1
|
Zhou YT, Chu JH, Zhao SH, Li GL, Fu ZY, Zhang SJ, Gao XH, Ma W, Shen K, Gao Y, Li W, Yin YM, Zhao C. Quantitative systems pharmacology modeling of HER2-positive metastatic breast cancer for translational efficacy evaluation and combination assessment across therapeutic modalities. Acta Pharmacol Sin 2024; 45:1287-1304. [PMID: 38360930 PMCID: PMC11130324 DOI: 10.1038/s41401-024-01232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
HER2-positive (HER2+) metastatic breast cancer (mBC) is highly aggressive and a major threat to human health. Despite the significant improvement in patients' prognosis given the drug development efforts during the past several decades, many clinical questions still remain to be addressed such as efficacy when combining different therapeutic modalities, best treatment sequences, interindividual variability as well as resistance and potential coping strategies. To better answer these questions, we developed a mechanistic quantitative systems pharmacology model of the pathophysiology of HER2+ mBC that was extensively calibrated and validated against multiscale data to quantitatively predict and characterize the signal transduction and preclinical tumor growth kinetics under different therapeutic interventions. Focusing on the second-line treatment for HER2+ mBC, e.g., antibody-drug conjugates (ADC), small molecule inhibitors/TKI and chemotherapy, the model accurately predicted the efficacy of various drug combinations and dosing regimens at the in vitro and in vivo levels. Sensitivity analyses and subsequent heterogeneous phenotype simulations revealed important insights into the design of new drug combinations to effectively overcome various resistance scenarios in HER2+ mBC treatments. In addition, the model predicted a better efficacy of the new TKI plus ADC combination which can potentially reduce drug dosage and toxicity, while it also shed light on the optimal treatment ordering of ADC versus TKI plus capecitabine regimens, and these findings were validated by new in vivo experiments. Our model is the first that mechanistically integrates multiple key drug modalities in HER2+ mBC research and it can serve as a high-throughput computational platform to guide future model-informed drug development and clinical translation.
Collapse
Affiliation(s)
- Ya-Ting Zhou
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jia-Hui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shu-Han Zhao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ge-Li Li
- Gusu School, Nanjing Medical University, Suzhou, 215000, China
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Zi-Yi Fu
- Department of Breast Disease Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Su-Jie Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xue-Hu Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
- Jiangsu Hengrui Medicine Co. Ltd, Shanghai, 200245, China
| | - Wen Ma
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Kai Shen
- Jiangsu Hengrui Medicine Co. Ltd, Shanghai, 200245, China
| | - Yuan Gao
- QSPMed Technologies, Nanjing, 210000, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yong-Mei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Chen Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Gil-Henn H, Girault JA, Lev S. PYK2, a hub of signaling networks in breast cancer progression. Trends Cell Biol 2024; 34:312-326. [PMID: 37586982 DOI: 10.1016/j.tcb.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Breast cancer (BC) involves complex signaling networks characterized by extensive cross-communication and feedback loops between and within multiple signaling cascades. Many of these signaling pathways are driven by genetic alterations of oncogene and/or tumor-suppressor genes and are influenced by various environmental cues. We describe unique roles of the non-receptor tyrosine kinase (NRTK) PYK2 in signaling integration and feedback looping in BC. PYK2 functions as a signaling hub in various cascades, and its involvement in positive and negative feedback loops enhances signaling robustness, modulates signaling dynamics, and contributes to BC growth, epithelial-to-mesenchymal transition (EMT), stemness, migration, invasion, and metastasis. We also discuss the potential of PYK2 as a therapeutic target in various BC subtypes.
Collapse
Affiliation(s)
- Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche en Santé (UMRS) 1270, Sorbonne Université, 75005 Paris, France
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
3
|
Eitler J, Rackwitz W, Wotschel N, Gudipati V, Murali Shankar N, Sidorenkova A, Huppa JB, Ortiz-Montero P, Opitz C, Künzel SR, Michen S, Temme A, Loureiro LR, Feldmann A, Bachmann M, Boissel L, Klingemann H, Wels WS, Tonn T. CAR-mediated targeting of NK cells overcomes tumor immune escape caused by ICAM-1 downregulation. J Immunother Cancer 2024; 12:e008155. [PMID: 38417916 PMCID: PMC10900364 DOI: 10.1136/jitc-2023-008155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2023] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND The antitumor activity of natural killer (NK) cells can be enhanced by specific targeting with therapeutic antibodies that trigger antibody-dependent cell-mediated cytotoxicity (ADCC) or by genetic engineering to express chimeric antigen receptors (CARs). Despite antibody or CAR targeting, some tumors remain resistant towards NK cell attack. While the importance of ICAM-1/LFA-1 interaction for natural cytotoxicity of NK cells is known, its impact on ADCC induced by the ErbB2 (HER2)-specific antibody trastuzumab and ErbB2-CAR-mediated NK cell cytotoxicity against breast cancer cells has not been investigated. METHODS Here we used NK-92 cells expressing high-affinity Fc receptor FcγRIIIa in combination with trastuzumab or ErbB2-CAR engineered NK-92 cells (NK-92/5.28.z) as well as primary human NK cells combined with trastuzumab or modified with the ErbB2-CAR and tested cytotoxicity against cancer cells varying in ICAM-1 expression or alternatively blocked LFA-1 on NK cells. Furthermore, we specifically stimulated Fc receptor, CAR and/or LFA-1 to study their crosstalk at the immunological synapse and their contribution to degranulation and intracellular signaling in antibody-targeted or CAR-targeted NK cells. RESULTS Blockade of LFA-1 or absence of ICAM-1 significantly reduced cell killing and cytokine release during trastuzumab-mediated ADCC against ErbB2-positive breast cancer cells, but not so in CAR-targeted NK cells. Pretreatment with 5-aza-2'-deoxycytidine induced ICAM-1 upregulation and reversed NK cell resistance in ADCC. Trastuzumab alone did not sufficiently activate NK cells and required additional LFA-1 co-stimulation, while activation of the ErbB2-CAR in CAR-NK cells induced efficient degranulation independent of LFA-1. Total internal reflection fluorescence single molecule imaging revealed that CAR-NK cells formed an irregular immunological synapse with tumor cells that excluded ICAM-1, while trastuzumab formed typical peripheral supramolecular activation cluster (pSMAC) structures. Mechanistically, the absence of ICAM-1 did not affect cell-cell adhesion during ADCC, but rather resulted in decreased signaling via Pyk2 and ERK1/2, which was intrinsically provided by CAR-mediated targeting. Furthermore, while stimulation of the inhibitory NK cell checkpoint molecule NKG2A markedly reduced FcγRIIIa/LFA-1-mediated degranulation, retargeting by CAR was only marginally affected. CONCLUSIONS Downregulation of ICAM-1 on breast cancer cells is a critical escape mechanism from trastuzumab-triggered ADCC. In contrast, CAR-NK cells are able to overcome cancer cell resistance caused by ICAM-1 reduction, highlighting the potential of CAR-NK cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Jiri Eitler
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Wiebke Rackwitz
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Natalie Wotschel
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Venugopal Gudipati
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Nivedha Murali Shankar
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Anastasia Sidorenkova
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Johannes B Huppa
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Paola Ortiz-Montero
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Corinna Opitz
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Stephan R Künzel
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
| | - Susanne Michen
- TU Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Department of Neurosurgery, Division of Experimental Neurosurgery and Tumor Immunology, Dresden, Germany
| | - Achim Temme
- TU Dresden, Medical Faculty and University Hospital Carl Gustav Carus, Department of Neurosurgery, Division of Experimental Neurosurgery and Tumor Immunology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany, National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Liliana Rodrigues Loureiro
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anja Feldmann
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
| | - Michael Bachmann
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), Dresden, Germany
| | | | | | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Torsten Tonn
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| |
Collapse
|
4
|
Yadav N, Babu D, Madigubba S, Panigrahi M, Phanithi PB. Tyrphostin A9 attenuates glioblastoma growth by suppressing PYK2/EGFR-ERK signaling pathway. J Neurooncol 2023; 163:675-692. [PMID: 37415005 DOI: 10.1007/s11060-023-04383-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE Glioblastoma (GBM) is a fatal primary brain tumor with extremely poor clinical outcomes. The anticancer efficiency of tyrosine kinase inhibitors (TKIs) has been shown in GBM and other cancer, with limited therapeutic outcomes. In the current study, we aimed to investigate the clinical impact of active proline-rich tyrosine kinase-2 (PYK2) and epidermal growth factor receptor (EGFR) in GBM and evaluate its druggability by a synthetic TKI-Tyrphostin A9 (TYR A9). METHODS The expression profile of PYK2 and EGFR in astrocytoma biopsies (n = 48) and GBM cell lines were evaluated through quantitative PCR, western blots, and immunohistochemistry. The clinical association of phospho-PYK2 and EGFR was analyzed with various clinicopathological features and the Kaplan-Meier survival curve. The phospho-PYK2 and EGFR druggability and subsequent anticancer efficacy of TYR A9 was evaluated in GBM cell lines and intracranial C6 glioma model. RESULTS Our expression data revealed an increased phospho-PYK2, and EGFR expression aggravates astrocytoma malignancy and is associated with patients' poor survival. The mRNA and protein correlation analysis showed a positive association between phospho-PYK2 and EGFR in GBM tissues. The in-vitro studies demonstrated that TYR A9 reduced GBM cell growth, cell migration, and induced apoptosis by attenuating PYK2/EGFR-ERK signaling. The in-vivo data showed TYR A9 treatment dramatically reduced glioma growth with augmented animal survival by repressing PYK2/EGFR-ERK signaling. CONCLUSION Altogether, this study report that increased phospho-PYK2 and EGFR expression in astrocytoma was associated with poor prognosis. The in-vitro and in-vivo evidence underlined translational implication of TYR A9 by suppressing PYK2/EGFR-ERK modulated signaling pathway. The schematic diagram displayed proof of concept of the current study indicating activated PYK2 either through the Ca2+/Calmodulin-dependent protein kinase II (CAMKII) signaling pathway or autophosphorylation at Tyr402 induces association to the SH2 domain of c-Src that leads to c-Src activation. Activated c-Src in turn activates PYK2 at other tyrosine residues that recruit Grb2/SOS complex and trigger ERK½ activation. Besides, PYK2 interaction with c-Src acts as an upstream of EGFR transactivator that can activate the ERK½ signaling pathway, which induces cell proliferation and cell survival by increasing anti-apoptotic proteins or inhibiting pro-apoptotic proteins. TYR A9 treatment attenuate GBM cell proliferation and migration; and induce GBM cell death by inhibiting PYK2 and EGFR-induced ERK activation.
Collapse
Affiliation(s)
- Neera Yadav
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Deepak Babu
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Sailaja Madigubba
- Department of Laboratory Medicine, Krishna Institute of Medical Sciences, Secunderabad, Telangana, 500 003, India
| | - Manas Panigrahi
- Department of Neurosurgery, Krishna Institute of Medical Sciences, Secunderabad, Telangana, 500 003, India
| | - Prakash Babu Phanithi
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics School of Life Sciences, University of Hyderabad, Room No: F-23/F-71, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
5
|
Protein dynamics at invadopodia control invasion-migration transitions in melanoma cells. Cell Death Dis 2023; 14:190. [PMID: 36899008 PMCID: PMC10006204 DOI: 10.1038/s41419-023-05704-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
Cell invasion is a highly complex process that requires the coordination of cell migration and degradation of the extracellular matrix. In melanoma cells, as in many highly invasive cancer cell types these processes are driven by the regulated formation of adhesives structures such as focal adhesions and invasive structures like invadopodia. Structurally, focal adhesion and invadopodia are quite distinct, yet they share many protein constituents. However, quantitative understanding of the interaction of invadopodia with focal adhesion is lacking, and how invadopodia turn-over is associated with invasion-migration transition cycles remains unknown. In this study, we investigated the role of Pyk2, cortactin and Tks5 in invadopodia turnover and their relation with focal adhesions. We found that active Pyk2 and cortactin are localised at both focal adhesions and invadopodia. At invadopodia, localisation of active Pyk2 is correlated with ECM degradation. During invadopodia disassembly, Pyk2 and cortactin but not Tks5 are often relocated at nearby nascent adhesions. We also show that during ECM degradation, cell migration is reduced which is likely related to the sharing of common molecules within the two structures. Finally, we found that the dual FAK/Pyk2 inhibitor PF-431396 inhibits both focal adhesion and invadopodia activities thereby reducing both migration and ECM degradation.
Collapse
|
6
|
Lee D, Hong JH. Activated PyK2 and Its Associated Molecules Transduce Cellular Signaling from the Cancerous Milieu for Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232415475. [PMID: 36555115 PMCID: PMC9779422 DOI: 10.3390/ijms232415475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
PyK2 is a member of the proline-rich tyrosine kinase and focal adhesion kinase families and is ubiquitously expressed. PyK2 is mainly activated by stimuli, such as activated Src kinases and intracellular acidic pH. The mechanism of PyK2 activation in cancer cells has been addressed extensively. The up-regulation of PyK2 through overexpression and enhanced phosphorylation is a key feature of tumorigenesis and cancer migration. In this review, we summarized the cancer milieu, including acidification and cancer-associated molecules, such as chemical reagents, interactive proteins, chemokine-related molecules, calcium channels/transporters, and oxidative molecules that affect the fate of PyK2. The inhibition of PyK2 leads to a beneficial strategy to attenuate cancer cell development, including metastasis. Thus, we highlighted the effect of PyK2 on various cancer cell types and the distribution of molecules that affect PyK2 activation. In particular, we underlined the relationship between PyK2 and cancer metastasis and its potential to treat cancer cells.
Collapse
|
7
|
Müller A, Köhler UA, Trzebanski S, Vinik Y, Raj HM, Girault J, Ben‐Chetrit N, Maraver A, Jung S, Lev S. Mouse Modeling Dissecting Macrophage-Breast Cancer Communication Uncovered Roles of PYK2 in Macrophage Recruitment and Breast Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105696. [PMID: 35092356 PMCID: PMC8948556 DOI: 10.1002/advs.202105696] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Indexed: 05/30/2023]
Abstract
Macrophage infiltration in mammary tumors is associated with enhanced tumor progression, metastasis, and poor clinical outcome, and considered as target for therapeutic intervention. By using different genetic mouse models, the authors show that ablation of the tyrosine kinase PYK2, either in breast cancer cells, only in the tumor microenvironment, or in both, markedly reduces the number of infiltrating tumor macrophages and concomitantly inhibits tumor angiogenesis and tumor growth. Strikingly, PYK2 ablation only in macrophages is sufficient to induce similar effects. These phenotypic changes are associated with reduced monocyte recruitment and a substantial decrease in tumor-associated macrophages (TAMs). Mechanistically, the authors show that PYK2 mediates mutual communication between breast cancer cells and macrophages through critical effects on key receptor signaling. Specifically, PYK2 ablation inhibits Notch1 signaling and consequently reduces CCL2 secretion by breast cancer cells, and concurrently reduces the levels of CCR2, CXCR4, IL-4Rα, and Stat6 activation in macrophages. These bidirectional effects modulate monocyte recruitment, macrophage polarization, and tumor angiogenesis. The expression of PYK2 is correlated with infiltrated macrophages in breast cancer patients, and its effects on macrophage infiltration and pro-tumorigenic phenotype suggest that PYK2 targeting can be utilized as an effective strategy to modulate TAMs and possibly sensitize breast cancer to immunotherapy.
Collapse
Affiliation(s)
| | - Ulrike A. Köhler
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | | | - Yaron Vinik
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | - Harsha Mohan Raj
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | | | - Nir Ben‐Chetrit
- Sandra and Edward Meyer Cancer CenterWeill Cornell MedicineNew YorkNY10065USA
| | - Antonio Maraver
- Institut de Recherche en Cancérologie de MontpellierInserm U1194 – Université MontpellierMontpellier34090France
| | - Steffen Jung
- Immunology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| | - Sima Lev
- Molecular Cell Biology DepartmentWeizmann Institute of ScienceRehovot76100Israel
| |
Collapse
|
8
|
Therapeutic potential of the PI3K inhibitor LY294002 and PARP inhibitor Talazoparib combination in BRCA-deficient triple negative breast cancer cells. Cell Signal 2021; 91:110229. [PMID: 34958867 DOI: 10.1016/j.cellsig.2021.110229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors provide a promising therapeutic strategy for triple-negative breast cancers (TNBCs) with BRCA1/2 mutation. However, acquire resistance mechanisms and genetic alterations limit the clinical efficacy of PARP inhibitors. The aberrant activation of phosphatidylinositol 3-kinase (PI3K) is a significant problem for cancer development and thus the inhibition of PI3K by PI3K inhibitors is a novel targeted therapy in advanced breast cancer. Here, we, for the first time, investigated that the combined inhibition of PARP by Talazoparib (TAL) and PI3K by LY294002 synergistically inhibited proliferation of BRCA1 mutant HCC1937 TNBC cells through apoptosis, G0/G1 arrest, oxidative stress and increased DNA damage compared to drug alone. Additionally, TAL and LY294002 combination could be a promising strategy for overcoming TAL resistance. Co-treatment of TAL with LY294002 considerably suppressed the activation of PI3K, Akt1 and mTOR expression and phosphorylated protein levels in TNBC cells and caused changes in the multiple kinase phosphorylation. Our findings revealed that the dual inhibition of PARP and PI3K might represent an effective therapeutic strategy for TNBC and potentially overcome TAL resistance.
Collapse
|
9
|
Saha T, Gil-Henn H. Invadopodia, a Kingdom of Non-Receptor Tyrosine Kinases. Cells 2021; 10:cells10082037. [PMID: 34440806 PMCID: PMC8391121 DOI: 10.3390/cells10082037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/01/2023] Open
Abstract
Non-receptor tyrosine kinases (NRTKs) are crucial mediators of intracellular signaling and control a wide variety of processes such as cell division, morphogenesis, and motility. Aberrant NRTK-mediated tyrosine phosphorylation has been linked to various human disorders and diseases, among them cancer metastasis, to which no treatment presently exists. Invasive cancer cells leaving the primary tumor use invadopodia, feet-like structures which facilitate extracellular matrix (ECM) degradation and intravasation, to escape the primary tumor and disseminate into distant tissues and organs during metastasis. A major challenge in metastasis research is to elucidate the molecular mechanisms and signaling pathways underlying invadopodia regulation, as the general belief is that targeting these structures can potentially lead to the eradication of cancer metastasis. Non-receptor tyrosine kinases (NRTKs) play a central role in regulating invadopodia formation and function, but how they coordinate the signaling leading to these processes was not clear until recently. Here, we describe the major NRTKs that rule invadopodia and how they work in concert while keeping an accurate hierarchy to control tumor cell invasiveness and dissemination.
Collapse
|
10
|
Zhu T, Yang Q, Shao J, Chen Z, Cai B, Mao G. Pyk2 level is a novel prognostic marker for patients with esophageal squamous cell carcinoma after radical surgery. Virchows Arch 2021; 479:905-917. [PMID: 34313839 DOI: 10.1007/s00428-021-03153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 12/09/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors in East Asia. Surgical resection is currently the typical treatment. However, due to the highly invasive and metastatic characteristic of the disease, the mortality rate is still high. A search for potential prognostic biomarkers and therapeutic targets is very necessary. Here, we studied the expression of proline-rich tyrosine kinase 2 (Pyk2), a non-receptor tyrosine protein kinase, in ESCC and its influence on prognosis. A total of 112 cases of ESCC and paired adjacent normal tissues (NT) were organized in tissue microarray (TMA) from the Nantong First People's Hospital. Our analysis of TMA revealed that Pyk2 levels were higher in ESCC than in paired adjacent NT by immunohistochemistry (p<0.001). Western blot and real-time quantitative PCR analysis (p=0.0359) also reached similar conclusions. To further explore the significance of Pyk2 in ESCC, another set of tissue microarrays was collected from the Affiliated Hospital of Nantong University, which includes 241 consecutive patients undergoing radical surgery for ESCC, to perform IHC scores. We demonstrated that the expression level of Pyk2 was positively correlated with N stage (node negative versus node positive, p=0.02) and clinical stage (I + II versus III + IV, p=0.042). Univariate and multivariate analyses suggested that high Pyk2 expression was an independent prognostic factor for overall survival with ESCC. Cell function studies found that Pyk2 promoted tumor proliferation and migration and reduced apoptosis. Pyk2 knockdown enhanced the sensitivity to cisplatin in ESCC cells. Western blot analysis confirmed that Pyk2 may promote tumor progression by activating the Akt signaling pathway.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Oncology, The First People's Hospital of Yancheng, Yancheng, China
| | - Qiuxing Yang
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Jingjing Shao
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Zhuolin Chen
- Department of Pathology, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Bo Cai
- Nantong Center for Disease Control and Prevention Institute of Chronic Noncommunicable Diseases Prevention and Control, Nantong, China.
| | - Guoxin Mao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
11
|
Chen P, Duan Y, Lu X, Chen L, Zhang W, Wang H, Hu R, Liu S. RB1CC1 functions as a tumor-suppressing gene in renal cell carcinoma via suppression of PYK2 activity and disruption of TAZ-mediated PDL1 transcription activation. Cancer Immunol Immunother 2021; 70:3261-3275. [PMID: 33837850 DOI: 10.1007/s00262-021-02913-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Rb1-inducible coiled-coil 1 (RB1CC1) has been demonstrated to function as an inhibitor of proline-rich/Ca-activated tyrosine kinase 2 (PYK2) by binding to the kinase domain of PYK2, which promotes the proliferation, invasion, and migration of renal cell carcinoma (RCC) cells. Additionally, in breast cancer, PYK2 positively regulates the expression of transcriptional co-activator with PDZ-binding motif (TAZ) which in turn can enhance PDL1 levels in breast and lung cancer cells. The current study was performed to decipher the impact of RB1CC1 in the progression of RCC via regulation of the PYK2/TAZ/PDL1 signaling axis. Expression of RB1CC1 and PYK2 was quantified in clinical tissue samples from RCC patients. The relationship between TAZ and PYK2, TAZ and PDL1 was then validated. The cellular processes of doxorubicin (DOX)-induced human RCC cell lines including the abilities of proliferation, colony formation, sphere formation and apoptosis, as well as the tumorigenicity of transfected cells, were evaluated after the alteration of RB1CC1 expression. RB1CC1 exhibited decreased expression in RCC tissues and was positively correlated with patient survival. RB1CC1 could inhibit the activity of PYK2, which in turn stimulated the stability of TAZ protein by phosphorylating TAZ. Meanwhile, TAZ protein activated PDL1 transcription by binding to the promoter region of PDL1. RB1CC1 overexpression or PYK2 knockdown could help everolimus (EVE) to inhibit tumor proliferation and activate immune response. Taken together, RB1CC1 can potentially augment the response of RCC cells to immunotherapy by suppressing the PYK2/TAZ/PDL1 signaling axis.
Collapse
Affiliation(s)
- Pingfeng Chen
- Department of Urology, First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Youjun Duan
- Department of Urology, First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Xinsheng Lu
- Department of Urology, First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Libo Chen
- Department of Urology, First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Wang Zhang
- Department of Urology, First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Hao Wang
- Department of Urology, First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Rong Hu
- Department of Radiology, First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China.
| | - Shimin Liu
- Department of Urology, First Affiliated Hospital, University of South China, No. 69, Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
12
|
Heregulin Drives Endocrine Resistance by Altering IL-8 Expression in ER-Positive Breast Cancer. Int J Mol Sci 2020; 21:ijms21207737. [PMID: 33086721 PMCID: PMC7589856 DOI: 10.3390/ijms21207737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/04/2023] Open
Abstract
Sustained HER2/HER3 signaling due to the overproduction of the HER3 ligand heregulin (HRG) is proposed as a key contributor to endocrine resistance in estrogen receptor-positive (ER+) breast cancer. The molecular mechanisms linking HER2 transactivation by HRG-bound HER3 to the acquisition of a hormone-independent phenotype in ER+ breast cancer is, however, largely unknown. Here, we explored the possibility that autocrine HRG signaling drives cytokine-related endocrine resistance in ER+ breast cancer cells. We used human cytokine antibody arrays to semi-quantitatively measure the expression level of 60 cytokines and growth factors in the extracellular milieu of MCF-7 cells engineered to overexpress full-length HRGβ2 (MCF-7/HRG cells). Interleukin-8 (IL-8), a chemokine closely linked to ER inaction, emerged as one the most differentially expressed cytokines. Cytokine profiling using structural deletion mutants lacking both the N-terminus and the cytoplasmic-transmembrane region of HRGβ2-which is not secreted and cannot transactivate HER2-or lacking a nuclear localization signal at the N-terminus-which cannot localize at the nucleus but is actively secreted and transactivates HER2-revealed that the HRG-driven activation of IL-8 expression in ER+ cells required HRG secretion and transactivation of HER2 but not HRG nuclear localization. The functional blockade of IL-8 with a specific antibody inversely regulated ERα-driven transcriptional activation in endocrine-sensitive MCF-7 cells and endocrine-resistant MCF-7/HRG cells. Overall, these findings suggest that IL-8 participates in the HRG-driven endocrine resistance program in ER+/HER2- breast cancer and might illuminate a potential clinical setting for IL8- or CXCR1/2-neutralizing antibodies.
Collapse
|
13
|
Bone Marrow Stromal Cell-Derived IL-8 Upregulates PVR Expression on Multiple Myeloma Cells via NF-kB Transcription Factor. Cancers (Basel) 2020; 12:cancers12020440. [PMID: 32069911 PMCID: PMC7072437 DOI: 10.3390/cancers12020440] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 01/10/2023] Open
Abstract
Bone marrow stromal cells (BMSCs) strongly contribute to multiple myeloma (MM) progression, promoting the survival and growth of malignant plasma cells (PCs). However, the possible impact of these cells on the immune-mediated recognition of MM cells remains largely unknown. DNAM-1 activating receptor plays a prominent role in NK cell anti-MM response engaging the ligands poliovirus receptor (PVR) and nectin-2 on malignant PCs. Here, we analysed the role of MM patient-derived BMSCs in the regulation of PVR expression. We found that BMSCs enhance PVR surface expression on MM cells and promote their NK cell-mediated recognition. PVR upregulation occurs at transcriptional level and involves NF-kB transcription factor activation by BMSC-derived soluble factors. Indeed, overexpression of a dominant-negative mutant of IKBα blocked PVR upregulation. IL-8 plays a prominent role in these mechanisms since blockade of CXCR1/2 receptors as well as depletion of the cytokine via RNA interference prevents the enhancement of PVR expression by BMSC-derived conditioned medium. Interestingly, IL-8 is associated with stromal microvesicles which are also required for PVR upregulation via CXCR1/CXCR2 signaling activation. Our findings identify BMSCs as regulators of NK cell anti-MM response and contribute to define novel molecular pathways involved in the regulation of PVR expression in cancer cells.
Collapse
|
14
|
Srivastava M, Eidelman O, Craig J, Starr J, Kvecher L, Liu J, Hueman M, Pollard HB, Hu H, Shriver CD. Serum Biomarkers for Racial Disparities in Breast Cancer Progression. Mil Med 2019; 184:652-657. [PMID: 30901475 DOI: 10.1093/milmed/usy417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/09/2018] [Indexed: 01/06/2023] Open
Abstract
African American (AA) women are often diagnosed with more aggressive breast cancers and have worse survival outcomes than their Caucasian American (CA) counterparts. However, a comprehensive understanding of this disparity remains unclear. In this study, we attempted to identify the race-specific non-invasive protein biomarkers that may particularly benefit interventions aimed at reducing the risk of recurrence and metastasis in breast cancers (BrCa). Our technical strategy has been to discover candidate protein biomarkers in patient sera using a high throughput antibody microarray platform. A total of 240 subjects were selected, composed of controls and all immunohistochemistry-based subtypes of breast cancer cases, subdivided by pre- and post-menopausal status and by race. A global Wilcoxon analysis comparing no-cancer controls and cancer patients identified Pyk2, SAPK/JNK, and phosphatase and tensin homolog as present in higher concentrations in cancer patient serum. A paired t-test revealed that c-kit and Rb are significantly over-represented in AA cancer serum when compared to CA cancer serum. Interestingly, VEGFR2, a protein linked to BrCa metastasis and poor prognosis, was significantly over-represented in AA cancer serum compared to AA controls; however, this was not found in CA cancer serum compared to CA controls, suggesting a possible explanation for the higher incidence of aggressive BrCa in AA versus CA patients. Through examining race-specific differences in the protein landscape of BrCa patient serum, the identified proteins could lay the groundwork for the development of an all-inclusive "liquid mammogram test."
Collapse
Affiliation(s)
- Meera Srivastava
- Department of Anatomy, Physiology and Genetics, and Collaborative Health Initiative Research Program, Uniformed Services University Health Sciences, 4301 Jones Bridge Road, Bethesda, MD
| | - Ofer Eidelman
- Department of Anatomy, Physiology and Genetics, and Collaborative Health Initiative Research Program, Uniformed Services University Health Sciences, 4301 Jones Bridge Road, Bethesda, MD
| | - James Craig
- Chan Soon-Shiong Institute of Molecular Medicine, 620 7th St, Windber, PA
| | - Joshua Starr
- Department of Anatomy, Physiology and Genetics, and Collaborative Health Initiative Research Program, Uniformed Services University Health Sciences, 4301 Jones Bridge Road, Bethesda, MD
| | - Leonid Kvecher
- Chan Soon-Shiong Institute of Molecular Medicine, 620 7th St, Windber, PA
| | - Jianfang Liu
- Chan Soon-Shiong Institute of Molecular Medicine, 620 7th St, Windber, PA
| | - Matthew Hueman
- Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD
| | - Harvey B Pollard
- Department of Anatomy, Physiology and Genetics, and Collaborative Health Initiative Research Program, Uniformed Services University Health Sciences, 4301 Jones Bridge Road, Bethesda, MD
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine, 620 7th St, Windber, PA
| | - Craig D Shriver
- Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD
| |
Collapse
|
15
|
Al-Juboori SI, Vadakekolathu J, Idri S, Wagner S, Zafeiris D, Pearson JR, Almshayakhchi R, Caraglia M, Desiderio V, Miles AK, Boocock DJ, Ball GR, Regad T. PYK2 promotes HER2-positive breast cancer invasion. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:210. [PMID: 31118051 PMCID: PMC6532260 DOI: 10.1186/s13046-019-1221-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/09/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Metformin, a biguanide, is one of the most commonly prescribed treatments for type 2 diabetes and has recently been recommended as a potential drug candidate for advanced cancer therapy. Although Metformin has antiproliferative and proapoptotic effects on breast cancer, the heterogenous nature of this disease affects the response to metformin leading to the activation of pro-invasive signalling pathways that are mediated by the focal adhesion kinase PYK2 in pure HER2 phenotype breast cancer. METHODS The effect of metformin on different breast cancer cell lines, representing the molecular heterogenicity of the disease was investigated using in vitro proliferation and apoptosis assays. The activation of PYK2 by metformin in pure HER2 phenotype (HER2+/ER-/PR-) cell lines was investigated by microarrays, quantitative real time PCR and immunoblotting. Cell migration and invasion PYK2-mediated and in response to metformin were determined by wound healing and invasion assays using HER2+/ER-/PR- PYK2 knockdown cell lines. Proteomic analyses were used to determine the role of PYK2 in HER2+/ER-/PR- proliferative, migratory and invasive cellular pathways and in response to metformin. The association between PYK2 expression and HER2+/ER-/PR- patients' cancer-specific survival was investigated using bioinformatic analysis of PYK2 expression from patient gene expression profiles generated by the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) study. The effect of PYK2 and metformin on tumour initiation and invasion of HER2+/ER-/PR- breast cancer stem-like cells was performed using the in vitro stem cell proliferation and invasion assays. RESULTS Our study showed for the first time that pure HER2 breast cancer cells are more resistant to metformin treatment when compared with the other breast cancer phenotypes. This drug resistance was associated with the activation of PTK2B/PYK2, a well-known mediator of signalling pathways involved in cell proliferation, migration and invasion. The role of PYK2 in promoting invasion of metformin resistant HER2 breast cancer cells was confirmed through investigating the effect of PYK2 knockdown and metformin on cell invasion and by proteomic analysis of associated cellular pathways. We also reveal a correlation between high level of expression of PYK2 and reduced survival in pure HER2 breast cancer patients. Moreover, we also report a role of PYK2 in tumour initiation and invasion-mediated by pure HER2 breast cancer stem-like cells. This was further confirmed by demonstrating a correlation between reduced survival in pure HER2 breast cancer patients and expression of PYK2 and the stem cell marker CD44. CONCLUSIONS We provide evidence of a PYK2-driven pro-invasive potential of metformin in pure HER2 cancer therapy and propose that metformin-based therapy should consider the molecular heterogeneity of breast cancer to prevent complications associated with cancer chemoresistance, invasion and recurrence in treated patients.
Collapse
Affiliation(s)
- Shaymaa Ik Al-Juboori
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.,Department of Biology, College of science for women, University of Baghdad, Baghdad, Iraq
| | - Jayakumar Vadakekolathu
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Sarra Idri
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Sarah Wagner
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Dimitrios Zafeiris
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Joshua Rd Pearson
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Rukaia Almshayakhchi
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Amanda K Miles
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - David J Boocock
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Graham R Ball
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Tarik Regad
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
16
|
CRISPR/Cas9 engineering of ERK5 identifies its FAK/PYK2 dependent role in adhesion-mediated cell survival. Biochem Biophys Res Commun 2019; 513:179-185. [PMID: 30952431 DOI: 10.1016/j.bbrc.2019.03.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 01/10/2023]
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is now considered a key regulator of breast cancer cell proliferation, migration and invasion. It is also implicated in growth factor induced anti-apoptotic signaling. But its contribution to adhesion-induced survival signaling is not clear. In the present study, using CRISPR/Cas9 editing, we knocked-out ERK5 expression in several cancer cell lines. Then MDA-MB 231 breast cancer cells lacking ERK5 were used to understand its role in adhesion-mediated cell viability. We demonstrated that ERK5 deficient cells exhibited reduced cell attachment to matrix proteins fibronectin and vitronectin. The adhesion ability of these cells was further reduced upon chemical inhibition of focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2) by PF 431396. FAK/PYK2 inhibited ERK5 knock-out cells also showed markedly reduced cell-viability and increased apoptotic signaling. This was evident from the detection of cleaved PARP and caspase 9 in these cells. Thus, our data suggests a FAK/PYK2 regulated pro-survival role of ERK5 in response to cell adhesion.
Collapse
|
17
|
Liu S, Chen L, Xu Y. Significance of PYK2 level as a prognosis predictor in patients with colon adenocarcinoma after surgical resection. Onco Targets Ther 2018; 11:7625-7634. [PMID: 30464511 PMCID: PMC6217216 DOI: 10.2147/ott.s169531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Proline-rich/Ca2+-activated tyrosine kinase 2 (PYK2) belongs to the non-receptor tyrosine kinase family, regulates downstream signaling via catalyzing protein phosphorylation. We aimed to investigate clinical significance and mechanisms of PYK2 in colon adenocarcinoma (CAC). Methods Real time quantitative PCR and immunohistochemistry staining was used to evaluate the expression of PYK2 in clinical CAC tissues. Its association with clinicopathologic characteristics was analyzed by Chi-square test. Kaplan-Meier univariate survival analysis and multivariate Cox regression analysis were used to identify clinical significance of PYK2 in the overall survival of CAC patients. Transfection of PYK2 were conducted to reveal the underlying mechanism in regulating CAC progression. Results We found that PYK2 was upregulated in CAC tissues compared with normal colon tissues on both RNA and protein levels. Higher tissue PYK2 expression level was closely associated with lymph node metastasis. Statistical analyses indicated PYK2 as an independent prognostic biomarker for CAC. Cellular studies demonstrated that PYK2 enhanced the capacities of tumor proliferation and invasion. Moreover, the phosphorylation level of AKT was positively correlated with PYK2 expression, subsequently modulate expression of c-Myc and Cyclin D1, suggesting that PYK2 may promote tumor progression through activating AKT signaling. Conclusion High PYK2 in CAC tissues indicate poor prognosis.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Laboratory Medicine, Linyi Central Hospital, Linyi, Shandong 276400, China
| | - Lingling Chen
- Department of Laboratory Medicine, Linyi Central Hospital, Linyi, Shandong 276400, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong 250012, China,
| |
Collapse
|
18
|
Zhao T, Bao Y, Lu X, He Y, Gan X, Wang J, Liu B, Wang L. Pyk2 promotes tumor progression in renal cell carcinoma. Oncol Lett 2018; 16:5953-5959. [PMID: 30344745 PMCID: PMC6176372 DOI: 10.3892/ol.2018.9412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/09/2018] [Indexed: 12/29/2022] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2), a member of the focal adhesion kinase family, has recently been associated with tumor development. However, the role of Pyk2 in renal cell carcinoma (RCC) remains unexplored. The present study investigated the expression pattern, clinical significance, and function of Pyk2 in RCC. By using a reverse transcription-quantitative polymerase chain reaction, tissue microarray and immunohistochemistry, it was demonstrated that RCC tissues display a higher Pyk2 expression compared with paired adjacent nontumor tissues. Furthermore, it was revealed that Pyk2 upregulation was associated with poor clinical outcomes in patients with RCC. By using loss-of-function approaches, it was demonstrated that Pyk2 knockdown reduced cell viability, invasive ability and migratory ability, and increased apoptosis in RCC cell lines. In contrast, Pyk2 overexpression promoted tumor cell proliferation, invasion and migration and reduced apoptosis. Collectively, the results of the present study present the tumor-promoting function of Pyk2 in RCC and thus provide molecular evidence for novel tyrosine kinase inhibitors as novel therapeutic options for RCC.
Collapse
Affiliation(s)
- Tangliang Zhao
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Yi Bao
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Xin Lu
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Yi He
- Department of Urology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Xinxin Gan
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Jianchao Wang
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Bing Liu
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| | - Linhui Wang
- Department of Urology, Changzheng Hospital, The Second Military Medical University, Shanghai 200001, P.R. China
| |
Collapse
|
19
|
Proline-Rich Protein Tyrosine Kinase 2 in Inflammation and Cancer. Cancers (Basel) 2018; 10:cancers10050139. [PMID: 29738483 PMCID: PMC5977112 DOI: 10.3390/cancers10050139] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/13/2023] Open
Abstract
Focal adhesion kinase (FAK) and its homologous FAK-related proline-rich tyrosine kinase 2 (Pyk2) contain the same domain, exhibit high sequence homology and are defined as a distinct family of non-receptor tyrosine kinases. This group of kinases plays critical roles in cytoskeletal dynamics and cell adhesion by regulating survival and growth signaling. This review summarizes the physiological and pathological functions of Pyk2 in inflammation and cancers. In particular, overexpression of Pyk2 in cancerous tissues is correlated with poor outcomes. Pyk2 stimulates multiple oncogenic signaling pathways, such as Wnt/β-catenin, PI3K/Akt, MAPK/ERK, and TGF-β/EGFR/VEGF, and facilitates carcinogenesis, migration, invasion, epithelial⁻mesenchymal transition and metastasis. Therefore, Pyk2 is a high-value therapeutic target and has clinical significance.
Collapse
|
20
|
Expression of the serotonin receptor 2B in uveal melanoma and effects of an antagonist on cell lines. Clin Exp Metastasis 2018; 35:123-134. [PMID: 29696577 DOI: 10.1007/s10585-018-9894-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/23/2018] [Indexed: 12/25/2022]
Abstract
Uveal melanoma (UM) is the most common primary tumor in the adult, and disseminates to the liver in half of patients. A 15-gene expression profile prognostic assay allows to determine the likelihood of metastasis in patients using their ocular tumor DNA, but a cure still remains to be discovered. The serotonin receptor 2B represents the discriminant gene of this molecular signature with the greatest impact on the prognosis of UM. However, its contribution to the metastatic potential of UM remains unexplored. The purpose of this study was to investigate the effects of a selective serotonin receptor 2B antagonist on cellular and molecular behaviours of UM cells. UM cell lines expressing high level of serotonin receptor 2B proteins were selected by Western blotting. The selective serotonin receptor 2B antagonist PRX-08066 was evaluated for its impact on UM cells using viability assays, phosphorylated histone H3 immunostainings, clonogenic assays, migration assays, invasion assays and membrane-based protein kinase phosphorylation antibody arrays. The pharmacological inhibition of the serotonin receptor 2B reduced the viability of UM cells and the population in mitosis, and impaired their clonogenicity and potential of migration. It also decreased the phosphorylation of kinases from signaling pathways classically activated by the serotonin receptor 2B, as well as kinases β-catenin, Proline-rich tyrosine kinase 2, and Signal transducer and activator of transcription 5. Our findings support a role for the serotonin receptor 2B in the proliferation and migration of UM cells, through activation of many signaling pathways such as WNT, Focal adhesion kinase and Janus kinase/STAT.
Collapse
|
21
|
Kamihara Y, Takada K, Sato T, Kawano Y, Murase K, Arihara Y, Kikuchi S, Hayasaka N, Usami M, Iyama S, Miyanishi K, Sato Y, Kobune M, Kato J. The iron chelator deferasirox induces apoptosis by targeting oncogenic Pyk2/β-catenin signaling in human multiple myeloma. Oncotarget 2018; 7:64330-64341. [PMID: 27602957 PMCID: PMC5325446 DOI: 10.18632/oncotarget.11830] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 08/21/2016] [Indexed: 01/19/2023] Open
Abstract
Deregulated iron metabolism underlies the pathogenesis of many human cancers. Recently, low expression of ferroportin, which is the only identified non-heme iron exporter, has been associated with significantly reduced overall survival in multiple myeloma (MM); however, the altered iron metabolism in MM biology remains unclear. In this study we demonstrated, by live cell imaging, that MM cells have increased intracellular iron levels as compared with normal cells. In experiments to test the effect of iron chelation on the growth of MM cells, we found that deferasirox (DFX), an oral iron chelator used to treat iron overload in clinical practice, inhibits MM cell growth both in vivo and in vitro. Mechanistically, DFX was found to induce apoptosis of MM cells via the inhibition of proline-rich tyrosine kinase 2 (Pyk2), which is known to promote tumor growth in MM. Inhibition of Pyk2 is caused by the suppression of reactive oxygen species, and leads to downregulation of the Wnt/β-catenin signaling pathway. Taken together, our findings indicate that high levels of intracellular iron, which might be due to low ferroportin expression, play a role in MM pathophysiology. Therefore, DFX may provide a therapeutic option for MM that is driven by deregulated iron homeostasis and/or Pyk2/Wnt signaling.
Collapse
Affiliation(s)
- Yusuke Kamihara
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Japan
| | - Kohichi Takada
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Japan
| | - Tsutomu Sato
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Japan
| | - Yutaka Kawano
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Japan
| | - Kazuyuki Murase
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Japan
| | - Yohei Arihara
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Japan
| | - Shohei Kikuchi
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Japan
| | - Naotaka Hayasaka
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Japan
| | - Makoto Usami
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Japan
| | - Satoshi Iyama
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Japan
| | - Koji Miyanishi
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Japan
| | - Yasushi Sato
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Japan
| | - Masayoshi Kobune
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Japan
| | - Junji Kato
- Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Japan
| |
Collapse
|
22
|
Genna A, Lapetina S, Lukic N, Twafra S, Meirson T, Sharma VP, Condeelis JS, Gil-Henn H. Pyk2 and FAK differentially regulate invadopodia formation and function in breast cancer cells. J Cell Biol 2017; 217:375-395. [PMID: 29133485 PMCID: PMC5748976 DOI: 10.1083/jcb.201702184] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/13/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
The nonreceptor tyrosine kinase Pyk2 is highly expressed in invasive breast cancer, but how it potentiates tumor cell invasiveness is unclear. Genna et al. find that Pyk2 and the closely related kinase FAK modulate breast cancer cell invasiveness by distinct mechanisms and coordinate the balance between focal adhesion–mediated migration and invadopodia-dependent extracellular matrix invasion. The nonreceptor tyrosine kinase Pyk2 is highly expressed in invasive breast cancer, but the mechanism by which it potentiates tumor cell invasiveness is unclear at present. Using high-throughput protein array screening and bioinformatic analysis, we identified cortactin as a novel substrate and interactor of proline-rich tyrosine kinase 2 (Pyk2). Pyk2 colocalizes with cortactin to invadopodia of invasive breast cancer cells, where it mediates epidermal growth factor–induced cortactin tyrosine phosphorylation both directly and indirectly via Src-mediated Abl-related gene (Arg) activation, leading to actin polymerization in invadopodia, extracellular matrix degradation, and tumor cell invasion. Both Pyk2 and the closely related focal adhesion kinase (FAK) regulate tumor cell invasion, albeit via distinct mechanisms. Although Pyk2 regulates tumor cell invasion by controlling invadopodium-mediated functions, FAK controls invasiveness of tumor cells by regulating focal adhesion–mediated motility. Collectively, our findings identify Pyk2 as a unique mediator of invadopodium formation and function and also provide a novel insight into the mechanisms by which Pyk2 mediates tumor cell invasion.
Collapse
Affiliation(s)
- Alessandro Genna
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Nikola Lukic
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Shams Twafra
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Tomer Meirson
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY.,Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY
| | - Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
23
|
Wang H, Luo J, Carlton C, McGinnis LK, Kinsey WH. Sperm-oocyte contact induces outside-in signaling via PYK2 activation. Dev Biol 2017; 428:52-62. [PMID: 28527703 PMCID: PMC5539980 DOI: 10.1016/j.ydbio.2017.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/20/2023]
Abstract
Fertilization is a multi-step process that begins with plasma membrane interactions that enable sperm - oocyte binding followed by fusion of the sperm and oocyte plasma membranes. Once membrane fusion has occurred, sperm incorporation involves actin remodeling events within the oocyte cortex that allow the sperm head to penetrate the cortical actin layer and gain access to the ooplasm. Despite the significance for reproduction, the control mechanisms involved in gamete binding, fusion, and sperm incorporation are poorly understood. While it is known that proline - rich tyrosine kinase 2 (PYK2 or PTK2b) kinase activity plays an important role in fertilization, its specific function has not been addressed. The present study made use of a zona-free mouse oocyte fertilization assay to investigate the relationship between PYK2 activity and sperm - oocyte binding and fusion, as well as localized changes in actin polymerization and sperm incorporation. In this assay, the majority of bound sperm had no apparent effect on the oocyte and only a few became incorporated into the ooplasm. However, a subset of bound sperm were associated with a localized response in which PYK2 was recruited to the oocyte cortex where it frequently co-localized with a ring or disk of f-actin. The frequency of sperm-oocyte binding sites that exhibited this actin response was reduced in pyk2-/- oocytes and the pyk2-/- oocytes proved less efficient at incorporating sperm, indicating that this protein kinase may have an important role in sperm incorporation. The response of PYK2 to sperm-oocyte interaction appeared unrelated to gamete fusion since PYK2 was recruited to sperm - binding sites under conditions where sperm - oocyte fusion was prevented and since PYK2 suppression or ablation did not prevent sperm - oocyte fusion. While a direct correlation between the PYK2 response in the oocyte and the successful incorporation of individual bound sperm remains to be established, these findings suggest a model in which the oocyte is not a passive participant in fertilization, but instead responds to sperm contact by localized PYK2 signaling that promotes actin remodeling events required to physically incorporate the sperm head into the ooplasm.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Anatomy & Cell Biology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jinping Luo
- Department of Anatomy & Cell Biology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA; Applied StemCell Inc., Milpitas, CA 95035, USA
| | - Carol Carlton
- Department of Anatomy & Cell Biology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lynda K McGinnis
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, CA 90033, USA
| | - William H Kinsey
- Department of Anatomy & Cell Biology, Univ. of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
24
|
Meirson T, Samson AO, Gil-Henn H. An in silico high-throughput screen identifies potential selective inhibitors for the non-receptor tyrosine kinase Pyk2. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1535-1557. [PMID: 28572720 PMCID: PMC5441678 DOI: 10.2147/dddt.s136150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The non-receptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2) is a critical mediator of signaling from cell surface growth factor and adhesion receptors to cell migration, proliferation, and survival. Emerging evidence indicates that signaling by Pyk2 regulates hematopoietic cell response, bone density, neuronal degeneration, angiogenesis, and cancer. These physiological and pathological roles of Pyk2 warrant it as a valuable therapeutic target for invasive cancers, osteoporosis, Alzheimer’s disease, and inflammatory cellular response. Despite its potential as a therapeutic target, no potent and selective inhibitor of Pyk2 is available at present. As a first step toward discovering specific potential inhibitors of Pyk2, we used an in silico high-throughput screening approach. A virtual library of six million lead-like compounds was docked against four different high-resolution Pyk2 kinase domain crystal structures and further selected for predicted potency and ligand efficiency. Ligand selectivity for Pyk2 over focal adhesion kinase (FAK) was evaluated by comparative docking of ligands and measurement of binding free energy so as to obtain 40 potential candidates. Finally, the structural flexibility of a subset of the docking complexes was evaluated by molecular dynamics simulation, followed by intermolecular interaction analysis. These compounds may be considered as promising leads for further development of highly selective Pyk2 inhibitors.
Collapse
Affiliation(s)
- Tomer Meirson
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Abraham O Samson
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Hava Gil-Henn
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| |
Collapse
|
25
|
Zhang F, Lu YX, Chen Q, Zou HM, Zhang JM, Hu YH, Li XM, Zhang WJ, Zhang W, Lin C, Li XN. Identification of NCK1 as a novel downstream effector of STAT3 in colorectal cancer metastasis and angiogenesis. Cell Signal 2017; 36:67-78. [PMID: 28455144 DOI: 10.1016/j.cellsig.2017.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is known to activate targets associated with invasion, proliferation, and angiogenesis in a wide variety of cancers. The adaptor protein NCK1 is involved in cytoskeletal movement and was identified as a STAT3-associated target in human tumors. However, the underlying molecular mechanism associated with colorectal cancer (CRC) metastasis is not yet completely understood. In this study, we report a novel STAT3 to NCK1 signaling pathway in colorectal cancer (CRC). We investigated the expression of NCK1 and its potential clinical and biological significance in CRC. NCK1 was noticeably up-regulated in human CRC tissues. NCK1 was also significantly associated with serosal invasion, lymph metastasis, and tumor-node-metastasis classification but was inversely correlated with differentiation. Gain-of-function and loss-of-function studies have shown that ectopic expression of NCK1 enhanced metastasis and angiogenesis in CRC cells. By gene expression analyses, we revealed a high co-overexpression of STAT3 and NCK1 in CRC tissues. Ectopic overexpression of STAT3 in CRC cells induced the expression of NCK1, whereas STAT3 knockdown decreased the expression of NCK1. Promoter activation and binding analyses demonstrated that STAT3 promoted the expression of NCK1 via direct action on the NCK1 promoter. The knock down of NCK1 partially reduced the CRC cell metastasis and angiogenesis promoted by STAT3. Additionally, by co-immunoprecipitation assays, we verified that NCK1 interacted with PAK1, which resulted in the activation of the PAK1/ERK pathway. STAT3 induced the transcription of NCK1 and triggered a PAK1/ERK cascade in CRC. These findings suggest a novel STAT3 to NCK1 to PAK1/ERK signaling mechanism that is potentially critical for CRC metastasis and angiogenesis.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yan-Xia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Qing Chen
- Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Hui-Mei Zou
- School of Nursing, University of South China, Hengyang 421001, China.
| | - Jian-Ming Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Department of Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Yu-Han Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiao-Min Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wen-Juan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Wei Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Chun Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xue-Nong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
26
|
Iamshanova O, Fiorio Pla A, Prevarskaya N. Molecular mechanisms of tumour invasion: regulation by calcium signals. J Physiol 2017; 595:3063-3075. [PMID: 28304082 DOI: 10.1113/jp272844] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular calcium (Ca2+ ) signals are key regulators of multiple cellular functions, both healthy and physiopathological. It is therefore unsurprising that several cancers present a strong Ca2+ homeostasis deregulation. Among the various hallmarks of cancer disease, a particular role is played by metastasis, which has a critical impact on cancer patients' outcome. Importantly, Ca2+ signalling has been reported to control multiple aspects of the adaptive metastatic cancer cell behaviour, including epithelial-mesenchymal transition, cell migration, local invasion and induction of angiogenesis (see Abstract Figure). In this context Ca2+ signalling is considered to be a substantial intracellular tool that regulates the dynamicity and complexity of the metastatic cascade. In the present study we review the spatial and temporal organization of Ca2+ fluxes, as well as the molecular mechanisms involved in metastasis, analysing the key steps which regulate initial tumour spread.
Collapse
Affiliation(s)
- Oksana Iamshanova
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, University of Lille, 59656, Villeneuve d'Ascq, France
| | - Alessandra Fiorio Pla
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, University of Lille, 59656, Villeneuve d'Ascq, France.,Department of Life Science and Systems Biology, University of Torino, Torino, Italy
| | - Natalia Prevarskaya
- Inserm U1003, Laboratory of Excellence, Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer, SIRIC ONCOLille, University of Lille, 59656, Villeneuve d'Ascq, France
| |
Collapse
|
27
|
Verma N, Müller AK, Kothari C, Panayotopoulou E, Kedan A, Selitrennik M, Mills GB, Nguyen LK, Shin S, Karn T, Holtrich U, Lev S. Targeting of PYK2 Synergizes with EGFR Antagonists in Basal-like TNBC and Circumvents HER3-Associated Resistance via the NEDD4–NDRG1 Axis. Cancer Res 2016; 77:86-99. [DOI: 10.1158/0008-5472.can-16-1797] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022]
|
28
|
Lane D, Matte I, Laplante C, Garde-Granger P, Carignan A, Bessette P, Rancourt C, Piché A. CCL18 from ascites promotes ovarian cancer cell migration through proline-rich tyrosine kinase 2 signaling. Mol Cancer 2016; 15:58. [PMID: 27613122 PMCID: PMC5017134 DOI: 10.1186/s12943-016-0542-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022] Open
Abstract
Background Ovarian cancer (OC) ascites consist in a proinflammatory tumor environment that is characterized by the presence of various cytokines, chemokines and growth factors. The presence of these inflammatory-related factors in ascites is associated with a more aggressive tumor phenotype. CCL18 is a member of CCL chemokines and its expression has been associated with poor prognosis in some cancers. However, its role in OC progression has not been established. Therefore, the aim of the current study was to elucidate the role of ascites CCL18 in OC progression. Methods ELISA and tissue microarrays were used to assess CCL18 in ascites and phospho-Pyk2 expression in cancer tissues respectively. Cell migration was assessed using Boyden chambers. CCL18 and ascites signaling was examined in ovarian cancer cells utilizing siRNA and exogenous gene expression. Results Here, we show that CCL18 levels are markedly increased in advanced serous OC ascites relative to peritoneal effusions from women with benign conditions. Ascites and CCL18 dose-dependently enhanced the migration of OC cell lines CaOV3 and OVCAR3. CCL18 levels in ascites positively correlated with the ability of ascites to promote cell migration. CCL18 blocking antibodies significantly attenuated ascites-induced cell migration. Ascites and CCL18 stimulated the phosphorylation of proline-rich tyrosine kinase 2 (Pyk2) in CaOV3 and OVCAR3 cells. Most importantly, the expression of phosphorylated Pyk2 in serous OC tumors was associated with shorter progression-free survival. Furthermore, enforced expression of Pyk2 promoted tumor cell migration while siRNA-mediated downregulation of Pyk2 attenuated cell migration. Downregulation of Pyk2 markedly inhibited ascites and CCL18-induced cell migration. Conclusions Taken together, our findings establish an important role for CCL18, as a component of ascites, in the migration of tumor cells and identify Pyk2 as prognostic factor and a critical downstream signaling pathway for ascites-induced OC cell migration. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0542-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denis Lane
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Isabelle Matte
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Claude Laplante
- Département de Pathologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, J1H 5N4, Canada
| | - Perrine Garde-Granger
- Département de Pathologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, J1H 5N4, Canada
| | - Alex Carignan
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Paul Bessette
- Service d'obstétrique et gynécologie, Département de Chirurgie, Faculté de Médecine, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, J1H 5N4, Canada
| | - Claudine Rancourt
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Alain Piché
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
29
|
Chen YF, Hsu KF, Shen MR. The store-operated Ca 2+ entry-mediated signaling is important for cancer spread. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1427-35. [DOI: 10.1016/j.bbamcr.2015.11.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/17/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022]
|