang X, Chao HH, Zhao H, Darzynkiewicz Z, Zhang Z, Lee EYC. Two forms of human DNA polymerase δ: Who does what and why? DNA Repair (Amst) 2019; 81:102656. [PMID: 31326365 DOI: 10.1016/j.dnarep.2019.102656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA polymerase δ (Pol δ) plays a central role in lagging strand DNA synthesis in eukaryotic cells, as well as an important role in DNA repair processes. Human Pol δ4 is a heterotetramer of four subunits, the smallest of which is p12. Pol δ3 is a trimeric form that is generated in vivo by the degradation of the p12 subunit in response to DNA damage, and during entry into S-phase. The biochemical properties of the two forms of Pol δ, as well as the changes in their distribution during the cell cycle, are reviewed from the perspective of understanding their respective cellular functions. Biochemical and cellular studies support a role for Pol δ3 in gap filling during DNA repair, and in Okazaki fragment synthesis during DNA replication. Recent studies of cells in which p12 expression is ablated, and are therefore null for Pol δ4, show that Pol δ4 is not required for cell viability. These cells have a defect in homologous recombination, revealing a specific role for Pol δ4 that cannot be performed by Pol δ3. Pol δ4 activity is required for D-loop displacement synthesis in HR. The reasons why Pol δ4 but not Pol δ3 can perform this function are discussed, as well as the question of whether helicase action is needed for efficient D-loop displacement synthesis. Pol δ4 is largely present in the G1 and G2/M phases of the cell cycle and is low in S phase. This is discussed in relation to the availability of Pol δ4 as an additional layer of regulation for HR activity during cell cycle progression.
Collapse
Affiliation(s)
- Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, USA.
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, USA
| | - Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, USA
| | - Hsiao Hsiang Chao
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, USA
| | - Hong Zhao
- Department of Pathology, New York Medical College, Valhalla, USA
| | | | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, USA
| |
Collapse
|
28
|
Torén W, Ansari D, Andersson R. Immunohistochemical investigation of prognostic biomarkers in resected colorectal liver metastases: a systematic review and meta-analysis. Cancer Cell Int 2018; 18:217. [PMID: 30602942 PMCID: PMC6307223 DOI: 10.1186/s12935-018-0715-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Background Many studies have investigated the prognostic role of biomarkers in colorectal liver metastases (CRLM). However, no biomarker has been established in routine clinical practice. The aim of this study was to scrutinize the current literature for biomarkers evaluated by immunohistochemistry as prognostic markers in patients with resected CRLM. Methods A systematic review was performed according to the PRISMA guidelines. Articles were identified in the PubMed database with selected search terms and by cross-references search. The REMARK quality criteria were applied. Markers were included if they reported the prognostic impact of immunohistochemical markers in a multivariable setting in relation to overall survival (OS). A meta-analysis was conducted when more than one original article provided survival data of a marker. Results In total, 26 biomarkers were identified as independent significant markers for OS in resected CRLM. These biomarkers were found to be involved in multiple oncogenic signalling pathways that control cell growth, apoptosis, angiogenesis and evasion of immune detection. Among these biomarker candidates were Ki-67, EGFR, p53, hTERT, CD34, TSP-1, KISS1, Aurora kinase A and CDX2. CD34 and TSP-1 were reported as significantly associated with survival by more than one study and where therefore pooled in a meta-analysis. Conclusion A number of independent prognostic biomarkers for resected CRLM were identified. However, most markers were evaluated in a retrospective setting with small patient cohorts, without external validation. Large, prospective, multicentre studies with standardised methods are needed before biomarkers can translated into the clinic.
Collapse
Affiliation(s)
- William Torén
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Daniel Ansari
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden
| |
Collapse
|
29
|
Mughal MJ, Mahadevappa R, Kwok HF. DNA replication licensing proteins: Saints and sinners in cancer. Semin Cancer Biol 2018; 58:11-21. [PMID: 30502375 DOI: 10.1016/j.semcancer.2018.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/08/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022]
Abstract
DNA replication is all-or-none process in the cell, meaning, once the DNA replication begins it proceeds to completion. Hence, to achieve maximum control of DNA replication, eukaryotic cells employ a multi-subunit initiator protein complex known as "pre-replication complex or DNA replication licensing complex (DNA replication LC). This complex involves multiple proteins which are origin-recognition complex family proteins, cell division cycle-6, chromatin licensing and DNA replication factor 1, and minichromosome maintenance family proteins. Higher-expression of DNA replication LC proteins appears to be an early event during development of cancer since it has been a common hallmark observed in a wide variety of cancers such as oesophageal, laryngeal, pulmonary, mammary, colorectal, renal, urothelial etc. However, the exact mechanisms leading to the abnormally high expression of DNA replication LC have not been clearly deciphered. Increased expression of DNA replication LC leads to licensing and/or firing of multiple origins thereby inducing replication stress and genomic instability. Therapeutic approaches where the reduction in the activity of DNA replication LC was achieved either by siRNA or shRNA techniques, have shown increased sensitivity of cancer cell lines towards the anti-cancer drugs such as cisplatin, 5-Fluorouracil, hydroxyurea etc. Thus, the expression level of DNA replication LC within the cell determines a cell's fate thereby creating a paradox where DNA replication LC acts as both "Saint" and "Sinner". With a potential to increase sensitivity to chemotherapy drugs, DNA replication LC proteins have prospective clinical importance in fighting cancer. Hence, in this review, we will shed light on importance of DNA replication LC with an aim to use DNA replication LC in diagnosis and prognosis of cancer in patients as well as possible therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Ravikiran Mahadevappa
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
30
|
Halicka HD. Where to "cut-off"? Cytometry A 2018; 93:1092-1093. [PMID: 30277656 DOI: 10.1002/cyto.a.23620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 11/09/2022]
Affiliation(s)
- H Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, New York
| |
Collapse
|
31
|
Matos AM, Gomes-Duarte A, Faria M, Barros P, Jordan P, Amaral MD, Matos P. Prolonged co-treatment with HGF sustains epithelial integrity and improves pharmacological rescue of Phe508del-CFTR. Sci Rep 2018; 8:13026. [PMID: 30158635 PMCID: PMC6115363 DOI: 10.1038/s41598-018-31514-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023] Open
Abstract
Cystic fibrosis (CF), the most common inherited disease in Caucasians, is caused by mutations in the CFTR chloride channel, the most frequent of which is Phe508del. Phe508del causes not only intracellular retention and premature degradation of the mutant CFTR protein, but also defective channel gating and decreased half-life when experimentally rescued to the plasma membrane (PM). Despite recent successes in the functional rescue of several CFTR mutations with small-molecule drugs, the folding-corrector/gating-potentiator drug combinations approved for Phe508del-CFTR homozygous patients have shown only modest benefit. Several factors have been shown to contribute to this outcome, including an unexpected intensification of corrector-rescued Phe508del-CFTR PM instability after persistent co-treatment with potentiator drugs. We have previously shown that acute co-treatment with hepatocyte growth factor (HGF) can significantly enhance the chemical correction of Phe508del-CFTR. HGF coaxes the anchoring of rescued channels to the actin cytoskeleton via induction of RAC1 GTPase signalling. Here, we demonstrate that a prolonged, 15-day HGF treatment also significantly improves the functional rescue of Phe508del-CFTR by the VX-809 corrector/VX-770 potentiator combination, in polarized bronchial epithelial monolayers. Importantly, we found that HGF treatment also prevented VX-770-mediated destabilization of rescued Phe508del-CFTR and enabled further potentiation of the rescued channels. Most strikingly, prolonged HGF treatment prevented previously unrecognized epithelial dedifferentiation effects of sustained exposure to VX-809. This was observed in epithelium-like monolayers from both lung and intestinal origin, representing the two systems most affected by adverse symptoms in patients treated with VX-809 or the VX-809/VX-770 combination. Taken together, our findings strongly suggest that co-administration of HGF with corrector/potentiator drugs could be beneficial for CF patients.
Collapse
Affiliation(s)
- Ana M Matos
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Av. Padre Cruz, 1649-016, Lisboa, Portugal.,University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande - C8, 1749-016, Lisboa, Portugal
| | - Andreia Gomes-Duarte
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Av. Padre Cruz, 1649-016, Lisboa, Portugal.,University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande - C8, 1749-016, Lisboa, Portugal
| | - Márcia Faria
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Av. Padre Cruz, 1649-016, Lisboa, Portugal.,University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande - C8, 1749-016, Lisboa, Portugal.,Serviço de Endocrinologia, Diabetes e Metabolismo, do CHLN - Hospital Santa Maria, Lisboa, Portugal
| | - Patrícia Barros
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Av. Padre Cruz, 1649-016, Lisboa, Portugal.,University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande - C8, 1749-016, Lisboa, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Av. Padre Cruz, 1649-016, Lisboa, Portugal.,University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande - C8, 1749-016, Lisboa, Portugal
| | - Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande - C8, 1749-016, Lisboa, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Av. Padre Cruz, 1649-016, Lisboa, Portugal. .,University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande - C8, 1749-016, Lisboa, Portugal.
| |
Collapse
|
32
|
Gomesin inhibits melanoma growth by manipulating key signaling cascades that control cell death and proliferation. Sci Rep 2018; 8:11519. [PMID: 30068931 PMCID: PMC6070509 DOI: 10.1038/s41598-018-29826-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/10/2018] [Indexed: 02/03/2023] Open
Abstract
Consistent with their diverse pharmacology, peptides derived from venomous animals have been developed as drugs to treat disorders as diverse as hypertension, diabetes and chronic pain. Melanoma has a poor prognosis due in part to its metastatic capacity, warranting further development of novel targeted therapies. This prompted us to examine the anti-melanoma activity of the spider peptides gomesin (AgGom) and a gomesin-like homolog (HiGom). AgGom and HiGom dose-dependently reduced the viability and proliferation of melanoma cells whereas it had no deleterious effects on non-transformed neonatal foreskin fibroblasts. Concordantly, gomesin-treated melanoma cells showed a reduced G0/G1 cell population. AgGom and HiGom compromised proliferation of melanoma cells via activation of the p53/p21 cell cycle check-point axis and the Hippo signaling cascade, together with attenuation of the MAP kinase pathway. We show that both gomesin peptides exhibit antitumoral activity in melanoma AVATAR-zebrafish xenograft tumors and that HiGom also reduces tumour progression in a melanoma xenograft mouse model. Taken together, our data highlight the potential of gomesin for development as a novel melanoma-targeted therapy.
Collapse
|
33
|
Nicotine enhances mesangial cell proliferation and fibronectin production in high glucose milieu via activation of Wnt/β-catenin pathway. Biosci Rep 2018; 38:BSR20180100. [PMID: 29572389 PMCID: PMC6269139 DOI: 10.1042/bsr20180100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) is a major complication of diabetes mellitus. Clinic reports indicate cigarette smoking is an independent risk factor for chronic kidney disease including DN; however, the underlying molecular mechanisms are not clear. Recent studies have demonstrated that nicotine, one of the active compounds in cigarette smoke, contributes to the pathogenesis of the cigarette smoking-accelerated chronic kidney disease. One of the characteristics of DN is the expansion of mesangium, a precursor of glomerular sclerosis. In the present study, we examined the involvement of Wnt/β-catenin pathway in nicotine-mediated mesangial cell growth in high glucose milieu. Primary human renal mesangial cells were treated with nicotine in the presence of normal (5 mM) or high glucose (30 mM) followed by evaluation for cell growth. In the presence of normal glucose, nicotine increased both the total cell numbers and Ki-67 positive cell ratio, indicating that nicotine stimulated mesangial cell proliferation. Although high glucose itself also stimulated mesangial cell proliferation, nicotine further enhanced the mitogenic effect of high glucose. Similarly, nicotine increased the expression of Wnts, β-catenin, and fibronectin in normal glucose medium, but further increased mesangial cell expression of these proteins in high glucose milieu. Pharmacological inhibition or genetic knockdown of β-catenin activity or expression with specific inhibitor FH535 or siRNA significantly impaired the nicotine/glucose-stimulated cell proliferation and fibronectin production. We conclude that nicotine may enhance renal mesangial cell proliferation and fibronectin production under high glucose milieus partly through activating Wnt/β-catenin pathway. Our study provides insight into molecular mechanisms involved in DN.
Collapse
|
34
|
Abdou AG, Farag AGA, Hammam M, Taie DM, Abdelaziz RA. Immunohistochemical expression HIF1α in chronic plaque psoriasis, an association with angiogenesis and proliferation. J Immunoassay Immunochem 2018; 39:249-262. [PMID: 29771632 DOI: 10.1080/15321819.2018.1472605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Psoriasis is characterized by excessive cell proliferation, angiogenesis, and regions of hypoxia. Hypoxia stimulates production of hypoxia inducible factors (HIFs) such as HIF1α. The aim of the present study is to investigate the possible role of HIF1α in pathogenesis of psoriasis and to correlate its expression with angiogenesis and proliferation in involved and uninvolved skin in patients with plaque psoriasis using CD34 and Ki-67. The current study was performed on 40 skin specimens of patients presented with chronic plaque psoriasis both involved and uninvolved together with 40 specimens from age- and sex-matched healthy volunteers as a control group. The specimens were submitted for HIF1α, CD34, and Ki-67 immunostaining. HIF1α was expressed in 37.5% of normal skin with mild intensity and cytoplasmic localization instead of its expression in 72.5% and 100% of uninvolved and involved psoriatic skin, respectively. Nucleocytoplasmic pattern of HIF1α was seen in 34.5% and 37.5% of uninvolved and involved psoriatic skin, respectively. Positive and intense expression of HIF1α as well as its nucleocytoplasmic localization were significantly in favor of psoriatic skin either involved or uninvolved in comparison to normal skin (P < 0.05). Intense HIF1α was significantly associated with microvessel density in both involved and uninvolved skin (P < 0.05). Nucleocytoplasmic pattern was significantly associated with epidermal acanthosis (P < 0.05) and tended to be associated with percentage of Ki-67 of psoriatic skin (P = 0.06). The present study demonstrated that HIF1α is upregulated in the skin of psoriatic cases (involved and uninvolved) compared to normal skin indicating its role in pathogenesis of psoriasis especially its active nuclear form that showed an association with angiogenesis and proliferation.
Collapse
Affiliation(s)
- Asmaa Gaber Abdou
- a Pathology Departments, Faculty of Medicine , Menoufia University , Shebein Elkom , Egypt
| | - Azza G A Farag
- b Dermatology Departments, Faculty of Medicine , Menoufia University , Shebein Elkom , Egypt
| | - Moustafa Hammam
- b Dermatology Departments, Faculty of Medicine , Menoufia University , Shebein Elkom , Egypt
| | - Doha Maher Taie
- a Pathology Departments, Faculty of Medicine , Menoufia University , Shebein Elkom , Egypt.,c Liver Institute, Menoufia University , Shebein Elkom , Egypt
| | - Reem Ahmed Abdelaziz
- b Dermatology Departments, Faculty of Medicine , Menoufia University , Shebein Elkom , Egypt
| |
Collapse
|
35
|
Hou A, Fu J, Shi Y, Qiao L, Li J, Xing Y, Xue X. Decreased ZONAB expression promotes excessive transdifferentiation of alveolar epithelial cells in hyperoxia-induced bronchopulmonary dysplasia. Int J Mol Med 2018; 41:2339-2349. [PMID: 29393348 DOI: 10.3892/ijmm.2018.3413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/10/2018] [Indexed: 11/06/2022] Open
Abstract
Previous studies by our group have confirmed excessive transdifferentiation of alveolar epithelial cells (AECs) in a hyperoxia‑induced bronchopulmonary dysplasia (BPD) model, but the underlying mechanism have remained elusive. The transcription factor zonula occludens 1‑associated nucleic acid binding protein (ZONAB) has the biological functions of inhibition of epithelial cell differentiation and promotion of epithelial cell proliferation. The aim of the present study was to explore the regulatory effect of ZONAB on the transdifferentiation and proliferation of AECs in a model of hyperoxia‑induced lung injury. Newborn Wistar rats were randomly allocated to a model group (inhalation of 85% O2) or a control group (inhalation of normal air), and ZONAB expression in lung tissues was detected at different time‑points. Type II AECs (AEC II) isolated from normal newborn rats were primarily cultured under an atmosphere of 85 or 21% O2, and ZONAB expression in the cells was examined. The primary cells were further transfected with ZONAB plasmid or small interfering (si)RNA and then exposed to hyperoxia, and the indicators for transdifferentiation and proliferation were measured. The present study indicated that ZONAB expression in AEC II of the BPD rats was significantly decreased from 7 days of exposure to hyperoxia onwards. In the AEC II isolated from normal neonatal rats, ZONAB expression in the model group was also reduced compared with that in the control group. After transfection with the plasmid pCMV6‑ZONAB, the expression of aquaporin 5 (type I alveolar epithelial cell marker) decreased and the expression of surfactant protein C (AEC II marker), proliferating‑cell nuclear antigen and cyclin D1 increased, which was opposite to the effects of ZONAB siRNA. Transfection with pCMV6‑ZONAB also alleviated excessive transdifferentiation and inhibited proliferation of AEC II induced by hyperoxia treatment. These results suggest that ZONAB expression in AEC II decreases under hyperoxia conditions, which promotes transdifferentiation and inhibits proliferation of AECs. This may, at least in part, be the underlying mechanism of lung epithelial injury in the hyperoxia-induced BPD model.
Collapse
Affiliation(s)
- Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lin Qiao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jun Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yujiao Xing
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
36
|
Abstract
Cell cycle cytometry and analysis are essential tools for studying cells of model organisms and natural populations (e.g., bone marrow). Methods have not changed much for many years. The simplest and most common protocol is DNA content analysis, which is extensively published and reviewed. The next most common protocol, 5-bromo-2-deoxyuridine S phase labeling detected by specific antibodies, is also well published and reviewed. More recently, S phase labeling using 5'-ethynyl-2'-deoxyuridine incorporation and a chemical reaction to label substituted DNA has been established as a basic, reliable protocol. Multiple antibody labeling to detect epitopes on cell cycle regulated proteins, which is what this chapter is about, is the most complex of these cytometric cell cycle assays, requiring knowledge of the chemistry of fixation, the biochemistry of antibody-antigen reactions, and spectral compensation. However, because this knowledge is relatively well presented methodologically in many papers and reviews, this chapter will present a minimal Methods section for one mammalian cell type and an extended Notes section, focusing on aspects that are problematic or not well described in the literature. Most of the presented work involves how to segment the data to produce a complete, progressive, and compartmentalized cell cycle analysis from early G1 to late mitosis (telophase). A more recent development, using fluorescent proteins fused with proteins or peptides that are degraded by ubiquitination during specific periods of the cell cycle, termed "Fucci" (fluorescent, ubiquitination-based cell cycle indicators) provide an analysis similar in concept to multiple antibody labeling, except in this case cells can be analyzed while living and transgenic organisms can be created to perform cell cycle analysis ex or in vivo (Sakaue-Sawano et al., Cell 132:487-498, 2007). This technology will not be discussed.
Collapse
Affiliation(s)
- James W Jacobberger
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA.
| | - R Michael Sramkoski
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Tammy Stefan
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| | - Philip G Woost
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106, USA
| |
Collapse
|
37
|
Yu Z, Xiao C, Huang Y, Chen M, Wei W, Yang X, Zhou H, Bi X, Lu L, Ruan J, Fan X. Enhanced bioactivity and osteoinductivity of carboxymethyl chitosan/nanohydroxyapatite/graphene oxide nanocomposites. RSC Adv 2018; 8:17860-17877. [PMID: 35542061 PMCID: PMC9080497 DOI: 10.1039/c8ra00383a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/15/2018] [Indexed: 12/26/2022] Open
Abstract
Tissue engineering approaches combine a bioscaffold with stem cells to provide biological substitutes that can repair bone defects and eventually improve tissue functions. The prospective bioscaffold should have good osteoinductivity. Surface chemical and roughness modifications are regarded as valuable strategies for developing bioscaffolds because of their positive effects on enhancing osteogenic differentiation. However, the synergistic combination of the two strategies is currently poorly studied. In this work, a nanoengineered scaffold with surface chemistry (oxygen-containing groups) and roughness (Rq = 74.1 nm) modifications was fabricated by doping nanohydroxyapatite (nHA), chemically crosslinked graphene oxide (GO) and carboxymethyl chitosan (CMC). The biocompatibility and osteoinductivity of the nanoengineered CMC/nHA/GO scaffold was evaluated in vitro and in vivo, and the osteogenic differentiation mechanism of the nanoengineered scaffold was preliminarily investigated. Our data demonstrated that the enhanced osteoinductivity of CMC/nHA/GO may profit from the surface chemistry and roughness, which benefit the β1 integrin interactions with the extracellular matrix and activate the FAK–ERK signaling pathway to upregulate the expression of osteogenic special proteins. This study indicates that the nanocomposite scaffold with surface chemistry and roughness modifications could serve as a novel and promising bone substitute for tissue engineering. The CMC/nHA/GO scaffold with the surface chemistry and roughness dual effects and the release of phosphate and calcium ions synergistically assist the mineralization and facilitate the bone regeneration.![]()
Collapse
|
38
|
Lyons JD, Klingensmith NJ, Otani S, Mittal R, Liang Z, Ford ML, Coopersmith CM. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle. FASEB J 2017; 31:5507-5519. [PMID: 28842422 PMCID: PMC5690387 DOI: 10.1096/fj.201700015rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
Cell production and death are tightly regulated in the rapidly renewing gut epithelium, with proliferation confined to crypts and apoptosis occurring in villi and crypts. This study sought to determine how stress alters these compartmentalized processes. Wild-type mice made septic via cecal ligation and puncture had decreased crypt proliferation and increased crypt and villus apoptosis. Fabpi-TAg mice expressing large T-antigen solely in villi had ectopic enterocyte proliferation with increased villus apoptosis in unmanipulated animals. Septic fabpi-TAg mice had an unexpected increase in villus proliferation compared with unmanipulated littermates, whereas crypt proliferation was decreased. Cell cycle regulators cyclin D1 and cyclin D2 were decreased in jejunal tissue in septic transgenic mice. In contrast, villus and crypt apoptosis were increased in septic fabpi-TAg mice. To examine the relationship between apoptosis and proliferation in a compartment-specific manner, fabpi-TAg mice were crossed with fabpl-Bcl-2 mice, resulting in expression of both genes in the villus but Bcl-2 alone in the crypt. Septic bi-transgenic animals had decreased crypt apoptosis but had a paradoxical increase in villus apoptosis compared with septic fabpi-TAg mice, associated with decreased proliferation in both compartments. Thus, sepsis unmasks compartment-specific proliferative and apoptotic regulation that is not present under homeostatic conditions.-Lyons, J. D., Klingensmith, N. J., Otani, S., Mittal, R., Liang, Z., Ford, M. L., Coopersmith, C. M. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle.
Collapse
Affiliation(s)
- John D Lyons
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nathan J Klingensmith
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shunsuke Otani
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Rohit Mittal
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zhe Liang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Craig M Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA;
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Che F, Yin J, Quan Y, Xie X, Heng X, Du Y, Wang L. TLR4 interaction with LPS in glioma CD133+ cancer stem cells induces cell proliferation, resistance to chemotherapy and evasion from cytotoxic T lymphocyte-induced cytolysis. Oncotarget 2017; 8:53495-53507. [PMID: 28881826 PMCID: PMC5581125 DOI: 10.18632/oncotarget.18586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/22/2017] [Indexed: 01/21/2023] Open
Abstract
Despite advances in treatment modalities, 5-year survival among glioma patients remains poor. Glioma cancer stem cells (CSCs) exhibit high tumorigenic activity and are associated with resistance to treatment and tumor recurrence. Because overexpression of toll-like receptor 4 (TLR4) correlated with cancer development, we investigated LPS-induced TLR4 signaling in glioma CD133-positive (CD133+) CSCs. The proliferation of CD133+ CSCs isolated from CSCs derived from the U251 and SF295 glioma cell lines and from human glioma samples was upregulated on a time- and concentration-dependent basis by LPS stimulation, with increases in CD133, NANOG, and NESTIN mRNA and protein levels. Also elevated was cytokine expression, which was coupled to phosphorylation of mitogen-activated protein kinase, and activation of cyclins and cyclin-dependent kinase complexes. TLR4 knockdown reduced LPS-induced CD133+ CSC proliferation, whereas Adriamycin-induced CD133+ CSC apoptosis was moderately inhibited by treatment with LPS, implying a protective effect of LPS. The capacity of glioma CD133+ CSC-reactive cytotoxic T lymphocyte to selectively kill CD133+ CSCs was reduced by LPS, and this effect was not apparent after TLR4 knockdown in CD133+ CSCs. These data suggest TLR4 signaling is a factor in CD133+ CSC immune evasion, and thus disruption of TLR4 signaling is a potential therapeutic strategy in glioma.
Collapse
Affiliation(s)
- Fengyuan Che
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
| | - Jiawei Yin
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
| | - Yanchun Quan
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
| | - Xueyuan Heng
- Department of Neurosurgery, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lijuan Wang
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
| |
Collapse
|
40
|
Lee MYWT, Wang X, Zhang S, Zhang Z, Lee EYC. Regulation and Modulation of Human DNA Polymerase δ Activity and Function. Genes (Basel) 2017; 8:genes8070190. [PMID: 28737709 PMCID: PMC5541323 DOI: 10.3390/genes8070190] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/28/2022] Open
Abstract
This review focuses on the regulation and modulation of human DNA polymerase δ (Pol δ). The emphasis is on the mechanisms that regulate the activity and properties of Pol δ in DNA repair and replication. The areas covered are the degradation of the p12 subunit of Pol δ, which converts it from a heterotetramer (Pol δ4) to a heterotrimer (Pol δ3), in response to DNA damage and also during the cell cycle. The biochemical mechanisms that lead to degradation of p12 are reviewed, as well as the properties of Pol δ4 and Pol δ3 that provide insights into their functions in DNA replication and repair. The second focus of the review involves the functions of two Pol δ binding proteins, polymerase delta interaction protein 46 (PDIP46) and polymerase delta interaction protein 38 (PDIP38), both of which are multi-functional proteins. PDIP46 is a novel activator of Pol δ4, and the impact of this function is discussed in relation to its potential roles in DNA replication. Several new models for the roles of Pol δ3 and Pol δ4 in leading and lagging strand DNA synthesis that integrate a role for PDIP46 are presented. PDIP38 has multiple cellular localizations including the mitochondria, the spliceosomes and the nucleus. It has been implicated in a number of cellular functions, including the regulation of specialized DNA polymerases, mitosis, the DNA damage response, mouse double minute 2 homolog (Mdm2) alternative splicing and the regulation of the NADPH oxidase 4 (Nox4).
Collapse
Affiliation(s)
- Marietta Y W T Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Xiaoxiao Wang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Sufang Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Zhongtao Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Ernest Y C Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
41
|
HSPs drive dichotomous T-cell immune responses via DNA methylome remodelling in antigen presenting cells. Nat Commun 2017; 8:15648. [PMID: 28561043 PMCID: PMC5460028 DOI: 10.1038/ncomms15648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 04/15/2017] [Indexed: 12/12/2022] Open
Abstract
Immune responses primed by endogenous heat shock proteins, specifically gp96, can be varied, and mechanisms controlling these responses have not been defined. Immunization with low doses of gp96 primes T helper type 1 (Th1) immune responses, whereas high-dose immunization primes responses characterized by regulatory T (Treg) cells and immunosuppression. Here we show gp96 preferentially engages conventional and plasmacytoid dendritic cells (pDCs) under low and high doses, respectively, through CD91. Global DNMT-dependent epigenetic modifications lead to changes in protein expression within these antigen-presenting cells. Specifically, pDCs upregulate neuropilin-1 to enable the long term interactions of pDCs with Treg cells, thereby enhancing suppression of Th1 anti-tumour immunity. Our study defines a CD91-dependent mechanism through which gp96 controls dichotomous immune responses relevant to the therapy of cancer and autoimmunity. Low dose of the heat shock protein gp96 can drive effector T-cell responses, yet high-dose gp96 is immunosuppressive by expanding the regulatory T-cell population. Here the authors explain this dichotomy by showing that high-dose gp96 can drive plasmacytoid dendritic cell expression of neuropilin-1, thus functionally supporting interaction with Treg cells.
Collapse
|
42
|
Li J, Xu L, Bao Z, Xu P, Chang H, Wu J, Bei Y, Xia L, Wu P, Cui G. High expression of PIWIL2 promotes tumor cell proliferation, migration and predicts a poor prognosis in glioma. Oncol Rep 2017; 38:183-192. [PMID: 28534979 DOI: 10.3892/or.2017.5647] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/05/2016] [Indexed: 11/05/2022] Open
Abstract
Piwi-like RNA-mediated gene silencing 2 (PIWIL2), has been reported as an oncogene tightly associated with the genesis and progression of various malignancies. Nevertheless, the function of the PIWIL2 protein in human gliomas has not yet been clarified. In this study, we sought to investigate the clinical significance of PIWIL2 expression and reveal its function in the pathological process of gliomas. Through western blot and immunohistochemical analyses we found that PIWIL2 was overexpressed in glioma tissues. Moreover, the expression level of PIWIL2 was also significantly correlated with the WHO grades of human gliomas and Ki-67 expression. Kaplan‑Meier curves indicated that PIWIL2 was a prognostic factor for the survival of glioma patients and a high expression of PIWIL2 was correlated with a poor prognosis. In vitro, knockdown of PIWIL2 in glioma cells was shown to induce cell cycle arrest and increase apoptosis. Furthermore, silencing of PIWIL2 expression also obviously suppressed the migration of glioma cells. All the results demonstrated that PIWIL2 plays a significant role in the pathogenesis of human gliomas and may be used as a potential diagnostic marker and a therapeutic target of glioma in the future.
Collapse
Affiliation(s)
- Jinquan Li
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Li Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhen Bao
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Peng Xu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hao Chang
- Department of Neurosurgery, Affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Jingjing Wu
- Department of Oncology, Nantong Rich Hospital, Nantong, Jiangsu 226001, P.R. China
| | - Yuanqi Bei
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Liuwan Xia
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Peizhang Wu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Gang Cui
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
43
|
Mohamed AM, Refaat BA, El-Shemi AG, Kensara OA, Ahmad J, Idris S. Thymoquinone potentiates chemoprotective effect of Vitamin D3 against colon cancer: a pre-clinical finding. Am J Transl Res 2017; 9:774-790. [PMID: 28337306 PMCID: PMC5340713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/01/2017] [Indexed: 06/06/2023]
Abstract
Prevention of colon cancer among high-risk group has been long lasting research goal. Emerging data have evidenced the anticancer activities of Vitamin D3 (Vit.D) and Thymoquinone (TQ). The aim of the current study was to evaluate the synergistic potential of Thymoquinone and Vitamin D3 in the control of colon cancer progression using azoxymethane-induced rat model. Vit.D and TQ were given individually or in combination 4 week prior to induction and continued for a total of 20 week. At the end of the study, all animals were euthanized and their resected colons were examined macroscopically and microscopically for tumor growth. Colonic tissue preparations were used for measuring gene expression and/or protein levels of selected pro and anti-tumor biomarkers using quantitative RT-PCR, ELISA and immunohistochemistry. Compared with their individual supplementation, combined Vit.D/TQ showed prominent anti-tumor effect manifested by significant reduction (P < 0.05) of the numbers of grown tumors and large aberrant crypts foci. Mechanistically, gene expression and/or protein quantification studies revealed that combined Vit.D/TQ supplementation induced significant reduction (P < 0.01 and P < 0.05) of pro-cancerous molecules (Wnt, β-catenin, NF-κB, COX-2, iNOS, VEGF and HSP-90) as well as significant increase (P < 0.01 and P < 0.05, respectively) of anti-tumorigenesis biomarkers (DKK-1, CDNK-1A, TGF-β1, TGF-β/RII and smad4) as compared to un-supplemented or individually supplemented groups, respectively. In conclusion, TQ augmented the chemopreventive effect of Vit.D during the initiation phase of colon cancer in rat model, with the potential to suppress progression of pre-neoplastic lesions in colon carcinogenesis.
Collapse
Affiliation(s)
- Amr M Mohamed
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura UniversityMakkah, Kingdom of Saudi Arabia
- Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut UniversityAssiut, Egypt
| | - Bassem A Refaat
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura UniversityMakkah, Kingdom of Saudi Arabia
| | - Adel G El-Shemi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura UniversityMakkah, Kingdom of Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Assiut UniversityAssiut, Egypt
| | - Osama A Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura UniversityMakkah, Kingdom of Saudi Arabia
| | - Jawwad Ahmad
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura UniversityMakkah, Kingdom of Saudi Arabia
| | - Shakir Idris
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura UniversityMakkah, Kingdom of Saudi Arabia
| |
Collapse
|
44
|
Wang X, Zhang S, Zheng R, Yue F, Lin SHS, Rahmeh AA, Lee EYC, Zhang Z, Lee MYWT. PDIP46 (DNA polymerase δ interacting protein 46) is an activating factor for human DNA polymerase δ. Oncotarget 2017; 7:6294-313. [PMID: 26819372 PMCID: PMC4868757 DOI: 10.18632/oncotarget.7034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/25/2016] [Indexed: 02/07/2023] Open
Abstract
PDIP46 (SKAR, POLDIP3) was discovered through its interaction with the p50 subunit of human DNA polymerase δ (Pol δ). Its functions in DNA replication are unknown. PDIP46 associates with Pol δ in cell extracts both by immunochemical and protein separation methods, as well as by ChIP analyses. PDIP46 also interacts with PCNA via multiple copies of a novel PCNA binding motif, the APIMs (AlkB homologue-2 PCNA-Interacting Motif). Sites for both p50 and PCNA binding were mapped to the N-terminal region containing the APIMs. Functional assays for the effects of PDIP46 on Pol δ activity on singly primed ssM13 DNA templates revealed that it is a novel and potent activator of Pol δ. The effects of PDIP46 on Pol δ in primer extension, strand displacement and synthesis through simple hairpin structures reveal a mechanism where PDIP46 facilitates Pol δ4 synthesis through regions of secondary structure on complex templates. In addition, evidence was obtained that PDIP46 is also capable of exerting its effects by a direct interaction with Pol δ, independent of PCNA. Mutation of the Pol δ and PCNA binding region resulted in a loss of PDIP46 functions. These studies support the view that PDIP46 is a novel accessory protein for Pol δ that is involved in cellular DNA replication. This raises the possibility that altered expression of PDIP46 or its mutation may affect Pol δ functions in vivo, and thereby be a nexus for altered genomic stability.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Rong Zheng
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Fu Yue
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Szu Hua Sharon Lin
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Amal A Rahmeh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
45
|
Zhao L, Washington MT. Translesion Synthesis: Insights into the Selection and Switching of DNA Polymerases. Genes (Basel) 2017; 8:genes8010024. [PMID: 28075396 PMCID: PMC5295019 DOI: 10.3390/genes8010024] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 01/05/2023] Open
Abstract
DNA replication is constantly challenged by DNA lesions, noncanonical DNA structures and difficult-to-replicate DNA sequences. Two major strategies to rescue a stalled replication fork and to ensure continuous DNA synthesis are: (1) template switching and recombination-dependent DNA synthesis; and (2) translesion synthesis (TLS) using specialized DNA polymerases to perform nucleotide incorporation opposite DNA lesions. The former pathway is mainly error-free, and the latter is error-prone and a major source of mutagenesis. An accepted model of translesion synthesis involves DNA polymerase switching steps between a replicative DNA polymerase and one or more TLS DNA polymerases. The mechanisms that govern the selection and exchange of specialized DNA polymerases for a given DNA lesion are not well understood. In this review, recent studies concerning the mechanisms of selection and switching of DNA polymerases in eukaryotic systems are summarized.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA.
- Science of Advanced Materials Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - M Todd Washington
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
46
|
Cellular responses to replication stress: Implications in cancer biology and therapy. DNA Repair (Amst) 2016; 49:9-20. [PMID: 27908669 DOI: 10.1016/j.dnarep.2016.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022]
Abstract
DNA replication is essential for cell proliferation. Any obstacles during replication cause replication stress, which may lead to genomic instability and cancer formation. In this review, we summarize the physiological DNA replication process and the normal cellular response to replication stress. We also outline specialized therapies in clinical trials based on current knowledge and future perspectives in the field.
Collapse
|
47
|
Wojsiat J, Laskowska-Kaszub K, Alquézar C, Białopiotrowicz E, Esteras N, Zdioruk M, Martin-Requero A, Wojda U. Familial Alzheimer's Disease Lymphocytes Respond Differently Than Sporadic Cells to Oxidative Stress: Upregulated p53-p21 Signaling Linked with Presenilin 1 Mutants. Mol Neurobiol 2016; 54:5683-5698. [PMID: 27644130 PMCID: PMC5533859 DOI: 10.1007/s12035-016-0105-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/06/2016] [Indexed: 01/18/2023]
Abstract
Familial (FAD) and sporadic (SAD) Alzheimer's disease do not share all pathomechanisms, but knowledge on their molecular differences is limited. We previously reported that cell cycle control distinguishes lymphocytes from SAD and FAD patients. Significant differences were found in p21 levels of SAD compared to FAD lymphocytes. Since p21 can also regulate apoptosis, the aim of this study was to compare the response of FAD and SAD lymphocytes to oxidative stress like 2-deoxy-D-ribose (2dRib) treatment and to investigate the role of p21 levels in this response. We report that FAD cells bearing seven different PS1 mutations are more resistant to 2dRib-induced cell death than control or SAD cells: FAD cells showed a lower apoptosis rate and a lower depolarization of the mitochondrial membrane. Despite that basal p21 cellular content was lower in FAD than in SAD cells, in response to 2dRib, p21 mRNA and protein levels significantly increased in FAD cells. Moreover, we found a higher cytosolic accumulation of p21 in FAD cells. The transcriptional activation of p21 was shown to be dependent on p53, as it can be blocked by PFT-α, and correlated with the increased phosphorylation of p53 at Serine 15. Our results suggest that in FAD lymphocytes, the p53-mediated increase in p21 transcription, together with a shift in the nucleocytoplasmic localization of p21, confers a survival advantage against 2dRib-induced apoptosis. This compensatory mechanism is absent in SAD cells. Thus, therapeutic and diagnostic designs should take into account possible differential apoptotic responses in SAD versus FAD cells.
Collapse
Affiliation(s)
- Joanna Wojsiat
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Katarzyna Laskowska-Kaszub
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Carolina Alquézar
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Emilia Białopiotrowicz
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Noemi Esteras
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Mykola Zdioruk
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland
| | - Angeles Martin-Requero
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology, Pasteur 3, 02-093, Warsaw, Poland.
| |
Collapse
|
48
|
Bai X, Wang XL, Tang B, Shi HN, Boireau P, Rosenthal B, Wu XP, Liu MY, Liu XL. The roles of supernatant of macrophage treated by excretory-secretory products from muscle larvae of Trichinella spiralis on the differentiation of C2C12 myoblasts. Vet Parasitol 2016; 231:83-91. [PMID: 27501988 DOI: 10.1016/j.vetpar.2016.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023]
Abstract
The excretory-secretory products (ESPs) released by the muscle-larvae (ML) stage of Trichinella spiralis have been suggested to be involved in nurse cell formation. However, the molecular mechanisms by which ML-ESPs modulate nurse cell formation remain unclear. Macrophages exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for skeletal muscle repair, notably, via their actions on myogenic precursor cells. However, these interactions during T. spiralis infection have not been characterized. In the present study, the ability of conditioned medium (CM) from J774A.1 macrophages treated with ML-ESPs to influence the differentiation of murine myoblasts, and the mechanisms of this influence, were investigated in vitro. The results showed that the expression of Myogenic Regulatory Factors (MRFs) MyoD and myogenin, myosin heavy chain (MyHC), and the p21 cyclin-dependent kinase inhibitor were reduced in CM treated cells compared to their expression in the control group. These findings indicated that CM inhibited myoblast differentiation. Conversely, CM promoted myoblast proliferation and increased cyclin D1 levels. Taken together, results of our study suggested that CM can indirectly influence myoblast differentiation and proliferation, which provides a new method for the elucidation of the complex mechanisms involved in cell-parasite and cell-cell interactions during T. spiralis infection.
Collapse
Affiliation(s)
- X Bai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, China
| | - X L Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, China
| | - B Tang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, China
| | - H N Shi
- Mucosal Immunology Laboratory, Pediatric Gastroenterology Unit, Massachusetts General Hospital East, USA
| | - P Boireau
- ANSES, Laboratory for Animal Health, Maisons Alfort, France
| | - B Rosenthal
- Animal Parasitic Disease Laboratory, USDA, Building 1180, Beltsville, MD 20705, USA
| | - X P Wu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, China.
| | - M Y Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| | - X L Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, China.
| |
Collapse
|
49
|
Rewiring of the apoptotic TGF-β-SMAD/NFκB pathway through an oncogenic function of p27 in human papillary thyroid cancer. Oncogene 2016; 36:652-666. [PMID: 27452523 DOI: 10.1038/onc.2016.233] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/29/2016] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Abstract
Papillary thyroid carcinoma (PTC), the most frequent thyroid cancer, is characterized by low proliferation but no apoptosis, presenting frequent lymph-node metastasis. Papillary thyroid carcinoma overexpress transforming growth factor-beta (TGF-β). In human cells, TGF-β has two opposing actions: antitumoral through pro-apoptotic and cytostatic activities, and pro-tumoral promoting growth and metastasis. The switch converting TGF-β from a tumor-suppressor to tumor-promoter has not been identified. In the current study, we have quantified a parallel upregulation of TGF-β and nuclear p27, a CDK2 inhibitor, in samples from PTC. We established primary cultures from follicular epithelium in human homeostatic conditions (h7H medium). TGF-β-dependent cytostasis occurred in normal and cancer cells through p15/CDKN2B induction. However, TGF-β induced apoptosis in normal and benign but not in carcinoma cultures. In normal thyroid cells, TGF-β/SMAD repressed the p27/CDKN1B gene, activating CDK2-dependent SMAD3 phosphorylation to induce p50 NFκB-dependent BAX upregulation and apoptosis. In thyroid cancer cells, oncogene activation prevented TGF-β/SMAD-dependent p27 repression, and CDK2/SMAD3 phosphorylation, leading to p65 NFκB upregulation which repressed BAX, induced cyclin D1 and promoted TGF-β-dependent growth. In PTC samples from patients, upregulation of TGF-β, p27, p65 and cyclin D1 mRNA were significantly correlated, while the expression of the isoform BAX-β, exclusively transcribed in apoptotic cells, was negatively correlated. Additionally, combined ERK and p65 NFκB inhibitors reduced p27 expression and potentiated apoptosis in thyroid cancer cells while not affecting survival in normal thyroid cells. Our results therefore suggest that the oncoprotein p27 reorganizes the effects of TGF-β in thyroid cancer, explaining the slow proliferation but lack of apoptosis and metastatic behavior of PTC.
Collapse
|
50
|
Luo C, Wang F, Qin S, Chen Q, Wang QK. Coronary artery disease susceptibility gene ADTRP regulates cell cycle progression, proliferation, and apoptosis by global gene expression regulation. Physiol Genomics 2016; 48:554-64. [PMID: 27235449 DOI: 10.1152/physiolgenomics.00028.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022] Open
Abstract
The ADTRP gene encodes the androgen-dependent TFPI-regulating protein and is a susceptibility gene for contrary artery disease (CAD). We performed global gene expression profiling for ADTRP knock-down using microarrays in human HepG2 cells. Follow-up real-time RT-PCR analysis demonstrated that ADTRP knock-down regulates a diverse set of genes, including upregulation of seven histone genes, downregulation of multiple cell cycle genes (CCND1, CDK4, and CDKN1A), and upregulation of apoptosis genes (CASP7 and PDCD2) in HepG2 cells and endothelial cells. Consistently, ADTRP increases the number of S phase cells during cell cycle, promotes cell proliferation, and inhibits apoptosis. Our study provides novel insights into the function of ADTRP and biological pathways involving ADTRP, which may be involved in the pathogenesis of CAD.
Collapse
Affiliation(s)
- Chunyan Luo
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fan Wang
- Department of Molecular Cardiology, Lerner Research Institute, Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio; and Department of Molecular Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio
| | - Subo Qin
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Lerner Research Institute, Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio; and Department of Molecular Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio
| | - Qing K Wang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Department of Molecular Cardiology, Lerner Research Institute, Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio; and Department of Molecular Medicine, Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|