1
|
Koike M, Yamashita H, Yutoku Y, Koike A. Molecular cloning, subcellular localization, and rapid recruitment to DNA damage sites of chicken Ku70. Sci Rep 2024; 14:1188. [PMID: 38216643 PMCID: PMC10786929 DOI: 10.1038/s41598-024-51501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024] Open
Abstract
Ku70 is a multifunctional protein with pivotal roles in DNA repair via non-homologous end-joining, V(D)J recombination, telomere maintenance, and neuronal apoptosis control. Nonetheless, its regulatory mechanisms remain elusive. Chicken Ku70 (GdKu70) cDNA has been previously cloned, and DT40 cells expressing it have significantly contributed to critical biological discoveries. GdKu70 features an additional 18 amino acids at its N-terminus compared to mammalian Ku70, the biological significance of which remains uncertain. Here, we show that the 5' flanking sequence of GdKu70 cDNA is not nearly encoded in the chicken genome. Notably, these 18 amino acids result from fusion events involving the NFE2L1 gene on chromosome 27 and the Ku70 gene on chromosome 1. Through experiments using newly cloned chicken Ku70 cDNA and specific antibodies, we demonstrated that Ku70 localizes within the cell nucleus as a heterodimer with Ku80 and promptly accumulates at DNA damage sites following injury. This suggests that the functions and spatiotemporal regulatory mechanisms of Ku70 in chickens closely resemble those in mammals. The insights and resources acquired will contribute to elucidate the various mechanisms by which Ku functions. Meanwhile, caution is advised when interpreting the previous numerous key studies that relied on GdKu70 cDNA and its expressing cells.
Collapse
Affiliation(s)
- Manabu Koike
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
- Life Science Course, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama, 338-8570, Japan.
| | - Hideji Yamashita
- Department of Food and Life Sciences, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto, 862-8652, Japan
| | - Yasutomo Yutoku
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Aki Koike
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
2
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
3
|
Schellenbauer A, Guilly MN, Grall R, Le Bars R, Paget V, Kortulewski T, Sutcu H, Mathé C, Hullo M, Biard D, Leteurtre F, Barroca V, Corre Y, Irbah L, Rass E, Theze B, Bertrand P, Demmers JAA, Guirouilh-Barbat J, Lopez BS, Chevillard S, Delic J. Phospho-Ku70 induced by DNA damage interacts with RNA Pol II and promotes the formation of phospho-53BP1 foci to ensure optimal cNHEJ. Nucleic Acids Res 2021; 49:11728-11745. [PMID: 34718776 PMCID: PMC8599715 DOI: 10.1093/nar/gkab980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Canonical non-homologous end-joining (cNHEJ) is the prominent mammalian DNA double-strand breaks (DSBs) repair pathway operative throughout the cell cycle. Phosphorylation of Ku70 at ser27-ser33 (pKu70) is induced by DNA DSBs and has been shown to regulate cNHEJ activity, but the underlying mechanism remained unknown. Here, we established that following DNA damage induction, Ku70 moves from nucleoli to the sites of damage, and once linked to DNA, it is phosphorylated. Notably, the novel emanating functions of pKu70 are evidenced through the recruitment of RNA Pol II and concomitant formation of phospho-53BP1 foci. Phosphorylation is also a prerequisite for the dynamic release of Ku70 from the repair complex through neddylation-dependent ubiquitylation. Although the non-phosphorylable ala-Ku70 form does not compromise the formation of the NHEJ core complex per se, cells expressing this form displayed constitutive and stress-inducible chromosomal instability. Consistently, upon targeted induction of DSBs by the I-SceI meganuclease into an intrachromosomal reporter substrate, cells expressing pKu70, rather than ala-Ku70, are protected against the joining of distal DNA ends. Collectively, our results underpin the essential role of pKu70 in the orchestration of DNA repair execution in living cells and substantiated the way it paves the maintenance of genome stability.
Collapse
Affiliation(s)
- Amelie Schellenbauer
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Marie-Noelle Guilly
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Romain Grall
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Romain Le Bars
- Light Microscopy Facility, Imagerie-Gif, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Vincent Paget
- IRS[N]/PSE-SANTE/SERAMED/LRMed, 31, Av. De la Division Leclerc, 92260 Fontenay aux Roses, France
| | - Thierry Kortulewski
- Laboratoire de Radiopathologie, UMR Stabilité Génétique Cellules Souches et Radiations, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18 Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Haser Sutcu
- IRS[N]/PSE-SANTE/SERAMED/LRAcc, 31, Av. De la Division Leclerc, 92260 Fontenay aux Roses, France
| | - Cécile Mathé
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Marie Hullo
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Denis Biard
- Service d'étude des prions et maladies atypiques (SEPIA), DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - François Leteurtre
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Vilma Barroca
- Laboratoire Réparation et Transcription dans les cellules Souches, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Youenn Corre
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Lamya Irbah
- Plateforme de Microscopie, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U12745, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Emilie Rass
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Benoit Theze
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Pascale Bertrand
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Jeroen A A Demmers
- Proteomics Center, Room Ee-679A | Faculty Building, Erasmus University Medical Center Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Josée Guirouilh-Barbat
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Bernard S Lopez
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Sylvie Chevillard
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Jozo Delic
- To whom correspondence should be addressed. Tel: +33 1 4654 7552;
| |
Collapse
|
4
|
Abbasi S, Parmar G, Kelly RD, Balasuriya N, Schild-Poulter C. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining. Cell Mol Life Sci 2021; 78:4589-4613. [PMID: 33855626 PMCID: PMC11071882 DOI: 10.1007/s00018-021-03801-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Since its discovery in 1981, the Ku complex has been extensively studied under multiple cellular contexts, with most work focusing on Ku in terms of its essential role in non-homologous end-joining (NHEJ). In this process, Ku is well-known as the DNA-binding subunit for DNA-PK, which is central to the NHEJ repair process. However, in addition to the extensive study of Ku's role in DNA repair, Ku has also been implicated in various other cellular processes including transcription, the DNA damage response, DNA replication, telomere maintenance, and has since been studied in multiple contexts, growing into a multidisciplinary point of research across various fields. Some advances have been driven by clarification of Ku's structure, including the original Ku crystal structure and the more recent Ku-DNA-PKcs crystallography, cryogenic electron microscopy (cryoEM) studies, and the identification of various post-translational modifications. Here, we focus on the advances made in understanding the Ku heterodimer outside of non-homologous end-joining, and across a variety of model organisms. We explore unique structural and functional aspects, detail Ku expression, conservation, and essentiality in different species, discuss the evidence for its involvement in a diverse range of cellular functions, highlight Ku protein interactions and recent work concerning Ku-binding motifs, and finally, we summarize the clinical Ku-related research to date.
Collapse
Affiliation(s)
- Sanna Abbasi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gursimran Parmar
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Rachel D Kelly
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Nileeka Balasuriya
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
5
|
Zahid S, Seif El Dahan M, Iehl F, Fernandez-Varela P, Le Du MH, Ropars V, Charbonnier JB. The Multifaceted Roles of Ku70/80. Int J Mol Sci 2021; 22:ijms22084134. [PMID: 33923616 PMCID: PMC8073936 DOI: 10.3390/ijms22084134] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
DNA double-strand breaks (DSBs) are accidental lesions generated by various endogenous or exogenous stresses. DSBs are also genetically programmed events during the V(D)J recombination process, meiosis, or other genome rearrangements, and they are intentionally generated to kill cancer during chemo- and radiotherapy. Most DSBs are processed in mammalian cells by the classical nonhomologous end-joining (c-NHEJ) pathway. Understanding the molecular basis of c-NHEJ has major outcomes in several fields, including radiobiology, cancer therapy, immune disease, and genome editing. The heterodimer Ku70/80 (Ku) is a central actor of the c-NHEJ as it rapidly recognizes broken DNA ends in the cell and protects them from nuclease activity. It subsequently recruits many c-NHEJ effectors, including nucleases, polymerases, and the DNA ligase 4 complex. Beyond its DNA repair function, Ku is also involved in several other DNA metabolism processes. Here, we review the structural and functional data on the DNA and RNA recognition properties of Ku implicated in DNA repair and in telomeres maintenance.
Collapse
|
6
|
Rahimian E, Amini A, Alikarami F, Pezeshki SMS, Saki N, Safa M. DNA repair pathways as guardians of the genome: Therapeutic potential and possible prognostic role in hematologic neoplasms. DNA Repair (Amst) 2020; 96:102951. [PMID: 32971475 DOI: 10.1016/j.dnarep.2020.102951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
DNA repair pathways, which are also identified as guardians of the genome, protect cells from frequent damage that can lead to DNA breaks. The most deleterious types of damage are double-strand breaks (DSBs), which are repaired by homologous recombination (HR) and non-homologous end joining (NHEJ). Single strand breaks (SSBs) can be corrected through base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Failure to restore DNA lesions or inappropriately repaired DNA damage culminates in genomic instability and changes in the regulation of cellular functions. Intriguingly, particular mutations and translocations are accompanied by special types of leukemia. Besides, expression patterns of certain repair genes are altered in different hematologic malignancies. Moreover, analysis of mutations in key mediators of DNA damage repair (DDR) pathways, as well as investigation of their expression and function, may provide us with emerging biomarkers of response/resistance to treatment. Therefore, defective DDR pathways can offer a rational starting point for developing DNA repair-targeted drugs. In this review, we address genetic alterations and gene/protein expression changes, as well as provide an overview of DNA repair pathways.
Collapse
Affiliation(s)
- Elahe Rahimian
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Amini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Alikarami
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA 19104, USA
| | - Seyed Mohammad Sadegh Pezeshki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Simioni C, Zauli G, Martelli AM, Vitale M, Sacchetti G, Gonelli A, Neri LM. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 2018; 9:17181-17198. [PMID: 29682215 PMCID: PMC5908316 DOI: 10.18632/oncotarget.24729] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/08/2018] [Indexed: 12/12/2022] Open
Abstract
Physical exercise is considered to be one of the beneficial factors of a proper lifestyle and is nowadays seen as an indispensable element for good health, able to lower the risk of disorders of the cardiovascular, endocrine and osteomuscular apparatus, immune system diseases and the onset of potential neoplasms. A moderate and programmed physical exercise has often been reported to be therapeutic both in the adulthood and in aging, since capable to promote fitness. Regular exercise alleviates the negative effects caused by free radicals and offers many health benefits, including reduced risk of all-cause mortality, sarcopenia in the skeletal muscle, chronic disease, and premature death in elderly people. However, physical performance is also known to induce oxidative stress, inflammation, and muscle fatigue. Many efforts have been carried out to identify micronutrients and natural compounds, also known as nutraceuticals, able to prevent or attenuate the exercise-induced oxidative stress and inflammation. The aim of this review is to discuss the benefits deriving from a constant physical activity and by the intake of antioxidant compounds to protect the body from oxidative stress. The attention will be focused mainly on three natural antioxidants, which are quercetin, resveratrol and curcumin. Their properties and activity will be described, as well as their benefits on physical activity and on aging, which is expected to increase through the years and can get favorable benefits from a constant exercise activity.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology, Pharmaceutical Biology Laboratory, University of Ferrara, Ferrara, Italy
| | - Arianna Gonelli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Nilles N, Fahrenkrog B. Taking a Bad Turn: Compromised DNA Damage Response in Leukemia. Cells 2017; 6:cells6020011. [PMID: 28471392 PMCID: PMC5492015 DOI: 10.3390/cells6020011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 02/01/2023] Open
Abstract
Genomic integrity is of outmost importance for the survival at the cellular and the organismal level and key to human health. To ensure the integrity of their DNA, cells have evolved maintenance programs collectively known as the DNA damage response. Particularly challenging for genome integrity are DNA double-strand breaks (DSB) and defects in their repair are often associated with human disease, including leukemia. Defective DSB repair may not only be disease-causing, but further contribute to poor treatment outcome and poor prognosis in leukemia. Here, we review current insight into altered DSB repair mechanisms identified in leukemia. While DSB repair is somewhat compromised in all leukemic subtypes, certain key players of DSB repair are particularly targeted: DNA-dependent protein kinase (DNA-PK) and Ku70/80 in the non-homologous end-joining pathway, as well as Rad51 and breast cancer 1/2 (BRCA1/2), key players in homologous recombination. Defects in leukemia-related DSB repair may not only arise from dysfunctional repair components, but also indirectly from mutations in key regulators of gene expression and/or chromatin structure, such as p53, the Kirsten ras oncogene (K-RAS), and isocitrate dehydrogenase 1 and 2 (IDH1/2). A detailed understanding of the basis for defective DNA damage response (DDR) mechanisms for each leukemia subtype may allow to further develop new treatment methods to improve treatment outcome and prognosis for patients.
Collapse
Affiliation(s)
- Nadine Nilles
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Birthe Fahrenkrog
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| |
Collapse
|
9
|
Merigliano C, Marzio A, Renda F, Somma MP, Gatti M, Vernì F. A Role for the Twins Protein Phosphatase (PP2A-B55) in the Maintenance of Drosophila Genome Integrity. Genetics 2017; 205:1151-1167. [PMID: 28040742 PMCID: PMC5340330 DOI: 10.1534/genetics.116.192781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/21/2016] [Indexed: 01/14/2023] Open
Abstract
The protein phosphatase 2A (PP2A) is a conserved heterotrimeric enzyme that regulates several cellular processes including the DNA damage response and mitosis. Consistent with these functions, PP2A is mutated in many types of cancer and acts as a tumor suppressor. In mammalian cells, PP2A inhibition results in DNA double strand breaks (DSBs) and chromosome aberrations (CABs). However, the mechanisms through which PP2A prevents DNA damage are still unclear. Here, we focus on the role of the Drosophila twins (tws) gene in the maintenance of chromosome integrity; tws encodes the B regulatory subunit (B/B55) of PP2A. Mutations in tws cause high frequencies of CABs (0.5 CABs/cell) in Drosophila larval brain cells and lead to an abnormal persistence of γ-H2Av repair foci. However, mutations that disrupt the PP4 phosphatase activity impair foci dissolution but do not cause CABs, suggesting that a delayed foci regression is not clastogenic. We also show that Tws is required for activation of the G2/M DNA damage checkpoint while PP4 is required for checkpoint recovery, a result that points to a conserved function of these phosphatases from flies to humans. Mutations in the ATM-coding gene tefu are strictly epistatic to tws mutations for the CAB phenotype, suggesting that failure to dephosphorylate an ATM substrate(s) impairs DNA DSBs repair. In addition, mutations in the Ku70 gene, which do not cause CABs, completely suppress CAB formation in tws Ku70 double mutants. These results suggest the hypothesis that an improperly phosphorylated Ku70 protein can lead to DNA damage and CABs.
Collapse
Affiliation(s)
- Chiara Merigliano
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Antonio Marzio
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Fioranna Renda
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| | - Maria Patrizia Somma
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Sapienza, Università di Roma, 00185, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Sapienza, Università di Roma, 00185, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, Università di Roma, 00185, Italy
| |
Collapse
|
10
|
Koike M, Yutoku Y, Koike A. Cloning, localization and focus formation at DNA damage sites of canine Ku70. J Vet Med Sci 2017; 79:554-561. [PMID: 28163277 PMCID: PMC5383176 DOI: 10.1292/jvms.16-0649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Understanding the molecular mechanisms of DNA double-strand break (DSB) repair machinery, specifically non-homologous DNA-end joining (NHEJ), is crucial for
developing next-generation radiotherapies and common chemotherapeutics for human and animal cancers. The localization, protein-protein interactions and
post-translational modifications of core NHEJ factors, might play vital roles for regulation of NHEJ activity. The human Ku heterodimer (Ku70/Ku80) is a core
NHEJ factor in the NHEJ pathway and is involved in sensing of DSBs. Companion animals, such as canines, have been proposed to be an excellent model for cancer
research, including development of chemotherapeutics. However, the post-translational modifications, localization and complex formation of canine Ku70 have not
been clarified. Here, we show that canine Ku70 localizes in the nuclei of interphase cells and that it is recruited quickly at laser-microirradiated DSB sites.
Structurally, two DNA-PK phosphorylation sites (S6 and S51), an ubiquitination site (K114), two canonical sumoylation consensus motifs, a CDK phosphorylation
motif, and a nuclear localization signal (NLS) in the human Ku70 are evolutionarily conserved in canine and mouse species, while the acetylation sites in human
Ku70 are partially conserved. Intriguingly, the primary candidate nucleophile (K31) required for 5’dRP/AP lyase activity of human and mouse Ku70 is not
conserved in canines, suggesting that canine Ku does not possess this activity. Our findings provide insights into the molecular mechanisms of Ku-dependent NHEJ
in a canine model and form a platform for the development of next-generation common chemotherapeutics for human and animal cancers.
Collapse
Affiliation(s)
- Manabu Koike
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | |
Collapse
|
11
|
Fell VL, Walden EA, Hoffer SM, Rogers SR, Aitken AS, Salemi LM, Schild-Poulter C. Ku70 Serine 155 mediates Aurora B inhibition and activation of the DNA damage response. Sci Rep 2016; 6:37194. [PMID: 27849008 PMCID: PMC5111114 DOI: 10.1038/srep37194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022] Open
Abstract
The Ku heterodimer (Ku70/Ku80) is the central DNA binding component of the classical non-homologous end joining (NHEJ) pathway that repairs DNA double-stranded breaks (DSBs), serving as the scaffold for the formation of the NHEJ complex. Here we show that Ku70 is phosphorylated on Serine 155 in response to DNA damage. Expression of Ku70 bearing a S155 phosphomimetic substitution (Ku70 S155D) in Ku70-deficient mouse embryonic fibroblasts (MEFs) triggered cell cycle arrest at multiple checkpoints and altered expression of several cell cycle regulators in absence of DNA damage. Cells expressing Ku70 S155D exhibited a constitutive DNA damage response, including ATM activation, H2AX phosphorylation and 53BP1 foci formation. Ku70 S155D was found to interact with Aurora B and to have an inhibitory effect on Aurora B kinase activity. Lastly, we demonstrate that Ku and Aurora B interact following ionizing radiation treatment and that Aurora B inhibition in response to DNA damage is dependent upon Ku70 S155 phosphorylation. This uncovers a new pathway where Ku may relay signaling to Aurora B to enforce cell cycle arrest in response to DNA damage.
Collapse
Affiliation(s)
- Victoria L Fell
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Elizabeth A Walden
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Sarah M Hoffer
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Stephanie R Rogers
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Amelia S Aitken
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Louisa M Salemi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine &Dentistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|