1
|
Wu T, Dong Y, Yang X, Mo L, You Y. Crosstalk between lncRNAs and Wnt/β-catenin signaling pathways in lung cancers: From cancer progression to therapeutic response. Noncoding RNA Res 2024; 9:667-677. [PMID: 38577016 PMCID: PMC10987302 DOI: 10.1016/j.ncrna.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
Lung cancer (LC) is considered to have the highest mortality rate around the world. Because there are no early diagnostic signs or efficient clinical alternatives, distal metastasis and increasing numbers of recurrences are a challenge in the clinical management of LC. Long non-coding RNAs (lncRNAs) have recently been recognized as a critical regulator involved in the progression and treatment response to LC. The Wnt/β-catenin pathway has been shown to influence LC occurrence and progress. Therefore, discovering connections between Wnt signaling pathway and lncRNAs may offer new therapeutic targets for improving LC treatment and management. In this review, the purpose of this article is to present possible therapeutic approaches by reviewing particular relationships, key processes, and molecules associated to the beginning and development of LC.
Collapse
Affiliation(s)
- Ting Wu
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - YiRan Dong
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - XinZhi Yang
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Liang Mo
- Department of Thoracic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yong You
- Research Laboratory of Translational Medicine/Laboratory of Protein Structure and Function, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
2
|
Younis MA, Harashima H. Understanding Gene Involvement in Hepatocellular Carcinoma: Implications for Gene Therapy and Personalized Medicine. Pharmgenomics Pers Med 2024; 17:193-213. [PMID: 38737776 PMCID: PMC11088404 DOI: 10.2147/pgpm.s431346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the dominant type of liver cancers and is one of the deadliest health threats globally. The conventional therapeutic options for HCC are hampered by low efficiency and intolerable side effects. Gene therapy, however, now offers hope for the treatment of many disorders previously considered incurable, and gene therapy is beginning to address many of the shortcomings of conventional therapies. Herein, we summarize the involvement of genes in the pathogenesis and prognosis of HCC, with a special focus on dysregulated signaling pathways, genes involved in immune evasion, and non-coding RNAs as novel two-edged players, which collectively offer potential targets for the gene therapy of HCC. Herein, the opportunities and challenges of HCC gene therapy are discussed. These include innovative therapies such as genome editing and cell therapies. Moreover, advanced gene delivery technologies that recruit nanomedicines for use in gene therapy for HCC are highlighted. Finally, suggestions are offered for improved clinical translation and future directions in this area of endeavor.
Collapse
Affiliation(s)
- Mahmoud A Younis
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| |
Collapse
|
3
|
Liang W, Zhao Y, Meng Q, Jiang W, Deng S, Xue J. The role of long non-coding RNA in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:4052-4073. [PMID: 38334963 PMCID: PMC10929815 DOI: 10.18632/aging.205523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent liver malignancy with complex etiology and generally poor prognosis. Recently, long non-coding RNAs (lncRNAs), non-protein-coding RNA molecules exceeding 200 nucleotides, have emerged as pivotal players in HCC, influencing its initiation, progression, invasion, and metastasis. These lncRNAs modulate gene expression at epigenetic, transcriptional, and post-transcriptional levels, actively participating in the pathological and physiological processes of HCC. Understanding the intricate relationship between lncRNAs and HCC is important for improving prognosis and reducing mortality. This review summarizes advancements in elucidating the role of lncRNAs in HCC pathogenesis.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
- Tumor Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Yan Zhao
- Department of Mathematics and Computer Science, Free University Berlin, Berlin 14195, Germany
| | - Qingxue Meng
- Technology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| | - Wenjie Jiang
- Department of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin 300401, China
| | - Shoulong Deng
- National Health Commission of China (NHC) Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
- Tumor Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, Hebei, China
| |
Collapse
|
4
|
Xu L, Chen S, Li Q, Chen X, Xu Y, Zhou Y, Li J, Guo Z, Xing J, Chen D. Integrating bioinformatics and experimental validation to unveil disulfidptosis-related lncRNAs as prognostic biomarker and therapeutic target in hepatocellular carcinoma. Cancer Cell Int 2024; 24:30. [PMID: 38218909 PMCID: PMC10788009 DOI: 10.1186/s12935-023-03208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/31/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) stands as a prevalent malignancy globally, characterized by significant morbidity and mortality. Despite continuous advancements in the treatment of HCC, the prognosis of patients with this cancer remains unsatisfactory. This study aims at constructing a disulfidoptosis‑related long noncoding RNA (lncRNA) signature to probe the prognosis and personalized treatment of patients with HCC. METHODS The data of patients with HCC were extracted from The Cancer Genome Atlas (TCGA) databases. Univariate, multivariate, and least absolute selection operator Cox regression analyses were performed to build a disulfidptosis-related lncRNAs (DRLs) signature. Kaplan-Meier plots were used to evaluate the prognosis of the patients with HCC. Functional enrichment analysis was used to identify key DRLs-associated signaling pathways. Spearman's rank correlation was used to elucidate the association between the DRLs signature and immune microenvironment. The function of TMCC1-AS1 in HCC was validated in two HCC cell lines (HEP3B and HEPG2). RESULTS We identified 11 prognostic DRLs from the TCGA dataset, three of which were selected to construct the prognostic signature of DRLs. We found that the survival time of low-risk patients was considerably longer than that of high-risk patients. We further observed that the composition and the function of immune cell subpopulations were significantly different between high- and low-risk groups. Additionally, we identified that sorafenib, 5-Fluorouracil, and doxorubicin displayed better responses in the low-score group than those in the high-score group, based on IC50 values. Finally, we confirmed that inhibition of TMCC1-AS1 impeded the proliferation, migration, and invasion of hepatocellular carcinoma cells. CONCLUSIONS The DRL signatures have been shown to be a reliable prognostic and treatment response indicator in HCC patients. TMCC1-AS1 showed potential as a novel prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shu Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Qiaoqiao Li
- The Second Affiliated Hospital of Chongqing Medical University, No. 76 Linjiang Road, Chongqing, 400010, China
| | - Xinyi Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuan Xu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yongjian Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhixian Guo
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Jiyuan Xing
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
5
|
Karimi B, Mokhtari K, Rozbahani H, Peymani M, Nabavi N, Entezari M, Rashidi M, Taheriazam A, Ghaedi K, Hashemi M. Pathological roles of miRNAs and pseudogene-derived lncRNAs in human cancers, and their comparison as prognosis/diagnosis biomarkers. Pathol Res Pract 2024; 253:155014. [PMID: 38128189 DOI: 10.1016/j.prp.2023.155014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
This review examines and compares the diagnostic and prognostic capabilities of miRNAs and lncRNAs derived from pseudogenes in cancer patients. Additionally, it delves into their roles in cancer pathogenesis. Both miRNAs and pseudogene-derived lncRNAs have undergone thorough investigation as remarkably sensitive and specific cancer biomarkers, offering significant potential for cancer detection and monitoring. . Extensive research is essential to gain a complete understanding of the precise roles these non-coding RNAs play in cancer, allowing the development of novel targeted therapies and biomarkers for improved cancer detection and treatment approaches.
Collapse
Affiliation(s)
- Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Khatere Mokhtari
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hossein Rozbahani
- Department of Psychology, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Psychology, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Li Z, Yuan J, Da Q, Yan Z, Qu J, Li D, Liu X, Zhan Q, Liu J. Long non-coding RNA colon cancer-associated transcript 1-Vimentin axis promoting the migration and invasion of HeLa cells. Chin Med J (Engl) 2023; 136:2351-2361. [PMID: 37036437 PMCID: PMC10538881 DOI: 10.1097/cm9.0000000000002373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Long non-coding RNA colon cancer-associated transcript 1 (CCAT1) is involved in transforming multiple cancers into malignant cancer types. Previous studies underlining the mechanisms of the functions of CCAT1 primarily focused on its decoy for miRNAs (micro RNAs). However, the regulatory mechanism of CCAT1-protein interaction associated with tumor metastasis is still largely unknown. The present study aimed to identify proteome-wide CCAT1 partners and explored the CCAT1-protein interaction mediated tumor metastasis. METHODS CCAT1-proteins complexes were purified and identified using RNA antisense purification coupled with the mass spectrometry (RAP-MS) method. The database for annotation, visualization, and integrated discovery and database for eukaryotic RNA binding proteins (EuRBPDB) websites were used to bioinformatic analyzing CCAT1 binding proteins. RNA pull-down and RNA immunoprecipitation were used to validate CCAT1-Vimentin interaction. Transwell assay was used to evaluate the migration and invasion abilities of HeLa cells. RESULTS RAP-MS method worked well by culturing cells with nucleoside analog 4-thiouridine, and cross-linking was performed using 365 nm wavelength ultraviolet. There were 631 proteins identified, out of which about 60% were RNA binding proteins recorded by the EuRBPDB database. Vimentin was one of the CCAT1 binding proteins and participated in the tumor metastasis pathway. Knocked down vimetin ( VIM ) and rescued the downregulation by overexpressing CCAT1 demonstrated that CCAT1 could enhance tumor migration and invasion abilities by stabilizing Vimentin protein. CONCLUSION CCAT1 may bind with and stabilize Vimentin protein, thus enhancing cancer cell migration and invasion abilities.
Collapse
Affiliation(s)
- Zhangfu Li
- Department of Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Jiangbei Yuan
- Department of Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Qingen Da
- Department of Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Zilong Yan
- Department of Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Jianhua Qu
- Department of Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Dan Li
- State Key Laboratory of Molecular Oncology, National Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xu Liu
- Department of Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jikui Liu
- Department of Hepato-Pancreato-Biliary Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| |
Collapse
|
7
|
Taghehchian N, Farshchian M, Mahmoudian RA, Asoodeh A, Abbaszadegan MR. The expression of long non-coding RNA LINC01389, LINC00365, RP11-138J23.1, and RP11-354K4.2 in gastric cancer and their impacts on EMT. Mol Cell Probes 2022; 66:101869. [PMID: 36208698 DOI: 10.1016/j.mcp.2022.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Epithelial cancers acquire the epithelial to mesenchymal transition (EMT), which leads tumor cells to invade and metastasize to adjacent and distant tissues. The mechanisms involved in EMT phenotype are controlled by numerous markers as well as signalling pathways. Recently, long non-coding RNAs (lncRNAs) were introduced that play the regulatory role in EMT via crosstalk with EMT-related transcription factors and signalling pathways. The present study aimed to investigate the expression of four lncRNAs in human GC and elucidate their probable role in EMT procedure and the pathogenesis of gastric cancer (GC). METHODS The expression profile of lncRNAs (LINC01389, LINC00365, RP11-138J23.1, and RP11-354K4.2) and mRNAs (TWIST1, MMP13, MAML1, CD44s, and SALL4) between eighty-three GC and adjacent non-cancerous tissues were assessed by quantitative real-time PCR. RESULTS The significant downregulation of LINC00365 (66.3%) and RP11-354K4.2 (62.7%) were observed in GC samples; while the upregulation of LINC01389, RP11-138J23.1, TWIST1, MMP13, MAML1, CD44s, and SALL4 were found in 67.5%, 45.8%, 56.6%, 44.6%, 59%, 55.4%, and 62.7% tumors samples at the mRNA level, respectively. Dysregulation of these lncRNAs and EMT-related markers was significantly related to each other in a variety of clinicopathological features of patients (P < 0.05), indicating positive correlations between LINC01389, LINC00365, RP11-138J23.1, and RP11-354K4.2 with EMT status in GC. CONCLUSION These EMT-regulating lncRNAs may play a key role in transforming gastric epithelial to mesenchymal phenotype and can be novel therapeutic targets for GC. Our results highlight the importance of discovering new lncRNAs involved in gastric carcinogenesis. Detailed molecular mechanisms of these noncoding-coding markers in GC are urgently required.
Collapse
Affiliation(s)
- Negin Taghehchian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi, Mashhad, Iran.
| | | | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Khanbabaei H, Ebrahimi S, García-Rodríguez JL, Ghasemi Z, Pourghadamyari H, Mohammadi M, Kristensen LS. Non-coding RNAs and epithelial mesenchymal transition in cancer: molecular mechanisms and clinical implications. J Exp Clin Cancer Res 2022; 41:278. [PMID: 36114510 PMCID: PMC9479306 DOI: 10.1186/s13046-022-02488-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental process for embryonic development during which epithelial cells acquire mesenchymal characteristics, and the underlying mechanisms confer malignant features to carcinoma cells such as dissemination throughout the organism and resistance to anticancer treatments. During the past decades, an entire class of molecules, called non-coding RNA (ncRNA), has been characterized as a key regulator of almost every cellular process, including EMT. Like protein-coding genes, ncRNAs can be deregulated in cancer, acting as oncogenes or tumor suppressors. The various forms of ncRNAs, including microRNAs, PIWI-interacting RNAs, small nucleolar RNAs, transfer RNA-derived RNA fragments, long non-coding RNAs, and circular RNAs can orchestrate the complex regulatory networks of EMT at multiple levels. Understanding the molecular mechanism underlying ncRNAs in EMT can provide fundamental insights into cancer metastasis and may lead to novel therapeutic approaches. In this review, we describe recent advances in the understanding of ncRNAs in EMT and provide an overview of recent ncRNA applications in the clinic.
Collapse
|
9
|
He Q, Guo P, Bo Z, Yu H, Yang J, Wang Y, Chen G. Noncoding RNA-mediated molecular bases of chemotherapy resistance in hepatocellular carcinoma. Cancer Cell Int 2022; 22:249. [PMID: 35945536 PMCID: PMC9361533 DOI: 10.1186/s12935-022-02643-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/27/2022] [Indexed: 11/10/2022] Open
Abstract
Despite the significant progress in decreasing the occurrence and mortality of hepatocellular carcinoma (HCC), it remains a public health issue worldwide on the basis of its late presentation and tumor recurrence. To date, apart from surgical interventions, such as surgical resection, liver transplantation and locoregional ablation, current standard antitumor protocols include conventional cytotoxic chemotherapy. However, due to the high chemoresistance nature, most current therapeutic agents show dismal outcomes for this refractory malignancy, leading to disease relapse. Nevertheless, the molecular mechanisms involved in chemotherapy resistance remain systematically ambiguous. Herein, HCC is hierarchically characterized by the formation of primitive cancer stem cells (CSCs), progression of epithelial-mesenchymal transition (EMT), unbalanced autophagy, delivery of extracellular vesicles (EVs), escape of immune surveillance, disruption of ferroptosis, alteration of the tumor microenvironment and multidrug resistance-related signaling pathways that mediate the multiplicity and complexity of chemoresistance. Of note, anecdotal evidence has corroborated that noncoding RNAs (ncRNAs) extensively participate in the critical physiological processes mentioned above. Therefore, understanding the detailed regulatory bases that underlie ncRNA-mediated chemoresistance is expected to yield novel insights into HCC treatment. In the present review, a comprehensive summary of the latest progress in the investigation of chemotherapy resistance concerning ncRNAs will be elucidated to promote tailored individual treatment for HCC patients.
Collapse
Affiliation(s)
- Qikuan He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Pengyi Guo
- Department of Cardiothoracic Surgery, Ningbo Yinzhou No. 2 Hospital, Ningbo, 315199, Zhejiang, China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jinhuan Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
10
|
Minocha T, Das M, Rai V, Verma SS, Awasthee N, Gupta SC, Haldar C, Yadav SK. Melatonin induces apoptosis and cell cycle arrest in cervical cancer cells via inhibition of NF-κB pathway. Inflammopharmacology 2022; 30:1411-1429. [DOI: 10.1007/s10787-022-00964-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
|
11
|
LncRNA-miRNA-mRNA regulatory axes in endometrial cancer: a comprehensive overview. Arch Gynecol Obstet 2022; 306:1431-1447. [PMID: 35182183 DOI: 10.1007/s00404-022-06423-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Recent research on tumorigenesis and progression has opened up an array of novel molecular mechanisms in the form of interactions between cellular non-coding RNAs (long non-coding RNA[lncRNA]/microRNA [miRNA]) and coding transcripts that regulate health and disease. Endometrial cancer (EC) is a prominent gynecological malignancy with a high incidence rate and poorly known etiology and prognostic factors that hinder the success of disease management. The emerging role of lncRNA-miRNA-mRNA interactions and their dysregulation in the pathophysiology of EC has been elucidated in many recent studies. METHODS A thorough literature review was conducted to explore information about lncRNA-miRNA-mRNA axes in EC. RESULTS Several lncRNAs act as molecular sponges that sequester various tumor suppressor miRNAs to inhibit their function, leading to the dysregulation of their target mRNA transcripts that contribute to the EC regulation. CONCLUSIONS This review summarizes these networks of molecular mechanisms and their contribution to different aspects of endometrial carcinogenesis, leading to a better conceptualization of the molecular pathways that underlie the disease and helping establish novel diagnostic biomarkers and therapeutic intervention points to aid the curative intent of EC.
Collapse
|
12
|
Kogiso M, Qi L, Du Y, Braun FK, Zhang H, Huang LF, Guo L, Huang Y, Teo WY, Lindsay H, Zhao S, Injac SG, Liu Z, Mehta V, Tran D, Li F, Baxter PA, Su JM, Perlaky L, Parsons DW, Chintagumpala M, Adesina A, Song Y, Li XN. Synergistic anti-tumor efficacy of mutant isocitrate dehydrogenase 1 inhibitor SYC-435 with standard therapy in patient-derived xenograft mouse models of glioma. Transl Oncol 2022; 18:101368. [PMID: 35182954 PMCID: PMC8857594 DOI: 10.1016/j.tranon.2022.101368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 11/05/2022] Open
Abstract
A novel pair of orthotopic PDX models of glioma bearing IDH1-R132H/R132C mutations. New mutant IDH1i (SY-435) with standard therapy led to strong therapeutic efficacy. H3K4/K9 methylation/mtDNA-encoded molecules mediate anti-tumor activity of SYC-435. Discovered MYO1F, CTC1 and BCL9 as novel genes that mediated SYC-435 resistance.
Clinical outcomes in patients with WHO grade II/III astrocytoma, oligodendroglioma or secondary glioblastoma remain poor. Isocitrate dehydrogenase 1 (IDH1) is mutated in > 70% of these tumors, making it an attractive therapeutic target. To determine the efficacy of our newly developed mutant IDH1 inhibitor, SYC-435 (1-hydroxypyridin-2-one), we treated orthotopic glioma xenograft model (IC-BT142AOA) carrying R132H mutation and our newly established orthotopic patient-derived xenograft (PDX) model of recurrent anaplastic oligoastrocytoma (IC-V0914AOA) bearing R132C mutation. In addition to suppressing IDH1 mutant cell proliferation in vitro, SYC-435 (15 mg/kg, daily x 28 days) synergistically prolonged animal survival times with standard therapies (Temozolomide + fractionated radiation) mediated by reduction of H3K4/H3K9 methylation and expression of mitochondrial DNA (mtDNA)-encoded molecules. Furthermore, RNA-seq of the remnant tumors identified genes (MYO1F, CTC1 and BCL9) and pathways (base excision repair, TCA cycle II, sirtuin signaling, protein kinase A, eukaryotic initiation factor 2 and α-adrenergic signaling) as mediators of therapy resistance. Our data demonstrated the efficacy SYC-435 in targeting IDH1 mutant gliomas when combined with standard therapy and identified a novel set of genes that should be prioritized for future studies to overcome SYC-435 resistance.
Collapse
Affiliation(s)
- Mari Kogiso
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lin Qi
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Simpson Querrey Biomedical Research Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuchen Du
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Simpson Querrey Biomedical Research Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Frank K Braun
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Huiyuan Zhang
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - L Frank Huang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Lei Guo
- Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA
| | - Yulun Huang
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neurosurgery, Brain and Nerve Research Laboratory, the First Affiliated Hospital, Soochow University Medical School, Suzhou, Jiangsu 215007, China
| | - Wan-Yee Teo
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, National Cancer Center, KK Women's and Children's Hospital, Humphrey Oei Institute of Cancer Research, Institute of Molecular and Cell Biology, A*STAR, 169610, Singapore
| | - Holly Lindsay
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sibo Zhao
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sarah G Injac
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhen Liu
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vidya Mehta
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diep Tran
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Li
- Department of Pathology, Alkek Center for Drug Discovery, Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia A Baxter
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jack M Su
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Laszlo Perlaky
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - D Williams Parsons
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Murali Chintagumpala
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Adekunle Adesina
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongcheng Song
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiao-Nan Li
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Simpson Querrey Biomedical Research Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
13
|
Angiulli F, Colombo T, Fassetti F, Furfaro A, Paci P. Mining sponge phenomena in RNA expression data. J Bioinform Comput Biol 2021; 20:2150022. [PMID: 34794369 DOI: 10.1142/s0219720021500220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the last few years, the interactions among competing endogenous RNAs (ceRNAs) have been recognized as a key post-transcriptional regulatory mechanism in cell differentiation, tissue development, and disease. Notably, such sponge phenomena substracting active microRNAs from their silencing targets have been recognized as having a potential oncosuppressive, or oncogenic, role in several cancer types. Hence, the ability to predict sponges from the analysis of large expression data sets (e.g. from international cancer projects) has become an important data mining task in bioinformatics. We present a technique designed to mine sponge phenomena whose presence or absence may discriminate between healthy and unhealthy populations of samples in tumoral or normal expression data sets, thus providing lists of candidates potentially relevant in the pathology. With this aim, we search for pairs of elements acting as ceRNA for a given miRNA, namely, we aim at discovering miRNA-RNA pairs involved in phenomena which are clearly present in one population and almost absent in the other one. The results on tumoral expression data, concerning five different cancer types, confirmed the effectiveness of the approach in mining interesting knowledge. Indeed, 32 out of 33 miRNAs and 22 out of 25 protein-coding genes identified as top scoring in our analysis are corroborated by having been similarly associated with cancer processes in independent studies. In fact, the subset of miRNAs selected by the sponge analysis results in a significant enrichment of annotation for the KEGG32 pathway "microRNAs in cancer" when tested with the commonly used bioinformatic resource DAVID. Moreover, often the cancer datasets where our sponge analysis identified a miRNA as top scoring match the one reported already in the pertaining literature.
Collapse
|
14
|
Usman S, Waseem NH, Nguyen TKN, Mohsin S, Jamal A, Teh MT, Waseem A. Vimentin Is at the Heart of Epithelial Mesenchymal Transition (EMT) Mediated Metastasis. Cancers (Basel) 2021; 13:4985. [PMID: 34638469 PMCID: PMC8507690 DOI: 10.3390/cancers13194985] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible plethora of molecular events where epithelial cells gain the phenotype of mesenchymal cells to invade the surrounding tissues. EMT is a physiological event during embryogenesis (type I) but also happens during fibrosis (type II) and cancer metastasis (type III). It is a multifaceted phenomenon governed by the activation of genes associated with cell migration, extracellular matrix degradation, DNA repair, and angiogenesis. The cancer cells employ EMT to acquire the ability to migrate, resist therapeutic agents and escape immunity. One of the key biomarkers of EMT is vimentin, a type III intermediate filament that is normally expressed in mesenchymal cells but is upregulated during cancer metastasis. This review highlights the pivotal role of vimentin in the key events during EMT and explains its role as a downstream as well as an upstream regulator in this highly complex process. This review also highlights the areas that require further research in exploring the role of vimentin in EMT. As a cytoskeletal protein, vimentin filaments support mechanical integrity of the migratory machinery, generation of directional force, focal adhesion modulation and extracellular attachment. As a viscoelastic scaffold, it gives stress-bearing ability and flexible support to the cell and its organelles. However, during EMT it modulates genes for EMT inducers such as Snail, Slug, Twist and ZEB1/2, as well as the key epigenetic factors. In addition, it suppresses cellular differentiation and upregulates their pluripotent potential by inducing genes associated with self-renewability, thus increasing the stemness of cancer stem cells, facilitating the tumour spread and making them more resistant to treatments. Several missense and frameshift mutations reported in vimentin in human cancers may also contribute towards the metastatic spread. Therefore, we propose that vimentin should be a therapeutic target using molecular technologies that will curb cancer growth and spread with reduced mortality and morbidity.
Collapse
Affiliation(s)
- Saima Usman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Naushin H. Waseem
- UCL Institute of Ophthalmology, 11-43 Bath Str., London EC1V 9EL, UK;
| | - Thuan Khanh Ngoc Nguyen
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Sahar Mohsin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Ahmad Jamal
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Turner Str., London E1 2AT, UK; (S.U.); (T.K.N.N.); (A.J.); (M.-T.T.)
| |
Collapse
|
15
|
Shi X, Tu S, Zhu L. Risk characteristics with seven epithelial-mesenchymal transition-related genes are used to predict the prognosis of patients with hepatocellular carcinoma. J Gastrointest Oncol 2021; 12:1884-1894. [PMID: 34532136 DOI: 10.21037/jgo-21-394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/16/2021] [Indexed: 11/06/2022] Open
Abstract
Background Epithelial-mesenchymal transition (EMT)-related genes (ERGs) have been shown to play an important role in cancer invasion, tumor resistance, and tumor metastasis of hepatocellular carcinoma. This study sought to examine the prognostic value of ERGs and other pre-hepatoma genes. Methods Relevant data from The Cancer Genome Atlas (TCGA) were analyzed and synthesized. Specifically, 1,014 ERGs were downloaded and subject to a gene set enrichment analysis; 318 different EAG expressions were found, and the possible molecular mechanism of EAG was predicted by GO analysis and KEGG analysis. To determine the prediction of ERGS, a Cox regression model was used to establish a risk hypothesis. Based on risk patterns, patients were divided into high- or low-risk groups. Kaplan-Meier and receiver operating characteristic (ROC) curves confirmed the predictive value of the model. Results Seven prognostically relevant ERGs (i.e., ECT2, EZH2, MYCN, ROR2, SPP1, SQSTM1, and STC2) were identified. Using Cox's regression analysis method, appropriate cases were selected to establish a new risk prediction model. Under the risk model, the overall survival rate of the low-risk group samples was higher than that of the high-risk group samples (P<0.00001). Conclusions In short, we developed a risk model for liver cancer based on ERGs terminology. This model improve the postpartum treatment of patients with liver cancer.
Collapse
Affiliation(s)
- Xianqing Shi
- Department of Oncology, Liyang People's Hospital, Liyang, China
| | - Shuhuan Tu
- Department of Oncology, Liyang People's Hospital, Liyang, China
| | - Liqun Zhu
- Department of Oncology, Liyang People's Hospital, Liyang, China
| |
Collapse
|
16
|
Zhu Y, Xu G, Han C, Xing G. The emerging landscape of long non-coding RNAs in hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:920-937. [PMID: 34646411 PMCID: PMC8493264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers. HCC shows high prevalence and lethality caused by a variety of etiologic factors. However, the underlying mechanisms and the diagnostic markers identifying patients at risk in advance has not been entirely elucidated. Long non-coding RNAs (lncRNAs) are a subgroup of non-coding RNAs greater than 200 nucleotides in length with no protein-coding capability. With the progress in sequencing technologies and bioinformatic tools, the landscape of lncRNAs is being revealed. Numerous discoveries point out that lncRNAs participate in HCC carcinogenesis and metastasis through altering cell proliferation and invasion ability, apoptosis, and chemo- or radio-sensitivity. Moreover, lncRNA is easy to detect compared to the traditional diagnostic methods. This review summarizes the mechanisms of major lncRNAs in HCC discovered in recent years and lncRNAs as early diagnostic markers for HCC.
Collapse
Affiliation(s)
- Yungang Zhu
- Department of Radiology, Tianjin Teda HospitalTianjin 300457, China
| | - Guoping Xu
- Department of Medical Imaging, The Second Hospital of Tianjin Medical UniversityTianjin 300211, China
| | - Changrui Han
- Department of Radiology, Tianjin Teda HospitalTianjin 300457, China
| | - Gang Xing
- Department of Radiology, Tianjin Teda HospitalTianjin 300457, China
| |
Collapse
|
17
|
Liu ZB, Zhang JH, Gao JH, Shi J. Effects of the lncRNA ENST00000623984 on colon cancer and the biological characteristics of colon cancer cells. Eur J Histochem 2021; 65. [PMID: 34247468 PMCID: PMC8290847 DOI: 10.4081/ejh.2021.3215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/22/2021] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to explore the effects of the lncRNA ENST00000623984 on colorectal cancer. In this study, the expression levels of ENST000000623984 were first examined in tumor tissue and adjacent normal tissue from 40 patients with colorectal cancer and LoVo cells using quantitative real-time PCR. By siRNA transfection, ENST00000623984 expression was knocked down. Using flow cytometry, cell cycle progression and cell viability were examined in basal and knockdown LoVo cells. The CCK-8 assay was used to assess the cell proliferation rate, and the Transwell assay was used to determine the migration and invasion abilities. The ENST000000623984 expression level was increased in colorectal cancer. Knockdown of ENST000000623984 reduced cell viability, proliferation rate, cell migration and invasion. These results suggested that lncRNA ENST000000623984 may be involved in colorectal cancer development.
Collapse
Affiliation(s)
- Zhi-Bao Liu
- Oncology Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei .
| | - Jing-Hua Zhang
- Oncology Department, Cangzhou Central Hospital, Cangzhou, Hebei.
| | - Jing-Hua Gao
- Oncology Department, Cangzhou Central Hospital, Cangzhou, Hebei.
| | - Jian Shi
- Oncology Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei .
| |
Collapse
|
18
|
Zhu X, Pan H, Liu L. Long noncoding RNA network: Novel insight into hepatocellular carcinoma metastasis (Review). Int J Mol Med 2021; 48:134. [PMID: 34013360 PMCID: PMC8148093 DOI: 10.3892/ijmm.2021.4967] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common, aggressive malignancies with poor prognosis and high mortality. Although great progress has been made in recent decades, overall survival of HCC patients remains unsatisfactory due to high recurrence and metastasis. Accordingly, understanding and clarifying the underlying molecular mechanisms of metastasis has become increasingly important. Recently, accumulated reports have supported that long noncoding RNAs (lncRNAs) are dysregulated in HCC and are involved in various pivotal biological processes, including metastasis. The aim of this review was to investigate the dysregulation of lncRNAs in HCC and their function as oncogenes or tumour suppressors. Furthermore, reciprocal regulatory networks between lncRNAs and various molecules that were identified in HCC metastasis, including regulating epithelial-mesenchymal transition (EMT), controlling metastasis-associated genes, and regulating tumour angiogenesis were examined. Numerous reports and information on lncRNAs may help identify lncRNAs that are potential novel diagnostic markers, prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Xiuming Zhu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lili Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
19
|
Ghafouri-Fard S, Gholipour M, Hussen BM, Taheri M. The Impact of Long Non-Coding RNAs in the Pathogenesis of Hepatocellular Carcinoma. Front Oncol 2021; 11:649107. [PMID: 33968749 PMCID: PMC8097102 DOI: 10.3389/fonc.2021.649107] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is among the utmost deadly human malignancies. This type of cancer has been associated with several environmental, viral, and lifestyle risk factors. Among the epigenetic factors which contribute in the pathogenesis of HCC is dysregulation of long non-coding RNAs (lncRNAs). These transcripts modulate expression of several tumor suppressor genes and oncogenes and alter the activity of cancer-related signaling axes. Several lncRNAs such as NEAT1, MALAT1, ANRIL, and SNHG1 have been up-regulated in HCC samples. On the other hand, a number of so-called tumor suppressor lncRNAs namely CASS2 and MEG3 are down-regulated in HCC. The interaction between lncRNAs and miRNAs regulate expression of a number of mRNA coding genes which are involved in the pathogenesis of HCC. H19/miR-15b/CDC42, H19/miR-326/TWIST1, NEAT1/miR-485/STAT3, MALAT1/miR-124-3p/Slug, MALAT1/miR-195/EGFR, MALAT1/miR-22/SNAI1, and ANRIL/miR-144/PBX3 axes are among functional axes in the pathobiology of HCC. Some genetic polymorphisms within non-coding regions of the genome have been associated with risk of HCC in certain populations. In the current paper, we describe the recent finding about the impact of lncRNAs in HCC.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Yildirim M, Oztay F, Kayalar O, Tasci AE. Effect of long noncoding RNAs on epithelial-mesenchymal transition in A549 cells and fibrotic human lungs. J Cell Biochem 2021; 122:882-896. [PMID: 33847014 DOI: 10.1002/jcb.29920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 01/17/2023]
Abstract
Long noncoding RNAs (LncRNAs) regulate epithelial-mesenchymal transition (EMT). EMT involves myofibroblast differentiation and pulmonary fibrosis (PF). We aimed to determine the expression profiles of HOTAIR, CARLo-5, and CD99P1 LncRNAs in EMT-mediated myofibroblast differentiation in A549 cells and fibrotic human lungs and to explain their roles. A group of A549s was stimulated with transforming growth factor β (TGF-β; 5 ng/ml) to induce EMT. The remaining A549s were incubated with 20 μM FH535 after 24 h of TGF-β treatment to inhibit EMT. A549s were collected at 0, 24, 36, and 48 h. Expressions of three LncRNAs and protein/genes related to EMT, myofibroblast differentiation, and PF were assayed by quantitative reverse-transcription polymerase chain reaction and Western blot analysis in A549s and fibrotic human lungs. The targets of three LncRNAs were investigated by bioinformatics methods. TGF-β stimulation resulted in increased expressions of three LncRNAs, ACTA2, COL1A1, SNAI1, CTNNB1, TCF4, LEF1, α-SMA, and active-β-catenin, and decreased E-cadherin at 24, 36, and 48 h in A549s. FH535 treatment regressed these alterations. But it increased HOTAIR expression at 36 h and did not increase E-cadherin at 48 h. Fibrotic human lungs were characterized by increased expressions of HOTAIR, CARLo-5, CD99P1, and miR-214, decreased expressions of miR-148b, miR-218-1, miR-7-1, and the presence of CARLo-5 and CD99P1 in HDAC1-LncRNAs coprecipitation products, but not HOTAIR. Bioinformatic analysis showed the interactions of three LncRNAs with both proteins and at least 13 microRNAs related to EMT and PF. In conclusion, HOTAIR, CARLo-5, and CD99P1 can regulate EMT-mediated myofibroblast differentiation through interacting with proteins and miRNAs associated with EMT and PF. These LncRNAs can be considered as potential targets to decrease EMT for treating PF.
Collapse
Affiliation(s)
- Merve Yildirim
- Department of Biology, Science Faculty, Istanbul University, Istanbul, Turkey
| | - Fusun Oztay
- Department of Biology, Science Faculty, Istanbul University, Istanbul, Turkey
| | - Ozgecan Kayalar
- Department of Biology, Science Faculty, Istanbul University, Istanbul, Turkey.,School of Medicine, Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Turkey
| | - Ahmet Erdal Tasci
- Department of Thoracic Surgery, Lung Transplantation Center, Kartal Kosuyolu High Specialty Educational and Research Hospital, Istanbul, Turkey
| |
Collapse
|
21
|
Shan G, Zhou X, Gu J, Zhou D, Cheng W, Wu H, Wang Y, Tang T, Wang X. Downregulated exosomal microRNA-148b-3p in cancer associated fibroblasts enhance chemosensitivity of bladder cancer cells by downregulating the Wnt/β-catenin pathway and upregulating PTEN. Cell Oncol (Dordr) 2021; 44:45-59. [PMID: 33423167 PMCID: PMC7906940 DOI: 10.1007/s13402-020-00500-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/10/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Exosomes derived from cancer-associated fibroblasts (CAFs) are known as important drivers of tumor progression. Previously, microRNA (miR)-148b-3p has been found to be upregulated in bladder cancers as well as in body fluids (blood, urine) of bladder cancer patients. Here, we aimed to explore the role of CAF-derived exosome miR-148b-3p in bladder cancer progression and chemosensitivity. Methods Transwell, MTT, flow cytometry and colony formation assays were applied to assess the effects of CAF-derived exosomes on bladder cancer cell metastasis, epithelial-mesenchymal transition (EMT) and chemosensitivity. A dual luciferase reporter assay was employed to evaluate the targeting relationship between miR-148b-3p and PTEN. Gain- and loss- of function assays were conducted to explore the roles of miR-148b-3p and PTEN in the behavior of bladder cancer cells. The role of PTEN in the metastasis, EMT and chemosensitivity of bladder cancer cells was assessed both in vivo and in vitro. Results We found that CAF-derived exosomes promoted the metastasis, EMT and drug resistance of bladder cancer cells. We also found that CAF-derived exosomes could directly transport miR-148b-3p into bladder cancer cells. In a xenograft mouse model we found that CAF-derived exosomes increased miR-148b-3p expression levels and promoted tumor proliferation, metastasis and drug resistance. PTEN was validated as a target of miR-148b-3p. Concordantly, we found that PTEN overexpression inhibited EMT, metastasis and chemoresistance in bladder cancer cells, reversing the tumor promoting effects of miR-148b-3p via the Wnt/β-catenin pathway. Conclusions Our results suggest that miR-148b-3p downregulation in CAF-derived exosomes, thereby inhibiting the Wnt/β-catenin pathway and promoting PTEN expression, may offer potential opportunities for bladder cancer treatment. Electronic supplementary material The online version of this article (10.1007/s13402-020-00500-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guang Shan
- Department of Urology, RenMin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Xike Zhou
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, 1215 Guangrui Road, Jiangsu, 214000, Wuxi, People's Republic of China
- Department of Pathology, The Fifth People's Hospital of Wuxi, The Medical School of Jiangnan University, Jiangsu, 214000, Wuxi, People's Republic of China
| | - Juan Gu
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, 1215 Guangrui Road, Jiangsu, 214000, Wuxi, People's Republic of China
- Department of Pathology, The Fifth People's Hospital of Wuxi, The Medical School of Jiangnan University, Jiangsu, 214000, Wuxi, People's Republic of China
| | - Daoping Zhou
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, People's Republic of China
| | - Wei Cheng
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, People's Republic of China
| | - Huaiguo Wu
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, People's Republic of China
| | - Yueping Wang
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, People's Republic of China
- Department of Biology, College of Arts & Science, Massachusetts University, MA, 02125, Boston, USA
| | - Tian Tang
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, People's Republic of China
- Department of Oncology, RenMin Hospital of Wuhan University, Hubei, 430060, Wuhan, People's Republic of China
| | - Xuedong Wang
- Department of Pathology, The Fifth People's Hospital of Wuxi, The Medical School of Jiangnan University, Jiangsu, 214000, Wuxi, People's Republic of China.
- Center for Precision Medicine, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, People's Republic of China.
| |
Collapse
|
22
|
Pea A, Jamieson NB, Braconi C. Biology and Clinical Application of Regulatory RNAs in Hepatocellular Carcinoma. Hepatology 2021; 73 Suppl 1:38-48. [PMID: 32160335 DOI: 10.1002/hep.31225] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/03/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Most of the human genome consists of DNA genes that are translated into RNAs but not into proteins. These RNA molecules are named noncoding RNAs (ncRNA). While in the past it was thought that ncRNAs would be redundant without relevant functions, it is now well established that ncRNAs identify a class of regulatory molecules that finely tune cell homeostasis and are deregulated in disease states, including hepatocellular carcinoma (HCC). Of note, the number of ncRNAs within a cell increases progressively, with the complexity of the species indicating their essential role in the maintenance of regulatory networks that affect the intricacy of the organism. ncRNAs have been demonstrated to mediate HCC development and progression by affecting intrinsic cancer cell signaling and crosstalk between malignant cells and the microenvironment. Moreover, ncRNAs hold promise as clinical biomarkers, but further evidence is warranted before their translation and integration within clinical practice.
Collapse
Affiliation(s)
- Antonio Pea
- The Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.,West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Nigel B Jamieson
- The Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.,West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Chiara Braconi
- The Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.,Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| |
Collapse
|
23
|
Jin KT, Lu ZB, Lv JQ, Zhang JG. The role of long non-coding RNAs in mediating chemoresistance by modulating autophagy in cancer. RNA Biol 2020; 17:1727-1740. [PMID: 32129701 PMCID: PMC7714480 DOI: 10.1080/15476286.2020.1737787] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is a complex process in which protein-coding and non-coding genes play essential roles. Long noncoding RNAs (lncRNAs), as a subclass of noncoding genes, are implicated in various cancer processes including growth, proliferation, metastasis, and angiogenesis. Due to presence in body fluids such as blood and urine, lncRNAs have become novel biomarkers in cancer detection, diagnosis, progression, and therapy response. Remarkably, increasing evidence has verified that lncRNAs play essential roles in chemoresistance by targeting different signalling pathways. Autophagy, a highly conserved process in response to environmental stresses such as starvation and hypoxia, plays a paradoxical role in inducing resistance or sensitivity to chemotherapy agents. In this regard, we reviewed chemoresistance, the role of lncRNAs in cancer, and the role of lncRNAs in chemoresistance by modulating autophagy.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang Province, P.R. China
| | - Ze-Bei Lu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, P.R. China
| | - Jie-Qing Lv
- Department of Colorectal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang Province, P.R. China
| | - Jun-Gang Zhang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, P.R. China
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
24
|
Xin B, Ji KQ, Liu YS, Zhao XD. NFAT Overexpression Correlates with CA72-4 and Poor Prognosis of Ovarian Clear-Cell Carcinoma Subtype. Reprod Sci 2020; 28:745-756. [PMID: 33125687 DOI: 10.1007/s43032-020-00368-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022]
Abstract
Current biomarkers did not overcome the limitations of clinical application due to the heterogeneity of ovarian tumors. The role of nuclear factor of activated T cells (NFAT) in the prognosis of different histological subtypes of ovarian cancer remains unclear. NFAT expression was analyzed in 302 ovarian tumors from The Cancer Genome Atlas (TCGA) dataset and was further confirmed by 88 ovarian tumor specimens, including 30 clear-cell carcinoma, 34 serous carcinoma, and 24 papillary serous cystadenocarcinoma. The correlations between NFAT expression, cancer biomarkers, and clinical characteristics in different subtypes of ovarian tumors were analyzed. ALGGEN PROMO, reporter assay, and NFAT overexpression and knockdown were used to identify chondroadherin (CHAD) as the downstream target of NFAT. NFAT was significantly upregulated only in late-stage clear-cell carcinoma, but not in other two subtypes. NFAT levels were correlated with CA72-4 levels and poor overall survival and disease-free survival (P < 0.05), suggesting that NFAT together with CA72-4 were specific prognostic markers for clear-cell carcinoma. Pathological stage and lymph node metastasis were the prognostic factors affecting serous carcinoma (P < 0.05), while CA-125 was the prognostic factor affecting papillary serous cystadenocarcinoma (P < 0.05). PROMO and reporter assay indicated that CHAD was the downstream target of NFAT. In addition, NFAT overexpression and silencing increased and reduced CHAD expression, respectively. NFAT together with CA72-4 were specific tumor markers for risk assessment of unique clear-cell subtype of ovarian tumors. CHAD was identified as the downstream target gene of NAFT and was associated with poor survival of ovarian cancer.
Collapse
Affiliation(s)
- Bing Xin
- Department of Obstetrics and Gynaecology, ShengJing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| | - Kai-Qiang Ji
- Department of ICU, ShengJing Hospital of China Medical University, Shenyang, 110004, China
| | - Yi-Si Liu
- Department of Obstetrics and Gynaecology, ShengJing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China
| | - Xiao-Dong Zhao
- Department of Pathology, ShengJing Hospital of China Medical University, Shenyang, 110004, China
| |
Collapse
|
25
|
Ultrasound Microbubble-Mediated microRNA-505 Regulates Cervical Cancer Cell Growth via AKT2. ACTA ACUST UNITED AC 2020; 2020:3731953. [PMID: 33123457 PMCID: PMC7584975 DOI: 10.1155/2020/3731953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023]
Abstract
The application of ultrasound and microbubbles (USMB-) mediated microRNA (miR) is a promising approach of gene delivery for cancer treatment. We aimed to discuss the effects of USMB-miR-505 on cervical cancer (CC) development. miR-505 mediated by USMB was prepared. The effect of miR-505 on its transfection efficiency and the effect of miR-505 on HeLa cell proliferation, cell cycle, apoptosis, migration, and invasion were studied. The target gene of miR-505 was predicted, and its expression in CC was detected. The effect of the target gene on HeLa cells was further verified. USMB-miR-505 showed a higher transfection efficiency than miR-505 alone. The inhibitory effect of miR-505 mediated by USMB on HeLa cells was better than miR-505. miR-505 targeted AKT2, which was upregulated in CC. Overexpression of AKT2 reversed the inhibitory effect of USMB-miR-505 on HeLa cell malignant behaviors. Overall, we highlighted that USMB-miR-505 inhibited HeLa cell malignant behaviors by targeting AKT2.
Collapse
|
26
|
Liu X, Qiao Y, Ting X, Si W. Isocitrate dehydrogenase 3A, a rate-limiting enzyme of the TCA cycle, promotes hepatocellular carcinoma migration and invasion through regulation of MTA1, a core component of the NuRD complex. Am J Cancer Res 2020; 10:3212-3229. [PMID: 33163266 PMCID: PMC7642667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023] Open
Abstract
The precise molecular mechanism of hepatocellular carcinoma (HCC) remains ambiguous. Isocitrate dehydrogenase 3A (IDH3A) is known as a subunit of the IDH3 heterotetramer. To the best of our knowledge, the biological effect of IDH3A in malignant tumors is unclear. Here, we report that IDH3A is significantly upregulated in HCC tissues; moreover, high expression of IDH3A is strongly associated with tumor size and the clinicopathologic stage of HCC. RNA-seq revealed that depletion of IDH3A affects the expression of metastasis associated 1 (MTA1), an oncogene which is related to the progression of numerous cancer types to the metastasis stage. Cell transfection was used to upregulate and downregulate the expression of IDH3A in HCC cells. The migration activity of HCC cells was assessed using wound healing assays. While transwell assays were carried out to detect the invasion of HCC cells. RNA-seq, RT-qPCR and western blot were used to validate MTA1 as a potential target gene. The present study suggested that IDH3A can upregulate MTA1 expression and promote epithelial-mesenchymal transition (EMT) in HCC by inducing MTA1 expression, thereby facilitating cell migration and invasion of HCC cells. Here, we demonstrated the importance of IDH3A in HCC progression. The identification of the IDH3A axis provides novel insight into the pathogenesis of HCC, and the IDH3A axis might represent a novel target for the treatment of HCC.
Collapse
Affiliation(s)
- Xujun Liu
- Department of Clinical Laboratory, Department of Pathology, Peking University First Hospital, Peking University Third Hospital, Peking University Health Science Center Beijing 100191, China
| | - Yan Qiao
- Department of Clinical Laboratory, Department of Pathology, Peking University First Hospital, Peking University Third Hospital, Peking University Health Science Center Beijing 100191, China
| | - Xia Ting
- Department of Clinical Laboratory, Department of Pathology, Peking University First Hospital, Peking University Third Hospital, Peking University Health Science Center Beijing 100191, China
| | - Wenzhe Si
- Department of Clinical Laboratory, Department of Pathology, Peking University First Hospital, Peking University Third Hospital, Peking University Health Science Center Beijing 100191, China
| |
Collapse
|
27
|
Xiang L, Huang X, Wang S, Ou H, Chen Z, Hu Z, Huang Y, Li X, Yuan Y, Yang D. Deficiency of pseudogene UPAT leads to hepatocellular carcinoma progression and forms a positive feedback loop with ZEB1. Cancer Sci 2020; 111:4102-4117. [PMID: 32808348 PMCID: PMC7648020 DOI: 10.1111/cas.14620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common disease worldwide. Accumulating reports have evidenced the internal connection between epithelial‐mesenchymal transition (EMT) and cancer stem cells (CSCs), as well as their significance in metastasis and post–operative recurrence. In this study, we investigated an interesting ubiquitin‐proteasome pathway associated pseudogene of AOC4, also known as UPAT, and showed that it was downregulated in 39.78% (37/93) of patients with hepatitis B virus (HBV)‐related HCC. Downregulation of UPAT was associated with multiple worse clinicopathological parameters, as well as decreased recurrence‐free survival (RFS). In vitro and in vivo assays found that overexpression of UPAT significantly suppressed cellular migration, invasion, EMT processes, and CSC properties. Mechanistic studies showed that UPAT promoted ZEB1 degradation via a ubiquitin‐proteasome pathway and, in contrast, ZEB1 transcriptionally suppressed UPAT by binding to multiple E‐box (CACCTG) elements in the promoter region. Moreover, UPAT was negatively correlated with ZEB1 protein in HCC tissues, their combined expression discriminated RFS outcomes for patients with HBV‐related HCC. These data on the UPAT‐ZEB1 circuit‐mediated pathway will further knowledge on EMT and CSCs, and may help to develop novel therapeutic approaches for the prevention of HCC metastasis.
Collapse
Affiliation(s)
- Leyang Xiang
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Siqi Wang
- Department of gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huohui Ou
- Department of Hepatobiliary Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Zhanjun Chen
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of General Surgery, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, China
| | - Zhigang Hu
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianghong Li
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Dinghua Yang
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Abdollahzadeh R, Mansoori Y, Azarnezhad A, Daraei A, Paknahad S, Mehrabi S, Tabei MB, Jafari D, Shakoori A, Tavakkoly-Bazzaz J. Expression and clinicopathological significance of AOC4P, PRNCR1, and PCAT1 lncRNAs in breast cancer. Pathol Res Pract 2020; 216:153131. [PMID: 32853955 DOI: 10.1016/j.prp.2020.153131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/24/2022]
Abstract
Long none coding RNAs (lncRNAs) AOC4P, PRNCR1, and PCAT-1 are dysregulated in various types of malignancies. However, their expression and clinicopathological significances are uncertain in breast cancer (BC). Quantitative real-time polymerase chain reaction (RT- qPCR) was used to measure the expression levels of the selected lncRNAs in tumor tissues obtained from 50 BC patients compared to the normal adjacent tissues (NATs) and 50 clinically healthy normal tissues. Our results revealed a significant downregulation of AOC4P, however, upregulated PRNCR1 and PCAT1 were found in tumor tissues compared to NATs and clinically healthy normal tissues (P < 0.05). Interestingly, remarkable decreased expression of AOC4P was observed in NATs than clinically healthy normal tissues. Dysregulation of the lncRNAs was correlated with worse outcomes of patients. Furthermore, our data showed that the altered expression levels of lncRNAs AOC4P, PRNCR1, and PCAT1 might be occurred through the function of demographic and reproductive variables. Taken together, the altered regulation of AOC4P, PRNCR1, and PCAT1 may highlight their crucial roles in BC development and pathogenesis. Our findings also proposed demographic and reproductive variables as risk factors in BC through the possible influence on the expression of the studied lncRNAs. Nevertheless, further explorations are required to elucidate the more detailed functions of these lncRNAs in BC.
Collapse
Affiliation(s)
- Rasoul Abdollahzadeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sahereh Paknahad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Mehrabi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bagher Tabei
- Department of Medical Genetics, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abbas Shakoori
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
LncPRYP4-3 serves as a novel diagnostic biomarker for dissecting subtypes of metabolic associated fatty liver disease by targeting RPS4Y2. Clin Exp Med 2020; 20:587-600. [PMID: 32494880 DOI: 10.1007/s10238-020-00636-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023]
Abstract
Longitudinal studies have improved current diagnostics and management of metabolic associated fatty liver disease (MAFLD) patients by liver biopsy and therapeutic intervention, yet the deficiency of biomarker spectrum for dissecting subtypes largely hinders the symptomatic treatment. We originally enriched serum from peripheral blood of 618 healthy donors (HD) and 580 MAFLD (400 NAFL, 180 NASH) patients according to multiple clinicopathological indicators. Microarray profiling and qRT-PCR were conducted to identify lncRNAs as candidate biomarkers of MAFLD. Then, we analyzed the matching score of the indicated lncRNA with CAP or MAFLD-associated pathological parameters as well. Additionally, we took advantage of interaction network together with gene expression profiling analysis to further explore the underlying target genes of the identified lncRNA. Herein, we found CAP in nearly all of the NAFL (399/400) and NASH (179/180) patients was higher than that in the HDs (611/618). The differentially expressed lncRNAs were involved in multiple metabolic or immunologic processes by regulating MAFLD-associated pathways. Of them, serum lncPRYP4-3 was identified as a novel candidate biomarker of MAFLD, which was further confirmed by correlation analysis with clinical indicators. Thereafter, we deduced PRS4Y2 was a candidate target of lncPRYP4-3 and mediated the dysfunction in NAFL and NASH patients. Serum lncPRYP4-3 served as a novel biomarker of MAFLD and helped distinguish the subtypes and benefit precise intervention therapy. Our findings also provided overwhelming new evidence for the alteration in biological processes and gene ontology in MAFLD patients.
Collapse
|
30
|
Lin X, Tang X, Zheng T, Qiu J, Hua K. Long non-coding RNA AOC4P suppresses epithelial ovarian cancer metastasis by regulating epithelial-mesenchymal transition. J Ovarian Res 2020; 13:45. [PMID: 32334623 PMCID: PMC7183637 DOI: 10.1186/s13048-020-00644-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/03/2020] [Indexed: 11/15/2022] Open
Abstract
Objective Currently, the function and mechanisms of long non-coding RNAs (lncRNAs) involved in the metastasis of epithelial ovarian cancer (EOC), especially those of the lncRNAs participated in the epithelial-mesenchymal transition (EMT) process, remains largely unknown. Here, we focused on a lncRNA named AOC4P and analysed its role in EOC. Materials and methods The expression of AOC4P gene was examined with quantitative real-time quantitative PCR (qRT-PCR). The cell migration and invasion were detected by Transwell and scratch assays. The in vivo metastatic activity was evaluated by intraperitoneal metastasis model. The downstream genes were investigated by a tumour EMT real-time polymerase chain reaction (RT-PCR) array, and validated by qRT-PCR and Western blot. Results The results showed that AOC4P expression levels were decreased in EOC tissues and cell lines, and that the under-expression of AOC4P was positively correlated with FIGO stage and lymph node metastasis. Furthermore, the knockdown of AOC4P expression in poorly metastatic EOC cell lines remarkably facilitated cell migration/invasion while the overexpression of AOC4P in highly metastatic EOC cell lines reduced the metastatic ability of these cells in vitro. Consistently, the anti-metastatic role of AOC4P in vivo was also verified by bioluminescence imaging and tumour dissection. Mechanistically, the anti-metastatic effect of AOC4P in EOC was partially mediated by the EMT process accompanied by the alterations in MMP9 and COL1A2 expression. Conclusion These data highlight that AOC4P plays a critical role in EOC invasion/metastasis and could function as a novel and effective target for the lncRNA-based anti-metastatic clinical management of EOC.
Collapse
Affiliation(s)
- Xiaojing Lin
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, P.R. China.,Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, 200011, P.R. China
| | - Xiaoyan Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, 200011, P.R. China
| | - Tingting Zheng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, P.R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, 200011, P.R. China
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, P.R. China. .,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, 200011, P.R. China.
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, P.R. China. .,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, 200011, P.R. China.
| |
Collapse
|
31
|
Li F, Rong T, Cao G, Zhai C, Li Q, Gong R, Li G. AOC4P suppresses viability and invasion and induces apoptosis in NSCLC cells by inhibiting the Wnt/β-catenin pathway. Chem Biol Interact 2020; 325:109110. [PMID: 32325081 DOI: 10.1016/j.cbi.2020.109110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/29/2020] [Accepted: 04/14/2020] [Indexed: 01/18/2023]
Abstract
Increasing studies have well-documented the involvement of numerous lncRNAs in regulating the malignant phenotypes of various tumors including non-small cell lung cancer (NSCLC) cells. However, up to date, the effects and mechanism of lncRNA amine oxidase, copper containing 4, pseudogene (AOC4P) in NSCLC progression remain undefined. AOC4P expression in NSCLC cells was detected by qRT-PCR. The protein levels of Wnt/β-catenin pathway-related proteins, matrix metallopeptidase (MMP)-2, and MMP-9 were examined by Western blot. The effects of AOC4P or combined with Wnt agonist BML-284 on the malignant phenotypes in NSCLC cells were explored by CCK-8, Transwell invasion assay, flow cytometry analysis and caspase-3/7 activity. AOC4P was lowly expressed in NSCLC samples and cells. Overexpression of AOC4P inhibited viability, the expression of MMP-2 and MMP-9, and invasion of NSCLC cells. Apoptosis and caspase-3/7 activity were suppressed in response to AOC4P overexpression in NSCLC cells. AOC4P overexpression suppressed tumor growth in a xenograft mouse model. Activation of the Wnt/β-catenin pathway by BML-284 abolished the effects of AOC4P overexpression on cell viability, invasion and apoptosis in NSCLC cells. In conclusion, AOC4P overexpression suppresses viability and invasion and induces apoptosis in NSCLC cells via inhibition of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Fengbo Li
- Department of Respiratory Medicine, Nanshi Hospital, Nanyang, 473065, China
| | - Tao Rong
- Department of Respiratory Medicine, Hongze District People's Hospital, Huai'an, 223100, China
| | - Gang Cao
- Department of Respiratory Medicine, Hongze District People's Hospital, Huai'an, 223100, China
| | - Chaoshuan Zhai
- Department of Respiratory Medicine, Nanshi Hospital, Nanyang, 473065, China
| | - Qian Li
- Department of Respiratory Medicine, Nanshi Hospital, Nanyang, 473065, China
| | - Rui Gong
- Department of Respiratory Medicine, Nanshi Hospital, Nanyang, 473065, China
| | - Gang Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, 223002, China.
| |
Collapse
|
32
|
Xu F, Xu Y, Xiong JH, Zhang JH, Wu J, Luo J, Xiong JP. AOC1 Contributes to Tumor Progression by Promoting the AKT and EMT Pathways in Gastric Cancer. Cancer Manag Res 2020; 12:1789-1798. [PMID: 32210620 PMCID: PMC7071879 DOI: 10.2147/cmar.s225229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022] Open
Abstract
Background AOC1 is a copper-containing amine oxidase that is responsible for catalyzing the deamination of polyamines, which produces reactive oxygen species. Previous studies have demonstrated that polyamines are involved in the regulation of proliferation, migration, and apoptosis of cells. However, very little is known about the functions and regulatory mechanisms of AOC1 in tumors. Methods Based on GEPIA data, we found that AOC1 was significantly upregulated in human gastric cancer tissues. We knocked down AOC1 in human AGS and MKN45 cells using siRNA transfection, then utilized qRT-PCR assay and Western blot to verify the effectiveness of AOC1 knockdown in gastric cancer cells. Results Function analysis demonstrated that knockdown of AOC1 inhibited the proliferation, invasion, and migration of human gastric cancer cells. Flow cytometry detection suggested that AOC1 knockdown induced apoptosis in human gastric cancer cells. Mechanism investigation suggested that AOC1 knockdown increased the ratio of Bax/Bcl2 and induced activation of the caspase cascade. Furthermore, the AKT signaling pathway was inactivated when AOC1 was silenced, including downregulated phosphorylation level of AKT and expression of downstream effectors, Cyclin D1, and p70S6K. Finally, we found that knockdown of AOC1 inhibited the epithelial–mesenchymal transition (EMT) in human gastric cancer by increasing the expression of epithelial markers E-cadherin, as well as decreasing mesenchymal marker N-cadherin, SNAIL and Slug. Conclusion Our study suggests that AOC1 functions as an oncogene in human gastric cancer by activating the AKT signaling pathway and EMT process and maybe a target of 6-mercaptopurine, which provides new insight in the clinical use of AOC1 in gastric cancer therapy.
Collapse
Affiliation(s)
- Fen Xu
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.,Jiangxi Medical College, Shangrao, Jiangxi, People's Republic of China
| | - Yun Xu
- ShangRao People's Hospital, Shangrao, Jiangxi, People's Republic of China
| | - Jian-Hui Xiong
- The First Affiliated Hospital of Jiangxi Medical College, Shangrao, Jiangxi, People's Republic of China
| | - Jing-Hui Zhang
- Jiangxi Medical College, Shangrao, Jiangxi, People's Republic of China
| | - Jian Wu
- Jiangxi Medical College, Shangrao, Jiangxi, People's Republic of China
| | - Jie Luo
- Jiangxi Medical College, Shangrao, Jiangxi, People's Republic of China
| | - Jian-Ping Xiong
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
33
|
Wang DP, Tang XZ, Liang QK, Zeng XJ, Yang JB, Xu J. Overexpression of long noncoding RNA SLC26A4-AS1 inhibits the epithelial-mesenchymal transition via the MAPK pathway in papillary thyroid carcinoma. J Cell Physiol 2020; 235:2403-2413. [PMID: 31556116 DOI: 10.1002/jcp.29145] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
Papillary thyroid carcinoma (PTC) is recognized as one of the most prevalent types of thyroid cancer with poor prognosis. Long noncoding RNA (lncRNA) has undergone an intensive study for their involvement in tumor treatment. This study intends to unravel the association of lncRNA SLC26A4-AS1 with PTC. Initially, PTC-related expression profiling data (GSE33630) was utilized to screen differentially expressed lncRNAs in PTC and the underlying mechanisms involved with the mitogen-activated protein kinase (MAPK) pathway. Moreover, PTC tumor tissues and paracancerous tissues were arranged to determine expressions of TP53, SLC26A4-AS1, and genes related to epithelial-mesenchymal transition (EMT) and the MAPK pathway. Furthermore, SLC26A4-AS1 was overexpressed or underexpressed and JNK was underexpressed through cell transfection to examine the effect of SLC26A4-AS1 on PTC via MAPK pathway. Besides, tumor formation in nude mice was used to verify the fore experiment. LncRNA SLC26A4-AS1 regulating TP53 had the potential to participate in PTC by regulating the MAPK pathway. SLC26A4-AS1 was expressed poorly in PTC. Notably, SLC26A4-AS1 elevated E-cadherin expression while it reduced that of ERK and Vimentin. In addition, the overexpression of SLC26A4-AS1 inactivated the MAPK pathway by promoting TP53 and decreased cell migration, proliferation, and invasion. In addition to all these effects, the overexpression of SLC26A4-AS1 promoted apoptosis of TPC-1 cells. Additionally, the overexpression of lncRNA SLC26A4-AS1 reduced xenograft tumor volume in nude mice. Furthermore, the effect of SLC26A4-AS1 overexpression was found to be promoted after the MAPK pathway inactivation. Taken together, the overexpression of lncRNA SLC26A4-AS1 coffered anti-oncogenic effects on PTC through the inactivation of the MAPK pathway.
Collapse
Affiliation(s)
- Duo-Ping Wang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Zhun Tang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Quan-Kun Liang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Xian-Jie Zeng
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jian-Bo Yang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jian Xu
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
34
|
Lou W, Ding B, Fu P. Pseudogene-Derived lncRNAs and Their miRNA Sponging Mechanism in Human Cancer. Front Cell Dev Biol 2020; 8:85. [PMID: 32185172 PMCID: PMC7058547 DOI: 10.3389/fcell.2020.00085] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/30/2020] [Indexed: 12/28/2022] Open
Abstract
Pseudogenes, abundant in the human genome, are traditionally considered as non-functional “junk genes.” However, recent studies have revealed that pseudogenes act as key regulators at DNA, RNA or protein level in diverse human disorders (including cancer), among which pseudogene-derived long non-coding RNA (lncRNA) transcripts are extensively investigated and has been reported to be frequently dysregulated in various types of human cancer. Growing evidence demonstrates that pseudogene-derived lncRNAs play important roles in cancer initiation and progression by serving as competing endogenous RNAs (ceRNAs) through competitively binding to shared microRNAs (miRNAs), thus affecting both their cognate genes and unrelated genes. Herein, we retrospect those current findings about expression, functions and potential ceRNA mechanisms of pseudogene-derived lncRNAs in human cancer, which may provide us with some crucial clues in developing potential targets for cancer therapy in the future.
Collapse
Affiliation(s)
- Weiyang Lou
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Chen CY, Chen CC, Chuang WY, Leu YL, Ueng SH, Hsueh C, Yeh CT, Wang TH. Hydroxygenkwanin Inhibits Class I HDAC Expression and Synergistically Enhances the Antitumor Activity of Sorafenib in Liver Cancer Cells. Front Oncol 2020; 10:216. [PMID: 32158695 PMCID: PMC7052045 DOI: 10.3389/fonc.2020.00216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal histone deacetylase (HDAC) expression is closely related to cancer development and progression. Many HDAC inhibitors have been widely used in cancer treatment; however, severe side effects often limit their clinical application. In this study, we attempted to identify natural compounds with HDAC inhibitory activity and low physiological toxicity and explored their feasibility and mechanisms of action in liver cancer treatment. A yeast screening system was used to identify natural compounds with HDAC inhibitory activity. Further, western blotting was used to verify inhibitory effects on HDAC in human liver cancer cell lines. Cell functional analysis was used to explore the effects and mechanisms and the in vitro results were verified in BALB/c nude mice. We found that hydroxygenkwanin (HGK), an extract from Daphne genkwa, inhibited class I HDAC expression, and thereby induced expression of tumor suppressor p21 and promoted acetylation and activation of p53 and p65. This resulted in the inhibition of growth, migration, and invasion of liver cancer cells and promoted cell apoptosis. Animal models revealed that HGK inhibited tumor growth in a synergistic manner with sorafenib. HGK inhibited class I HDAC expression and had low physiological toxicity. It has great potential as an adjuvant for liver cancer treatment and may be used in combination with anticancer drugs like sorafenib to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Yu Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shir-Hwa Ueng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chuen Hsueh
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Although extensively studied for over a decade, gene expression programs established at the epigenetic and/or transcriptional levels do not fully characterize cancer stem cells (CSC). This review will highlight the latest advances regarding the functional relevance of different key post-transcriptional regulations and how they are coordinated to control CSC homeostasis. RECENT FINDINGS In the past 2 years, several groups have identified master post-transcriptional regulators of CSC genetic programs, including RNA modifications, RNA-binding proteins, microRNAs and long noncoding RNAs. Of particular interest, these studies reveal that different post-transcriptional mechanisms are coordinated to control key signalling pathways and transcription factors to either support or suppress CSC homeostasis. SUMMARY Deciphering molecular mechanisms coordinating plasticity, survival and tumourigenic capacities of CSCs in adult and paediatric cancers is essential to design new antitumour therapies. An entire field of research focusing on post-transcriptional gene expression regulation is currently emerging and will significantly improve our understanding of the complexity of the molecular circuitries driving CSC behaviours and of druggable CSC weaknesses.
Collapse
|
37
|
Niu C, Wang L, Ye W, Guo S, Bao X, Wang Y, Xia Z, Chen R, Liu C, Lin X, Huang X. CCAT2 contributes to hepatocellular carcinoma progression via inhibiting miR-145 maturation to induce MDM2 expression. J Cell Physiol 2020; 235:6307-6320. [PMID: 32037568 DOI: 10.1002/jcp.29630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/30/2020] [Indexed: 12/19/2022]
Abstract
Long noncoding RNA colon cancer-associated transcript 2 (CCAT2) has been recently found to function as an oncogene in hepatocellular carcinoma (HCC). However, the mechanisms of CCAT2 in HCC development remain to be further explored. In the present study, we found that CCAT2 was abnormally upregulated in HCC cells and tissue specimens, exhibiting an inverse correlation with microRNA (miR)-145 expression. Mechanistic investigation showed that CCAT2 selectively blocked miR-145 processing, leading to decreased mature miR-145 presence. Both the in vitro and in vivo effects of CCAT2 knockdown on the proliferation and metastasis of HCC cells were reversed by miR-145 inhibitor, indicating that miR-145 modulation accounts for CCAT2-meditated HCC progression. Furthermore, miR-145 mimic dramatically suppressed HCC cells' proliferation and metastasis, revealing a tumor suppressor role of miR-145 in HCC. Mechanistically, MDM2 was predicted to be a potential target of miR-145. The luciferase and western blot assay demonstrated that miR-145 mimic largely inhibited MDM2 3'-untranslated region luciferase activity and MDM2 expression, followed by the upregulation of p53/p21 expression. Finally, the coexpression of MDM2 in miR-145 mimic-transfected HCC cells was able to largely compromise the inhibitory effects of miR-145 mimic on HCC cells' proliferation and metastasis in vitro and tumor formation in a xenograft model, confirming MDM2 is the critical mediator of miR-145 in HCC. In summary, our findings indicated that CCAT2 selectively blocks the miR-145 maturation process and plays an oncogene in HCC. Furthermore, a novel CCAT2/miR-145/MDM2 axis was revealed in HCC development and might provide a new target in the molecular treatment of HCC.
Collapse
Affiliation(s)
- Chao Niu
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linlin Wang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weijian Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shikun Guo
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozhou Bao
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongbiao Wang
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhaobo Xia
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Randong Chen
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chong Liu
- Department of Cardiology, The Central Hospital of Lishui City, Lishui, China
| | - Xiaokun Lin
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozhong Huang
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Chou LF, Chen CY, Yang WH, Chen CC, Chang JL, Leu YL, Liou MJ, Wang TH. Suppression of Hepatocellular Carcinoma Progression through FOXM1 and EMT Inhibition via Hydroxygenkwanin-Induced miR-320a Expression. Biomolecules 2019; 10:biom10010020. [PMID: 31877715 PMCID: PMC7022487 DOI: 10.3390/biom10010020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Daphne genkwa, a Chinese medicinal herb, is used frequently in Southeast Asian countries to treat diseases; the flavonoid hydroxygenkwanin (HGK) is extracted from its flower buds. The bioactivity of HGK, particularly as an anti-liver cancer agent, has not been explored. In this study, human hepatocellular carcinoma (HCC) cell lines and an animal xenograft model were employed to investigate both the activity of HGK against liver cancer and its cellular signaling mechanisms. HCC cells treated with HGK were subjected to cell function assays. Whole transcriptome sequencing was used to identify genes whose expression was influenced by HGK, and the flavonoid’s cancer suppression mechanisms were further investigated through gain- and loss-of-function assays. Finally, in vitro findings were tested in a mouse xenograft model. The data showed that HGK induced the expression of the microRNA miR-320a, which in turn inhibited the expression of the transcription factor ‘forkhead box protein M1’ (FOXM1) and downstream FOXM1-regulated proteins related to epithelial–mesenchymal transition, thereby leading to the suppression of liver cancer cell growth and invasion. Significant inhibition of tumor growth was also observed in HGK-treated mice. Hence, the present study demonstrated the activity of HGK against liver cancer and validated its potential use as a therapeutic agent.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| | - Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-Y.C.); (C.-C.C.)
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan 33303, Taiwan
| | - Wan-Hua Yang
- Department of Pathology and Laboratory Medicine Taipei Veterans General Hospital, Hsinchu Branch, Hsin-chu 31064, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsin-chu 30015, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-Y.C.); (C.-C.C.)
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan;
| | - Junn-Liang Chang
- Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Tao-Yuan 32551, Taiwan;
- Biomedical Engineering Department, Ming Chuan University, Tao-Yuan 33348, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan;
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Tao-Yuan 33303, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - Miaw-Jene Liou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-Y.C.); (C.-C.C.)
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan 33303, Taiwan
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3-3281200 (ext. 5412)
| |
Collapse
|
39
|
Liu SY. Abnormal regulation of non-coding RNAs plays a role in development and progression of hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2019; 27:1107-1113. [DOI: 10.11569/wcjd.v27.i18.1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumor with a poor prognosis. Non-coding RNAs (ncRNAs) are RNAs transcribed from the genome but not translated into protein. In recent years, ncRNAs have been recognized to be key factors in tumorigenesis because of their ability to regulate multiple targets, cell proliferation, differentiation, apoptosis, and development. In this review, we discuss the pathological significance of ncRNAs (microRNAs, long-chain non-coding RNAs, and cyclic RNAs) in the development and progression of HCC. We also discuss the potential role of ncRNAs in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Shu-Ye Liu
- Clinical Laboratory, Tianjin Third Central Hospital, Tianjin 300170, China
| |
Collapse
|
40
|
Poor expression of long-chain noncoding RNA GAPLINC inhibits epithelial–mesenchymal transition, and invasion and migration of hepatocellular carcinoma cells. Anticancer Drugs 2019; 30:784-794. [DOI: 10.1097/cad.0000000000000752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Reghupaty SC, Sarkar D. Current Status of Gene Therapy in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:cancers11091265. [PMID: 31466358 PMCID: PMC6770843 DOI: 10.3390/cancers11091265] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the second leading cause of cancer related deaths world-wide. Liver transplantation, surgical resection, trans-arterial chemoembolization, and radio frequency ablation are effective strategies to treat early stage HCC. Unfortunately, HCC is usually diagnosed at an advanced stage and there are not many treatment options for late stage HCC. First-line therapy for late stage HCC includes sorafenib and lenvatinib. However, these treatments provide only an approximate three month increase in survival. Besides, they cannot specifically target cancer cells that lead to a wide array of side effects. Patients on these drugs develop resistance within a few months and have to rely on second-line therapy that includes regorafenib, pembrolizumab, nivolumab, and cabometyx. These disadvantages make gene therapy approach to treat HCC an attractive option. The two important questions that researchers have been trying to answer in the last 2-3 decades are what genes should be targeted and what delivery systems should be used. The objective of this review is to analyze the changing landscape of HCC gene therapy, with a focus on these two questions.
Collapse
Affiliation(s)
- Saranya Chidambaranathan Reghupaty
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
42
|
Dong H, Zhang Y, Xu Y, Ma R, Liu L, Luo C, Jiang W. Downregulation of long non-coding RNA MEG3 promotes proliferation, migration, and invasion of human hepatocellular carcinoma cells by upregulating TGF-β1. Acta Biochim Biophys Sin (Shanghai) 2019; 51:645-652. [PMID: 31089680 DOI: 10.1093/abbs/gmz046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma is a common malignant cancer with high incidence. And long non-coding RNAs (lncRNAs) play pivotal roles in the development of different types of cancers. In this study, we aimed to investigate the role of lncRNA maternally expressed gene 3 (MEG3) in the development and progression of hepatocellular carcinoma. Expression of MEG3 in tumor tissues and adjacent healthy tissues of hepatocellular carcinoma patients, as well as the serum of both hepatocellular carcinoma patients and healthy controls, was detected by quantitative reverse transcriptase-polymerase chain reaction. The results showed that expression level of MEG3 was significantly lower in tumor tissues than in adjacent healthy tissues. Serum level of MEG3 was also significantly lower in hepatocellular carcinoma patients than in normal controls. The receiver operating characteristic curve analysis was used to evaluate the diagnostic value of MEG3 for hepatocellular carcinoma, and the prognostic value of MEG3 for this disease was analyzed using Kaplan-Meier method. The results indicated that serum level of MEG3 was a diagnostic and prognostic marker for hepatocellular carcinoma. We also found that MEG3 small interfering Ribonucleic Acid (siRNA) silencing promoted the proliferation, migration, and invasion of hepatocellular carcinoma cells by CCK-8 assay, transwell migration, and invasion assay, respectively, while TGF-β inhibitor treatment reduced those enhancing effects. MEG3 siRNA silencing also increased the expression level of TGF-β1. These results indicated that downregulation of MEG3 can promote proliferation, migration, and invasion of human hepatocellular carcinoma cells by upregulating TGF-β1 expression.
Collapse
Affiliation(s)
- Hui Dong
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yue Zhang
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, China
| | - Yan Xu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruixia Ma
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liqiu Liu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Congjuan Luo
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
43
|
LncRNAs with miRNAs in regulation of gastric, liver, and colorectal cancers: updates in recent years. Appl Microbiol Biotechnol 2019; 103:4649-4677. [PMID: 31062053 DOI: 10.1007/s00253-019-09837-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Long noncoding RNA (lncRNA) is a kind of RNAi molecule composed of hundreds to thousands of nucleotides. There are several major types of functional lncRNAs which participate in some important cellular pathways. LncRNA-RNA interaction controls mRNA translation and degradation or serves as a microRNA (miRNA) sponge for silencing. LncRNA-protein interaction regulates protein activity in transcriptional activation and silencing. LncRNA guide, decoy, and scaffold regulate transcription regulators of enhancer or repressor region of the coding genes for alteration of expression. LncRNA plays a role in cellular responses including the following activities: regulation of chromatin structural modification and gene expression for epigenetic and cell function control, promotion of hematopoiesis and maturation of immunity, cell programming in stem cell and somatic cell development, modulation of pathogen infection, switching glycolysis and lipid metabolism, and initiation of autoimmune diseases. LncRNA, together with miRNA, are considered the critical elements in cancer development. It has been demonstrated that tumorigenesis could be driven by homeostatic imbalance of lncRNA/miRNA/cancer regulatory factors resulting in biochemical and physiological alterations inside the cells. Cancer-driven lncRNAs with other cellular RNAs, epigenetic modulators, or protein effectors may change gene expression level and affect the viability, immortality, and motility of the cells that facilitate cancer cell cycle rearrangement, angiogenesis, proliferation, and metastasis. Molecular medicine will be the future trend for development. LncRNA/miRNA could be one of the potential candidates in this category. Continuous studies in lncRNA functional discrepancy between cancer cells and normal cells and regional and rational genetic differences of lncRNA profiles are critical for clinical research which is beneficial for clinical practice.
Collapse
|
44
|
He Y, He X. MicroRNA-370 Regulates Cellepithelial-Mesenchymal Transition, Migration, Invasion, and Prognosis of Hepatocellular Carcinoma by Targeting GUCD1. Yonsei Med J 2019; 60:267-276. [PMID: 30799589 PMCID: PMC6391526 DOI: 10.3349/ymj.2019.60.3.267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor, the prognosis of which remains poor. Recently, microRNAs have been reported to play crucial functions in multiple tumors, including HCC. However, the molecular mechanisms of miR-370 in HCC still remain largely unknown. The present study focused on the effects of miR-370 on HCC migration, invasion, and epithelial-mesenchymal transition (EMT). MATERIALS AND METHODS We investigated the key roles and possible regulatory mechanism of miR-370 in regulating HCC metastasis with functional assays, such as transwell assay. Quantitative real-time PCR (qRT-PCR) was used to detect miR-370 and guanylylcyclase domain containing 1 (GUCD1) expression in HCC tissues and cells. Subsequently, we performed transwell assays to determine the functions of miR-370 in HCC cell invasion and migration. Western blot was used to determine protein expressions of relevant genes. Luciferase reporter assays were conducted to confirm the target gene of miR-370. RESULTS qRT-PCR analysis demonstrated that miR-370 was dramatically downregulated in HCC. Moreover, downregulated miR-370 was found to be associated with poor survival and adverse clinicopathologic characteristics of HCC patients. Transwell assays revealed that miR-370 overexpression dramatically suppressed HCC invasion and migration. Meanwhile, miR-370 restoration prominently inhibited EMT progression in HCC cells. Luciferase reporter assays confirmed GUCD1 as a downstream target gene of miR-370. GUCD1 expression in HCC tissues was prominently increased and inversely correlated with miR-370 expression. Furthermore, GUCD1 was verified as mediating the suppressive influence of miR-370 on cell metastasis and EMT in HCC. CONCLUSION Taken together, our study confirmed that miR-370 suppressed HCC cell metastasis and EMT via regulating GUCD1. Accordingly, the miR-370/GUCD1 axis may potentially acts as attractive therapeutic targets and novel biomarkers for HCC treatment.
Collapse
Affiliation(s)
- Yongkang He
- Department of Infectious Diseases, Taixing People's Hospital, Taizhou, China.
| | - Xiaofeng He
- Department of Infectious Diseases, Taixing People's Hospital, Taizhou, China
| |
Collapse
|
45
|
Cao X, Xu L, Liu Q, Yang L, Li N, Li X. MicroRNA-1277 Inhibits Proliferation and Migration of Hepatocellular Carcinoma HepG2 Cells by Targeting and Suppressing BMP4 Expression and Reflects the Significant Indicative Role in Hepatocellular Carcinoma Pathology and Diagnosis After Magnetic Resonance Imaging Assessment. Oncol Res 2019; 27:301-309. [PMID: 29562958 PMCID: PMC7848408 DOI: 10.3727/096504018x15213058045841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Our study aimed to investigate the roles and possible regulatory mechanism of miR-1277 in the development of hepatocellular carcinoma (HCC). HCC patients were identified from patients who were diagnosed with focal liver lesions using magnetic resonance imaging (MRI). The expression levels of miR-1277 in the serum of HCC patients and HepG2 cells were measured. Then miR-1277 mimic, miR-1277 inhibitor, or scramble RNA was transfected into HepG2 cells. The effects of miR-1277 overexpression and suppression on HepG2 cell proliferation, migration, and invasion were then investigated. Additionally, the expression levels of epithelial-mesenchymal transition (EMT)-related markers, including E-cadherin, β-catenin, and vimentin, were detected. Target prediction and luciferase reporter assay were performed to explore the potential target of miR-1277. miR-1277 was significantly downregulated in the serum of HCC patients and HepG2 cells. Suppression of miR-1277 promoted HepG2 cell proliferation, migration, and invasion, whereas overexpression of miR-1277 had opposite effects. In addition, after miR-1277 was suppressed, the expressions of E-cadherin and β-catenin were significantly increased, while the expressions of vimentin were markedly decreased. Bone morphogenetic protein 4 (BMP4) was identified as the direct target of miR-1277. Knockdown of BMP4 reversed the effects of miR-1277 suppression on HepG2 cell migration and invasion, as well as the expressions of E-cadherin, β-catenin, and vimentin. Our results indicate that downregulation of miR-1277 may promote the migration and invasion of HepG2 cells by targeting BMP4 to induce EMT. Combination of MRI and miR-1277 level will facilitate the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xinshan Cao
- *Department of Radiology, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Ling Xu
- †Department of Liver Disease Center, Traditional Chinese Medicine Hospital of Binzhou City, Binzhou, Shandong, P.R. China
| | - Quanyuan Liu
- *Department of Radiology, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Lijuan Yang
- ‡Department of Experiment Center of Tumor, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Na Li
- §Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Xiaoxiao Li
- *Department of Radiology, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| |
Collapse
|
46
|
Zhang K, Lu C, Huang X, Cui J, Li J, Gao Y, Liang W, Liu Y, Sun Y, Liu H, Wei B, Chen L. Long noncoding RNA AOC4P regulates tumor cell proliferation and invasion by epithelial-mesenchymal transition in gastric cancer. Therap Adv Gastroenterol 2019; 12:1756284819827697. [PMID: 30815034 PMCID: PMC6383096 DOI: 10.1177/1756284819827697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/19/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The clinical relevance and biological role of tissular AOC4P in gastric cancer (GC) remains to be clarified. METHODS The association between AOC4P expression and clinicopathological characteristics was investigated. In vitro, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, wound healing and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were performed to explore the biological effects of AOC4P on GC cell proliferation, migration, invasion, and apoptosis in MGC-803 and BGC-823 cell lines. In vivo, animal experiments were conducted to confirm the in vitro findings. Quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence were used to investigate the potential mechanisms. RESULTS Expression levels of AOC4P were significantly higher in tumor tissues than in noncancerous tissues, and patients with high levels of AOC4P had poor overall and disease-free survival. AOC4P expression was correlated with lymphovascular invasion. In vitro, knockdown of AOC4P inhibited tumor cell proliferation, migration, and invasion, and promoted apoptosis of MGC-803 and BGC-823 cells. In vivo, BGC-823 cells transfected with AOC4P siRNA formed smaller and lighter tumors than BGC-823 cells transfected with negative control siRNA in severe combined immunodeficiency mice. Additionally, the si-AOC4P group had less proliferating cells and more apoptotic cells in tumor xenografts compared with the negative control. Mechanistically, knockdown of AOC4P decreased the expression of vimentin and MMP9, while increasing the expression of E-cadherin. Immunofluorescence confirmed the relationship between AOC4P expression and E-cadherin, vimentin, and MMP9 levels in clinical GC specimens. CONCLUSIONS AOC4P promotes tumorigenesis and progression partly through epithelial-mesenchymal transition in GC. Additionally, AOC4P may serve as a prognostic biomarker for clinical decision making.
Collapse
Affiliation(s)
- Kecheng Zhang
- Department of General Surgery & Institute of
General Surgery, Chinese People’s Liberation Army General Hospital, Beijing,
PR China
| | - Canrong Lu
- Department of General Surgery & Institute of
General Surgery, Chinese People’s Liberation Army General Hospital, Beijing,
PR China
| | - Xiaohui Huang
- Department of General Surgery & Institute of
General Surgery, Chinese People’s Liberation Army General Hospital, Beijing,
PR China
| | - Jianxin Cui
- Department of General Surgery & Institute of
General Surgery, Chinese People’s Liberation Army General Hospital, Beijing,
PR China
| | - Jiyang Li
- Department of General Surgery & Institute of
General Surgery, Chinese People’s Liberation Army General Hospital, Beijing,
PR China
| | - Yunhe Gao
- Department of General Surgery & Institute of
General Surgery, Chinese People’s Liberation Army General Hospital, Beijing,
PR China
| | - Wenquan Liang
- Department of General Surgery & Institute of
General Surgery, Chinese People’s Liberation Army General Hospital, Beijing,
PR China
| | - Yi Liu
- Department of General Surgery & Institute of
General Surgery, Chinese People’s Liberation Army General Hospital, Beijing,
PR China
| | - Yang Sun
- Department of Ultrasound, Peking University
Third Hospital, Beijing, PR China
| | - Hanxuan Liu
- Medical Experiment and Analysis Center, Chinese
People’s Liberation Army General Hospital, Beijing, PR China
| | - Bo Wei
- Department of General Surgery & Institute
of General Surgery, Chinese People’s Liberation Army General Hospital,
Beijing, PR China
| | | |
Collapse
|
47
|
New Insights into the Role of Epithelial⁻Mesenchymal Transition during Aging. Int J Mol Sci 2019; 20:ijms20040891. [PMID: 30791369 PMCID: PMC6412502 DOI: 10.3390/ijms20040891] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 12/29/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a cellular process by which differentiated epithelial cells undergo a phenotypic conversion to a mesenchymal nature. The EMT has been increasingly recognized as an essential process for tissue fibrogenesis during disease and normal aging. Higher levels of EMT proteins in aged tissues support the involvement of EMT as a possible cause and/or consequence of the aging process. Here, we will highlight the existing understanding of EMT supporting the phenotypical alterations that occur during normal aging or pathogenesis, covering the impact of EMT deregulation in tissue homeostasis and stem cell function.
Collapse
|
48
|
Li L, Zhuang Y, Zhao X, Li X. Long Non-coding RNA in Neuronal Development and Neurological Disorders. Front Genet 2019; 9:744. [PMID: 30728830 PMCID: PMC6351443 DOI: 10.3389/fgene.2018.00744] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts which are usually more than 200 nt in length, and which do not have the protein-coding capacity. LncRNAs can be categorized based on their generation from distinct DNA elements, or derived from specific RNA processing pathways. During the past several decades, dramatic progress has been made in understanding the regulatory functions of lncRNAs in diverse biological processes, including RNA processing and editing, cell fate determination, dosage compensation, genomic imprinting and development etc. Dysregulation of lncRNAs is involved in multiple human diseases, especially neurological disorders. In this review, we summarize the recent progress made with regards to the function of lncRNAs and associated molecular mechanisms, focusing on neuronal development and neurological disorders.
Collapse
Affiliation(s)
- Ling Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingliang Zhuang
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xingsen Zhao
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
49
|
Heo MJ, Yun J, Kim SG. Role of non-coding RNAs in liver disease progression to hepatocellular carcinoma. Arch Pharm Res 2019; 42:48-62. [PMID: 30610616 DOI: 10.1007/s12272-018-01104-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/23/2018] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is a tumor with poor prognosis and frequently aggressive. The development of HCC is associated with fibrosis and cirrhosis, which mainly results from nonalcoholic fatty liver disease, excessive alcohol consumption, and viral infections. Non-coding RNAs (ncRNAs) are RNAs transcribed from the genome, but are not translated into proteins. Recently, ncRNAs emerged as key contributors to tumor development and progression because of their abilities to regulate various targets and modulate cell proliferation, differentiation, apoptosis, and development. In this review, we summarize the frequently activated pathways in HCC and discuss the pathological implications of ncRNAs in the context of human liver disease progression, in particular HCC development and progression. This review aims to summarize the role of ncRNA dysregulation in the diseases and discuss the diagnostic and therapeutic potentials of ncRNAs.
Collapse
Affiliation(s)
- Mi Jeong Heo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanakro, Seoul, 08826, South Korea
| | - Jessica Yun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanakro, Seoul, 08826, South Korea
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanakro, Seoul, 08826, South Korea.
| |
Collapse
|
50
|
Kovalenko TF, Patrushev LI. Pseudogenes as Functionally Significant Elements of the Genome. BIOCHEMISTRY (MOSCOW) 2018; 83:1332-1349. [PMID: 30482145 DOI: 10.1134/s0006297918110044] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudogene is a gene copy that has lost its original function. For a long time, pseudogenes have been considered as "junk DNA" that inevitably arises as a result of ongoing evolutionary process. However, experimental data obtained during recent years indicate this understanding of the nature of pseudogenes is not entirely correct, and many pseudogenes perform important genetic functions. In the review, we have addressed classification of pseudogenes, methods of their detection in the genome, and the problem of their evolutionary conservatism and prevalence among species belonging to different taxonomic groups in the light of modern data. The mechanisms of gene expression regulation by pseudogenes and the role of pseudogenes in pathogenesis of various human diseases are discussed.
Collapse
Affiliation(s)
- T F Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - L I Patrushev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|