1
|
Fort PE, Losiewicz MK, Elghazi L, Kong D, Cras-Méneur C, Fingar DC, Kimball SR, Rajala RVS, Smith AJ, Ali RR, Abcouwer SF, Gardner TW. mTORC1 regulates high levels of protein synthesis in retinal ganglion cells of adult mice. J Biol Chem 2022; 298:101944. [PMID: 35447116 PMCID: PMC9117545 DOI: 10.1016/j.jbc.2022.101944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/02/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) and mTOR complex 1 (mTORC1), linchpins of the nutrient sensing and protein synthesis pathways, are present at relatively high levels in the ganglion cell layer (GCL) and retinal ganglion cells (RGCs) of rodent and human retinas. However, the role of mTORCs in the control of protein synthesis in RGC is unknown. Here, we applied the SUrface SEnsing of Translation (SUnSET) method of nascent protein labeling to localize and quantify protein synthesis in the retinas of adult mice. We also used intravitreal injection of an adeno-associated virus 2 vector encoding Cre recombinase in the eyes of mtor- or rptor-floxed mice to conditionally knockout either both mTORCs or only mTORC1, respectively, in cells within the GCL. A novel vector encoding an inactive Cre mutant (CreΔC) served as control. We found that retinal protein synthesis was highest in the GCL, particularly in RGC. Negation of both complexes or only mTORC1 significantly reduced protein synthesis in RGC. In addition, loss of mTORC1 function caused a significant reduction in the pan-RGC marker, RNA-binding protein with multiple splicing, with little decrease of the total number of cells in the RGC layer, even at 25 weeks after adeno-associated virus-Cre injection. These findings reveal that mTORC1 signaling is necessary for maintaining the high rate of protein synthesis in RGCs of adult rodents, but it may not be essential to maintain RGC viability. These findings may also be relevant to understanding the pathophysiology of RGC disorders, including glaucoma, diabetic retinopathy, and optic neuropathies.
Collapse
Affiliation(s)
- Patrice E Fort
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mandy K Losiewicz
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lynda Elghazi
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dejuan Kong
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Corentin Cras-Méneur
- Internal Medicine (MEND Division), University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Diane C Fingar
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Scot R Kimball
- Cellular & Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Raju V S Rajala
- Departments of Ophthalmology and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Alexander J Smith
- Centre for Gene Therapy and Regenerative Medicine, King's College London, England, United Kingdom
| | - Robin R Ali
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Centre for Gene Therapy and Regenerative Medicine, King's College London, England, United Kingdom
| | - Steven F Abcouwer
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | - Thomas W Gardner
- Ophthalmology & Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA; Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Internal Medicine (MEND Division), University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Wang Y, Punzo C, Ash JD, Lobanova ES. Tsc2 knockout counteracts ubiquitin-proteasome system insufficiency and delays photoreceptor loss in retinitis pigmentosa. Proc Natl Acad Sci U S A 2022; 119:e2118479119. [PMID: 35275792 PMCID: PMC8931319 DOI: 10.1073/pnas.2118479119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/12/2022] [Indexed: 01/18/2023] Open
Abstract
SignificanceStudies in multiple experimental systems have demonstrated that an increase in proteolytic capacity of post-mitotic cells improves cellular resistance to a variety of stressors, delays cellular aging and senescence. Therefore, approaches to increase the ability of cells to degrade misfolded proteins could potentially be applied to the treatment of a broad spectrum of human disorders. An example would be retinal degenerations, which cause irreversible loss of vision and are linked to impaired protein degradation. This study suggests that chronic activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway in degenerating photoreceptor neurons could stimulate the degradation of ubiquitinated proteins and enhance proteasomal activity through phosphorylation.
Collapse
Affiliation(s)
- Yixiao Wang
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610
| | - Claudio Punzo
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01655
| | - John D. Ash
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610
| | - Ekaterina S. Lobanova
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610
| |
Collapse
|
3
|
Roy A, Tolone A, Hilhorst R, Groten J, Tomar T, Paquet-Durand F. Kinase activity profiling identifies putative downstream targets of cGMP/PKG signaling in inherited retinal neurodegeneration. Cell Death Dis 2022; 8:93. [PMID: 35241647 PMCID: PMC8894370 DOI: 10.1038/s41420-022-00897-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 11/15/2022]
Abstract
Inherited retinal diseases (IRDs) are a group of neurodegenerative disorders that lead to photoreceptor cell death and eventually blindness. IRDs are characterised by a high genetic heterogeneity, making it imperative to design mutation-independent therapies. Mutations in a number of IRD disease genes have been associated with a rise of cyclic 3’,5’-guanosine monophosphate (cGMP) levels in photoreceptors. Accordingly, the cGMP-dependent protein kinase (PKG) has emerged as a new potential target for the mutation-independent treatment of IRDs. However, the substrates of PKG and the downstream degenerative pathways triggered by its activity have yet to be determined. Here, we performed kinome activity profiling of different murine organotypic retinal explant cultures (diseased rd1 and wild-type controls) using multiplex peptide microarrays to identify proteins whose phosphorylation was significantly altered by PKG activity. In addition, we tested the downstream effect of a known PKG inhibitor CN03 in these organotypic retina cultures. Among the PKG substrates were potassium channels belonging to the Kv1 family (KCNA3, KCNA6), cyclic AMP-responsive element-binding protein 1 (CREB1), DNA topoisomerase 2-α (TOP2A), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (F263), and the glutamate ionotropic receptor kainate 2 (GRIK2). The retinal expression of these PKG targets was further confirmed by immunofluorescence and could be assigned to various neuronal cell types, including photoreceptors, horizontal cells, and ganglion cells. Taken together, this study confirmed the key role of PKG in photoreceptor cell death and identified new downstream targets of cGMP/PKG signalling that will improve the understanding of the degenerative mechanisms underlying IRDs.
Collapse
Affiliation(s)
- Akanksha Roy
- Division of Toxicology, Wageningen University and Research, 96708 WE, Wageningen, The Netherlands.,PamGene International B.V, 5200 BJ, s-Hertogenbosch, The Netherlands
| | - Arianna Tolone
- Cell Death Mechanism Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität, Tübingen, 72072, Germany
| | - Riet Hilhorst
- PamGene International B.V, 5200 BJ, s-Hertogenbosch, The Netherlands
| | - John Groten
- Division of Toxicology, Wageningen University and Research, 96708 WE, Wageningen, The Netherlands.,PamGene International B.V, 5200 BJ, s-Hertogenbosch, The Netherlands
| | - Tushar Tomar
- PamGene International B.V, 5200 BJ, s-Hertogenbosch, The Netherlands.
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, Eberhard-Karls-Universität, Tübingen, 72072, Germany.
| |
Collapse
|
4
|
Saltykova IV, Elahi A, Pitale PM, Gorbatyuk OS, Athar M, Gorbatyuk MS. Tribbles homolog 3-mediated targeting the AKT/mTOR axis in mice with retinal degeneration. Cell Death Dis 2021; 12:664. [PMID: 34215725 PMCID: PMC8253859 DOI: 10.1038/s41419-021-03944-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Various retinal degenerative disorders manifest in alterations of the AKT/mTOR axis. Despite this, consensus on the therapeutic targeting of mTOR in degenerating retinas has not yet been achieved. Therefore, we investigated the role of AKT/mTOR signaling in rd16 retinas, in which we restored the AKT/mTOR axis by genetic ablation of pseudokinase TRB3, known to inhibit phosphorylation of AKT and mTOR. First, we found that TRB3 ablation resulted in preservation of photoreceptor function in degenerating retinas. Then, we learned that the mTOR downstream cellular pathways involved in the homeostasis of photoreceptors were also reprogrammed in rd16 TRB3-/- retinas. Thus, the level of inactivated translational repressor p-4E-BP1 was significantly increased in these mice along with the restoration of translational rate. Moreover, in rd16 mice manifesting decline in p-mTOR at P15, we found elevated expression of Beclin-1 and ATG5 autophagy genes. Thus, these mice showed impaired autophagy flux measured as an increase in LC3 conversion and p62 accumulation. In addition, the RFP-EGFP-LC3 transgene expression in rd16 retinas resulted in statistically fewer numbers of red puncta in photoreceptors, suggesting impaired late autophagic vacuoles. In contrast, TRIB3 ablation in these mice resulted in improved autophagy flux. The restoration of translation rate and the boost in autophagosome formation occurred concomitantly with an increase in total Ub and rhodopsin protein levels and the elevation of E3 ligase Parkin1. We propose that TRB3 may retard retinal degeneration and be a promising therapeutic target to treat various retinal degenerative disorders.
Collapse
Affiliation(s)
- Irina V Saltykova
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Asif Elahi
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Priyam M Pitale
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Oleg S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases. Int J Mol Sci 2020; 21:ijms21051625. [PMID: 32120883 PMCID: PMC7084304 DOI: 10.3390/ijms21051625] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
The loss of cone photoreceptor function in retinitis pigmentosa (RP) severely impacts the central and daily vision and quality of life of patients affected by this disease. The loss of cones follows the degeneration of rods, in a manner independent of the causing mutations in numerous genes associated with RP. We have explored this phenomenon and proposed that the loss of rods triggers a reduction in the expression of rod-derived cone viability factor (RdCVF) encoded by the nucleoredoxin-like 1 (NXNL1) gene which interrupts the metabolic and redox signaling between rods and cones. After providing scientific evidence supporting this mechanism, we propose a way to restore this lost signaling and prevent the cone vision loss in animal models of RP. We also explain how we could restore this signaling to prevent cone vision loss in animal models of the disease and how we plan to apply this therapeutic strategy by the administration of both products of NXNL1 encoding the trophic factor RdCVF and the thioredoxin enzyme RdCVFL using an adeno-associated viral vector. We describe in detail all the steps of this translational program, from the design of the drug, its production, biological validation, and analytical and preclinical qualification required for a future clinical trial that would, if successful, provide a treatment for this incurable disease.
Collapse
|
6
|
Tao Y, He M, Yang Q, Ma Z, Qu Y, Chen W, Peng G, Teng D. Systemic taurine treatment provides neuroprotection against retinal photoreceptor degeneration and visual function impairments. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2689-2702. [PMID: 31496648 PMCID: PMC6689665 DOI: 10.2147/dddt.s194169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/01/2019] [Indexed: 01/12/2023]
Abstract
Objective Retinitis pigmentosa causes progressive photoreceptor degeneration in the subjects while no clinical therapy exists. The present study sought to evaluate the potential protective effects of taurine on a pharmacologically induced RP animal model. Methods Photoreceptor degeneration in mice was induced by an intraperitoneal injection of N-methyl-N-nitrosourea (MNU). The MNU-administrated mouse received taurine treatment and then they were examined by electroretinography, spectral-domain optical coherence tomography, optokinetic test, and histological and immunohistochemistry assay. Results Prominent taurine deficiency was found in the retinas of MNU-administered mice. Intravenous taurine treatment increased significantly the retinal taurine level. Morphological studies showed that taurine could alleviate the retinal disorganizations in the MNU-induced mice. Taurine also ameliorated the visual impairments in the MNU-induced mice as evidenced by functional examinations. Immunostaining experiments demonstrated that both the M-cone and S-cone populations in the degenerative retinas are rescued by taurine. In particular, the M-cone photoreceptors in superior-temporal quadrant and the S-cone photoreceptors in inferior-nasal quadrant were preferentially rescued. Mechanism study showed that the photoreceptor apoptosis and oxidative stress in the degenerative retina were effectively alleviated by taurine treatment. Conclusion Taurine is protective against the MNU-induced photoreceptor degeneration. Systemic taurine administration may act as a promising therapeutic potion for retinopathies with chronic cycle.
Collapse
Affiliation(s)
- Ye Tao
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, People's Republic of China.,Lab of Visual Cell Differentiation, Basic Medical College, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Miao He
- Department of Neurosurgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, People's Republic of China
| | - Qinghua Yang
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhao Ma
- Department of Neurosurgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, People's Republic of China
| | - Yingxin Qu
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wen Chen
- Department of Neurosurgery, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, People's Republic of China
| | - Guanghua Peng
- Department of Physiology, Basic Medical College, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Dengke Teng
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
7
|
Chu L, Xiao L, Xu B, Xu J. Dissociation of HKII in retinal epithelial cells induces oxidative stress injury in the retina. Int J Mol Med 2019; 44:1377-1387. [PMID: 31432102 PMCID: PMC6713434 DOI: 10.3892/ijmm.2019.4304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
The retina is sensitive to injury resulting from oxidative stress (OS) due to its high oxygen consumption. Patients with retinitis pigmentosa suffer from excessive OS. N‑acetylcysteine (NAC) is used as a mucolytic agent for the clinical treatment of disorders, such as chronic bronchitis and other pulmonary diseases. The aim of the present study was to investigate the role of hexokinase 2 (HKII) in retinal OS injury. Amyloid β (Aβ)1‑40 was used to establish a cellular model of OS. Cell viability was measured with a Cell Counting Kit‑8 assay, and the apoptosis, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) of cells were analyzed via flow cytometry with corresponding kits. The mRNA and protein levels were detected by reverse transcription‑quantitative PCR and western blot analyses, respectively. It was observed that Aβ1‑40 reduced the expression of HKII in the mitochondria of retinal pigment epithelial ARPE cells and impaired mitochondrial antioxidant functions. Additionally, knockdown of HKII promoted apoptosis, and increased ROS levels and the MMP. NAC attenuated the inhibition of mitochondrial functions induced by Aβ1‑40. The knockdown of HKII was revealed to decrease the levels of Bcl‑2, manganese superoxide dismutase (SOD) and copper‑zinc‑SOD, and increase the levels of cleaved caspase‑3, Bax and cytochrome c. The present findings suggested that the dissociation of HKII induced by OS induces apoptosis and mitochondrial damage. This study provided improved understanding of the mechanisms underlying the effects of OS on retinal epithelial cells.
Collapse
Affiliation(s)
- Liqun Chu
- Department of Ophthalmology, Xiyuan Hospital, China Academy of Traditional Chinese Medicine, Beijing 100091, P.R. China
| | - Lin Xiao
- Department of Ophthalmology, Beijing Shijitan Hospital, CMU, Beijing 100038, P.R. China
| | - Bing Xu
- Department of Ophthalmology, Beijing Shijitan Hospital, CMU, Beijing 100038, P.R. China
| | - Jingmei Xu
- Department of Ophthalmology, Beijing Shijitan Hospital, CMU, Beijing 100038, P.R. China
| |
Collapse
|
8
|
Abstract
Over the last few years, huge progress has been made with regard to the understanding of molecular mechanisms underlying the pathogenesis of neurodegenerative diseases of the eye. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Challenges regarding the efficacy and efficiency of therapeutic gene delivery have driven the development of novel therapeutic approaches, which continue to evolve the field of ocular gene therapy. In this review article, we will discuss the evolution of preclinical and clinical strategies that have improved gene therapy in the eye, showing that treatment of vision loss has a bright future.
Collapse
Affiliation(s)
- Lolita Petit
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Hemant Khanna
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Neurobiology, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Claudio Punzo
- 1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Neurobiology, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|