1
|
Qian L, Liang Z, Wang Z, Wang J, Li X, Zhao J, Li Z, Chen L, Liu Y, Ju Y, Li C, Meng S. Cellular gp96 upregulates AFP expression by blocking NR5A2 SUMOylation and ubiquitination in hepatocellular carcinoma. J Mol Cell Biol 2023; 15:mjad027. [PMID: 37204028 DOI: 10.1093/jmcb/mjad027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
Alpha-fetoprotein (AFP) is the most widely used biomarker for the diagnosis of hepatocellular carcinoma (HCC). However, a substantial proportion of HCC patients have either normal or marginally increased AFP levels in serum, and the underlying mechanisms are not fully understood. In the present study, we provided in vitro and in vivo evidence that heat shock protein gp96 promoted AFP expression at the transcriptional level in HCC. NR5A2 was identified as a key transcription factor for the AFP gene, and its stability was enhanced by gp96. A further mechanistic study by co-immunoprecipitation, GST pull-down, and molecular docking showed gp96 and the SUMO E3 ligase RanBP2 competitively binding to NR5A2 at the sites spanning from aa 507 to aa 539. The binding of gp96 inhibited SUMOylation, ubiquitination, and subsequent degradation of NR5A2. In addition, clinical analysis of HCC patients indicated that gp96 expression in tumors was positively correlated with serum AFP levels. Therefore, our study uncovered a novel mechanism that gp96 regulates the stability of its client proteins by directly affecting their SUMOylation and ubiquitination. These findings will help in designing more accurate AFP-based HCC diagnosis and progression monitoring approaches.
Collapse
Affiliation(s)
- Liyuan Qian
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhentao Liang
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Zihao Wang
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Jiuru Wang
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xin Li
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH 43210, USA
| | - Lizhao Chen
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongai Liu
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Ying Ju
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Changfei Li
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Songdong Meng
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Science, Beijing 100049, China
| |
Collapse
|
2
|
Al-Kabariti AY, Abbas MA. Progress in the Understanding of Estrogen Receptor Alpha Signaling in Triple-Negative Breast Cancer: Reactivation of Silenced ER-α and Signaling through ER-α36. Mol Cancer Res 2023; 21:1123-1138. [PMID: 37462782 DOI: 10.1158/1541-7786.mcr-23-0321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 11/02/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive tumor that accounts for approximately 15% of total breast cancer cases. It is characterized by poor prognosis and high rate of recurrence compared to other types of breast cancer. TNBC has a limited range of treatment options that include chemotherapy, surgery, and radiation due to the absence of estrogen receptor alpha (ER-α) rendering hormonal therapy ineffective. However, possible targets for improving the clinical outcomes in TNBC exist, such as targeting estrogen signaling through membranous ER-α36 and reactivating silenced ER-α. It has been shown that epigenetic drugs such as DNA methyltransferase and histone deacetylase inhibitors can restore the expression of ER-α. This reactivation of ER-α, presents a potential strategy to re-sensitize TNBC to hormonal therapy. Also, this review provides up-to-date information related to the direct involvement of miRNA in regulating the translation of ER-α mRNA. Specific epi-miRNAs can regulate ER-α expression indirectly by post-transcriptional targeting of mRNAs of enzymes that are involved in DNA methylation and histone deacetylation. Furthermore, ER-α36, an alternative splice variant of ER-α66, is highly expressed in ER-negative breast tumors and activates MAPK/ERK pathway, promoting cell proliferation, escaping apoptosis, and enhancing metastasis. In the future, these recent advances may be helpful for researchers working in the field to obtain novel treatment options for TNBC, utilizing epigenetic drugs and epi-miRNAs that regulate ER-α expression. Also, there is some evidence to suggest that drugs that decrease the expression of ER-α36 may be effective in treating TNBC.
Collapse
Affiliation(s)
- Aya Y Al-Kabariti
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
| | - Manal A Abbas
- Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
3
|
Li L, Duns GJ, Dessie W, Cao Z, Ji X, Luo X. Recent advances in peptide-based therapeutic strategies for breast cancer treatment. Front Pharmacol 2023; 14:1052301. [PMID: 36794282 PMCID: PMC9922721 DOI: 10.3389/fphar.2023.1052301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related fatalities in female worldwide. Effective therapies with low side effects for breast cancer treatment and prevention are, accordingly, urgently required. Targeting anticancer materials, breast cancer vaccines and anticancer drugs have been studied for many years to decrease side effects, prevent breast cancer and suppress tumors, respectively. There are abundant evidences to demonstrate that peptide-based therapeutic strategies, coupling of good safety and adaptive functionalities are promising for breast cancer therapy. In recent years, peptide-based vectors have been paid attention in targeting breast cancer due to their specific binding to corresponding receptors overexpressed in cell. To overcome the low internalization, cell penetrating peptides (CPPs) could be selected to increase the penetration due to the electrostatic and hydrophobic interactions between CPPs and cell membranes. Peptide-based vaccines are at the forefront of medical development and presently, 13 types of main peptide vaccines for breast cancer are being studied on phase III, phase II, phase I/II and phase I clinical trials. In addition, peptide-based vaccines including delivery vectors and adjuvants have been implemented. Many peptides have recently been used in clinical treatments for breast cancer. These peptides show different anticancer mechanisms and some novel peptides could reverse the resistance of breast cancer to susceptibility. In this review, we will focus on current studies of peptide-based targeting vectors, CPPs, peptide-based vaccines and anticancer peptides for breast cancer therapy and prevention.
Collapse
Affiliation(s)
- Ling Li
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Gregory J. Duns
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Wubliker Dessie
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Zhenmin Cao
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Xiaofang Luo
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| |
Collapse
|
4
|
Wei R, Zhou B, Li S, Zhong D, Li B, Qin J, Zhao L, Qin L, Hu J, Wang J, Yang S, Zhao J, Meng S. Plasma gp96 is a Novel Predictive Biomarker for Severe COVID-19. Microbiol Spectr 2021; 9:e0059721. [PMID: 34817280 PMCID: PMC8612155 DOI: 10.1128/spectrum.00597-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022] Open
Abstract
Early and effective identification of severe coronavirus disease 2019 (COVID-19) may allow us to improve the outcomes of associated severe acute respiratory illness with fever and respiratory symptoms. This study analyzed plasma concentrations of heat shock protein gp96 in nonsevere (including mild and typical) and severe (including severe and critical) patients with COVID-19 to evaluate its potential as a predictive and prognostic biomarker for disease severity. Plasma gp96 levels that were positively correlated with interleukin-6 (IL-6) levels were significantly elevated in COVID-19 patients admitted to the hospital but not in non-COVID-19 patients with less severe respiratory impairment. Meanwhile, significantly higher gp96 levels were observed in severe than nonsevere patients. Moreover, the continuous decline of plasma gp96 levels predicted disease remission and recovery, whereas its persistently high levels indicated poor prognosis in COVID-19 patients during hospitalization. Finally, monocytes were identified as the major IL-6 producers under exogenous gp96 stimulation. Our results demonstrate that plasma gp96 may be a useful predictive and prognostic biomarker for disease severity and outcome of COVID-19. IMPORTANCE Early and effective identification of severe COVID-19 may allow us to improve the outcomes of associated severe acute respiratory illness with fever and respiratory symptoms. Some heat shock proteins (Hsps) are released during oxidative stress, cytotoxic injury, and viral infection and behave as danger-associated molecular patterns (DAMPs). This study analyzed plasma concentrations of Hsp gp96 in nonsevere and severe patients with COVID-19. Significantly higher plasma gp96 levels were observed in severe than those in nonsevere patients, and its persistently high levels indicated poor prognosis in COVID-19 patients. The results demonstrate that plasma gp96 may be a useful predictive and prognostic biomarker for disease severity and outcome of COVID-19.
Collapse
Affiliation(s)
- Rongguo Wei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Biyan Zhou
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaohua Li
- Department of Pathology and Hepatology, The 5th Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Debin Zhong
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Boan Li
- Department of Clinical Laboratory, The 5th Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jianqiu Qin
- Nanning Municipal Center for Disease Control and Prevention, Nanning, China
| | - Liping Zhao
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lixian Qin
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiuru Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shixiong Yang
- Nanning Municipal Center for Disease Control and Prevention, Nanning, China
| | - Jingming Zhao
- Department of Pathology and Hepatology, The 5th Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Zhang X, Zhang A, Zhang X, Hu S, Bao Z, Zhang Y, Jiang X, He H, Zhang TC. ERa-36 instead of ERa mediates the stimulatory effects of estrogen on the expression of viral oncogenes HPV E6/E7 and the malignant phenotypes in cervical cancer cells. Virus Res 2021; 306:198602. [PMID: 34662680 DOI: 10.1016/j.virusres.2021.198602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/13/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022]
Abstract
High risk human papillomavirus (HPV) is the main causative factor of cervical cancer. In addition, estrogen and its receptors are also involved in the development of carcinogenesis. The canonical estrogen receptor ERα is frequently deficient while its variant ERα-36 is highly expressed in cervical cancer cells. The biological significance for this receptor transition from ERα to ERα-36 remains unclear. In the present study, the results of RT-PCR and Western blot demonstrated that ERα and ERα-36 function antagonistically on the expression of the viral oncogenes HPV E6 and E7. At mRNA and protein levels, ERα inhibited HPV E6/E7 expression whereas ERα-36 stimulated HPV E6/E7 expression. Overexpression of ERα-36 promoted cell proliferation while reintroduction of ERα into cervical cancer cells did not significantly affect cell proliferation which is in line with the different effects of . ERα-36 and ERα on the expression of cell cycle regulator, namely p53, p21 and cyclin D1. Furthermore, ERα suppressed whereas ERα-36 promoted the migration and invasion of cervical cancer cells, which should be related to the oppositive roles of ERα and ERα-36 in the Wnt/β-catenin/MRTF-A signaling pathway which is activated by HPV E7. Results of this study suggest that ERα functions as a tumor suppressor whereas ERα-36 is an oncoprotein in cervical cancer cells. ERα deficiency together with ERα-36 overexpression might enhance the expression of HPV E6/E7 genes and facilitate the development of cervical cancer. Targeting ERα-36 with selective antagonists should be a promising strategy for cervical cancer therapy.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Aowei Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xi Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shiyue Hu
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhenghao Bao
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yuhao Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaoyan Jiang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hongpeng He
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Life Sciences, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
6
|
Kim JW, Cho YB, Lee S. Cell Surface GRP94 as a Novel Emerging Therapeutic Target for Monoclonal Antibody Cancer Therapy. Cells 2021; 10:cells10030670. [PMID: 33802964 PMCID: PMC8002708 DOI: 10.3390/cells10030670] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
Glucose-regulated protein 94 (GRP94) is an endoplasmic reticulum (ER)-resident member of the heat shock protein 90 (HSP90) family. In physiological conditions, it plays a vital role in regulating biological functions, including chaperoning cellular proteins in the ER lumen, maintaining calcium homeostasis, and modulating immune system function. Recently, several reports have shown the functional role and clinical relevance of GRP94 overexpression in the progression and metastasis of several cancers. Therefore, the current review highlights GRP94’s physiological and pathophysiological roles in normal and cancer cells. Additionally, the unmet medical needs of small chemical inhibitors and the current development status of monoclonal antibodies specifically targeting GRP94 will be discussed to emphasize the importance of cell surface GRP94 as an emerging therapeutic target in monoclonal antibody therapy for cancer.
Collapse
|
7
|
Liang Z, Du L, Zhang E, Zhao Y, Wang W, Ma P, Dai M, Zhao Q, Xu H, Zhang S, Zhen Y. Targeted-delivery of siRNA via a polypeptide-modified liposome for the treatment of gp96 over-expressed breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111847. [PMID: 33579510 DOI: 10.1016/j.msec.2020.111847] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 11/30/2020] [Accepted: 12/27/2020] [Indexed: 12/15/2022]
Abstract
Targeted gene therapy has led to significant breakthroughs in cancer treatment. Heat shock protein gp96 is an emerging target for tumor treatment because of its transfer ability from reticulum to tumor cell surface. CDO14 is a peptide cationic liposome developed in our laboratory with higher gene transfection efficiency and lower toxicity compared with the existing cationic liposomes. In this study, gp96-targeted liposome p37-CDO14 was constructed by modifying cationic liposome CDO14 with a gp96 inhibitor, helical polypeptide p37. Liposome p37-CDO14 could specifically bind to breast cancer cells with gp96-overexpression on the cell membrane. Both liposomes CDO14 and p37-CDO14 showed high delivery efficiency for survivin siRNA (siSuvi) to SK-BR-3 and MCF-7 cells via obviously decreased survivin expression level and cell viability. P37-CDO14 significantly increased the accumulation of FAM-siRNA in tumor compared with CDO14. SiSuvi transfected by CDO14 and p37-CDO14 could inhibit the growth of xenograft in mice and the expression of survivin in tumor tissues. The anti-tumor effect of siSuvi delivered by p37-CDO14 was much higher than that delivered by CDO14. This suggests that targeted liposome p37-CDO14 is a potential gene vector for the therapy of gp96 overexpressed breast cancer.
Collapse
Affiliation(s)
- Ze Liang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Linying Du
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Enxia Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Wei Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Pengfei Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Mengyuan Dai
- The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Qi Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hong Xu
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
8
|
Externalized Keratin 8: A Target at the Interface of Microenvironment and Intracellular Signaling in Colorectal Cancer Cells. Cancers (Basel) 2018; 10:cancers10110452. [PMID: 30453567 PMCID: PMC6266717 DOI: 10.3390/cancers10110452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence supports the remarkable presence at the membrane surface of cancer cells of proteins, which are normally expressed in the intracellular compartment. Although these proteins, referred to as externalized proteins, represent a highly promising source of accessible and druggable targets for cancer therapy, the mechanisms via which they impact cancer biology remain largely unexplored. The aim of this study was to expose an externalized form of cytokeratin 8 (eK8) as a key player of colorectal tumorigenesis and characterize its mode of action. To achieve this, we generated a unique antagonist monoclonal antibody (D-A10 MAb) targeting an eight-amino-acid-long domain of eK8, which enabled us to ascertain the pro-tumoral activity of eK8 in both KRAS-mutant and wild-type colorectal cancers (CRC). We showed that this pro-tumoral activity involves a bidirectional eK8-dependent control of caspase-mediated apoptosis in vivo and of the plasminogen-induced invasion process in cellulo. Furthermore, we demonstrated that eK8 is anchored at the plasma membrane supporting this dual function. We, therefore, identified eK8 as an innovative therapeutic target in CRC and provided a unique MAb targeting eK8 that displays anti-neoplastic activities that could be useful to treat CRC, including those harboring KRAS mutations.
Collapse
|
9
|
Fu Z, Wang X, Wang Z, Liu L. Estrogen receptor-α36-mediated rapid estrogen signaling regulates 78 kDa glucose-regulated protein expression in gastric carcinoma cells. Oncol Lett 2018; 15:10031-10036. [PMID: 29805694 DOI: 10.3892/ol.2018.8542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/18/2017] [Indexed: 11/05/2022] Open
Abstract
To determine whether estrogen receptor-α36 (ER-α36) -mediated rapid estrogen signaling is associated with 78 kDa glucose-regulated protein (GRP78) expression in gastric cancer, 86 samples of gastric tumor tissue with corresponding normal and tumor-adjacent tissues were used to examine expression patterns of GRP78 and ER-α36. Immunohistochemistry demonstrated that 55/86 (63.95%) patients with gastric carcinoma, and western blot analysis revealed that GRP78 was upregulated in 15/20 (75%) of tumor specimens. GRP78 expression was positively associated with ER-α36 expression, the male sex and lymph node metastasis (P<0.05). Estrogen treatment increased GRP78 and ER-α36 expression, as well as GSK-3β phosphorylation in established gastric cancer SGC-7901 cells. The steady-state level of GRP78 protein expression and the level of phosphorylated GSK-3β at Ser9 were decreased in SGC-7901 cells with ER-α36 knockdown. Forced expression of ER-α36 in SGC-7901 cells, however, led to an increase in GRP78 expression and GSK-3β phosphorylation. It may therefore be concluded that ER-α36-mediated rapid estrogen signaling positively regulates GRP78 expression, presumably via the GSK-3β pathway, which may be associated with gastric carcinogenesis.
Collapse
Affiliation(s)
- Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China.,Jiangda Pathology Institute, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Xuming Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China
| | - Zhaoyi Wang
- Shenogen Pharma Group, Beijing 102206, P.R. China
| | - Lijiang Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China.,Jiangda Pathology Institute, Jianghan University, Wuhan, Hubei 430056, P.R. China
| |
Collapse
|
10
|
Dai YJ, Qiu YB, Jiang R, Xu M, Liao LY, Chen GG, Liu ZM. Concomitant high expression of ERα36, GRP78 and GRP94 is associated with aggressive papillary thyroid cancer behavior. Cell Oncol (Dordr) 2018; 41:269-282. [PMID: 29368272 DOI: 10.1007/s13402-017-0368-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Papillary thyroid cancer (PTC) is more common in women than in men. It has been suggested that estrogen may be involved in its development, as has previously been shown for breast, endometrial and ovarian cancer. The purpose of this study was to assess correlations between the expression of the estrogen receptor alpha36 (ERα36) and the glucose regulated proteins GRP78 and GRP94 (chaperones involved in glycoprotein folding) and various PTC clinicopathological features, as well as to evaluate the potential usefulness of these three potential oncogenic proteins in the prediction of aggressive PTC behavior. METHODS ERα36, GRP78 and GRP94 protein expression in 218 primary PTC tissues and PTC-derived BCPAP cells was examined using immunohistochemistry, Western blotting and immunocytochemistry. The proliferative, invasive and migrative capacities of BCPAP cells in which the respective genes were either exogenously over-expressed or silenced were assessed using BrdU incorporation and Transwell assays, respectively. RESULTS We found that ERα36, GRP78 and GRP94 protein expression was upregulated in the primary PTC tissues tested. We also found that ERα36, GRP78 and GRP94 expression modulation affected the proliferation, invasion and migration of PTC-derived BCPAP cells. A positive correlation and a positive feedback loop were noted between ERα36, GRP78 and GRP94 protein expression in the primary PTC tissues and in BCPAP cells, respectively. High ERα36 expression in combination with a high GRP78/ GRP94 expression was found to have a stronger correlation with extrathyroid extension (ETE), lymph node metastasis (LNM), distant metastasis (DM) and high TNM stage than high ERα36 expression in combination with either high GRP78 or high GRP94 expression (p = 0.028 for ETE, p = 0.002 for DM and p ≤ 0.001 for LNM and high TNM stage) or high ERα36 expression alone (p < 0.001 for ETE, LNM, DM and high TNM stage). CONCLUSIONS From our data we conclude that a concomitant high expression of ERα36, GRP78 and GRP94 is strongly associated with aggressive PTC behavior and may be used as a predictor for ETE, LNM, DM and high TNM stage.
Collapse
Affiliation(s)
- Yu-Jie Dai
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yi-Bo Qiu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Rong Jiang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Man Xu
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Ling-Yao Liao
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - George G Chen
- Department of Surgery, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T, Hong Kong, China
| | - Zhi-Min Liu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
11
|
Fu Z, Wang X, Zhou H, Li Y, Chen Y, Wang Z, Liu L. GRP78 positively regulates estrogen-stimulated cell growth mediated by ER-α36 in gastric cancer cells. Mol Med Rep 2017; 16:8329-8334. [DOI: 10.3892/mmr.2017.7615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/09/2017] [Indexed: 01/30/2023] Open
|
12
|
Tecalco-Cruz AC, Ramírez-Jarquín JO. Mechanisms that Increase Stability of Estrogen Receptor Alpha in Breast Cancer. Clin Breast Cancer 2016; 17:1-10. [PMID: 27561704 DOI: 10.1016/j.clbc.2016.07.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor alpha (ER) is a transcriptional regulator that controls the expression of genes related to cellular proliferation and differentiation in normal mammary tissue. However, the expression, abundance, and activity of this receptor are increased in 70% of breast cancers. The ER upregulation is facilitated by several molecular mechanisms, including protein stability, which represents an important strategy to maintain an active and functional repertoire of ER. Several proteins interact and protect ER from degradation by the ubiquitin-proteasome system. Through diverse mechanisms, these proteins prevent polyubiquitination and degradation of ER, leading to an increase in ER protein levels; consequently, estrogen signaling and its physiologic effects are enhanced in breast cancer cells. Thus, increased protein stability seems to be one of the main reasons that ER is upregulated in breast cancer. Here, we highlight findings on the proteins and mechanisms that participate directly or indirectly in ER stability and their relevance to breast cancer.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Programa de Investigación de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., Mexico.
| | - Josué O Ramírez-Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| |
Collapse
|