1
|
Kur IM, Weigert A. Phosphatidylserine externalization as immune checkpoint in cancer. Pflugers Arch 2024; 476:1789-1802. [PMID: 38573347 PMCID: PMC11582130 DOI: 10.1007/s00424-024-02948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
Cancer is the second leading cause of mortality worldwide. Despite recent advances in cancer treatment including immunotherapy with immune checkpoint inhibitors, new unconventional biomarkers and targets for the detection, prognosis, and treatment of cancer are still in high demand. Tumor cells are characterized by mutations that allow their unlimited growth, program their local microenvironment to support tumor growth, and spread towards distant sites. While a major focus has been on altered tumor genomes and proteomes, crucial signaling molecules such as lipids have been underappreciated. One of these molecules is the membrane phospholipid phosphatidylserine (PS) that is usually found at cytosolic surfaces of cellular membranes but can be rapidly and massively shuttled to the extracellular leaflet of the plasma membrane during apoptosis to serve as a limiting factor for immune responses. These immunosuppressive interactions are exploited by tumor cells to evade the immune system. In this review, we describe mechanisms of immune regulation in tumors, discuss if PS may constitute an inhibitory immune checkpoint, and describe current and future strategies for targeting PS to reactivate the tumor-associated immune system.
Collapse
Affiliation(s)
- Ivan-Maximiliano Kur
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany.
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany.
| |
Collapse
|
2
|
Makela AV, Tundo A, Liu H, Schneider D, Hermiston T, Khodakivskyi P, Goun E, Contag CH. Targeted intracellular delivery of molecular cargo to hypoxic human breast cancer stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575071. [PMID: 39605477 PMCID: PMC11601403 DOI: 10.1101/2024.01.12.575071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cancer stem cells (CSCs) drive tumorigenesis, are responsible for metastasis, and resist conventional therapies thus posing significant treatment challenges. CSCs reside in hypoxic tumor regions and therefore, effective therapies must target CSCs within this specific microenvironment. CSCs are characterized by limited distinguishable features, however, surface displayed phosphatidylserine (PS) appears to be characteristic of stem cells and offers a potential target. GlaS, a truncated coagulation protein that is internalized after binding PS, was investigated for intracellular delivery of molecular payloads to CSCs. Intracellular delivery via GlaS was enhanced in patient-derived CD44+ mammary CSCs under hypoxic conditions relative to physoxia or hyperoxia. In vivo, GlaS successfully targeted hypoxic tumor regions, and functional delivery of molecular cargo was confirmed using luciferin conjugated to GlaS via a disulfide linkage (GlaS-SS-luc), which releases luciferin upon intracellular glutathione reduction. Bioluminescence imaging demonstrated effective GlaS-mediated delivery of luciferin, a model drug, to CSCs in culture and in vivo. These findings offer the promise of directed delivery of therapeutic agents to intracellular targets in CSCs.
Collapse
Affiliation(s)
- Ashley V Makela
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI
| | - Anthony Tundo
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI
| | - Huiping Liu
- Department of Pharmacology and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | - Elena Goun
- Department of Chemistry, University of Missouri, Columbia, MO
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing MI
- Departments of Biomedical Engineering, and Microbiology, Genetics, and Immunology, Michigan State University, East Lansing MI
| |
Collapse
|
3
|
Laurindo LF, de Lima EP, Laurindo LF, Rodrigues VD, Chagas EFB, de Alvares Goulart R, Araújo AC, Guiguer EL, Pomini KT, Rici REG, Maria DA, Direito R, Barbalho SM. The therapeutic potential of bee venom-derived Apamin and Melittin conjugates in cancer treatment: A systematic review. Pharmacol Res 2024; 209:107430. [PMID: 39332751 DOI: 10.1016/j.phrs.2024.107430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
The therapeutic potential of bee venom-derived peptides, particularly apamin and melittin, in cancer treatment has garnered significant attention as a promising avenue for advancing oncology. This systematic review examines preclinical studies highlighting the emerging role of these peptides in enhancing cancer therapies. Melittin and apamin, when conjugated with other therapeutic agents or formulated into novel delivery systems, have demonstrated improved efficacy in targeting tumor cells. Key findings indicate that melittin-based conjugates, such as polyethylene glycol (PEG)ylated versions, show potential in enhancing therapeutic outcomes and minimizing toxicity across various cancer models. Similarly, apamin-conjugated formulations have improved the efficacy of established anti-cancer drugs, contributing to enhanced targeting and reduced systemic toxicity. These developments underscore a growing interest in leveraging bee venom-derived peptides as adjuncts in cancer therapy. The integration of these peptides into treatment regimens offers a promising strategy to address current limitations in cancer treatment, such as drug resistance and off-target effects. However, comprehensive validation through clinical trials is essential to confirm their safety and effectiveness in human patients. This review highlights the global emergence of bee venom-derived peptides in cancer treatment, advocating for continued research and development to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo 17519-030, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil
| | - Lívia Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo 17519-030, Brazil
| | - Eduardo Federighi Baisi Chagas
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo 17500-000, Brazil
| | - Karina Torres Pomini
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil
| | - Rose Eli Grassi Rici
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Graduate Program in Anatomy of Domestic and Wild Animals, College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-220, Brazil
| | - Durvanei Augusto Maria
- Development and innovation Laboratory, Butantan Institute, São Paulo, São Paulo 05585-000, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines, Universidade de Lisboa (iMed.ULisboa), Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil; Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo 17500-000, Brazil; UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília, São Paulo 17525-902, Brazil
| |
Collapse
|
4
|
Lara-Vega I. Upgrading Melanoma Treatment: Promising Immunotherapies Combinations
in the Preclinical Mouse Model. CURRENT CANCER THERAPY REVIEWS 2024; 20:489-509. [DOI: 10.2174/0115733947263244231002042219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 08/25/2023] [Indexed: 01/03/2025]
Abstract
Background:
Melanoma, known for its high metastatic potential, does not respond well to
existing treatments in advanced stages. As a solution, immunotherapy-based treatments, including
anti-PD-1/L1 and anti-CTLA-4, have been developed and evaluated in preclinical mouse models to
overcome resistance. Although these treatments display the potential to suppress tumor growth, there
remains a crucial requirement for a thorough assessment of long-term efficacy in preventing metastasis
or recurrence and improving survival rates.
Methods:
From 2016 onwards, a thorough examination of combined immunotherapies for the treatment
of cutaneous melanoma in preclinical mouse models was conducted. The search was conducted
using MeSH Terms algorithms in PubMed®, resulting in the identification of forty-five studies that
met the rigorous inclusion criteria for screening.
Results:
The C57 mouse model bearing B16-melanoma has been widely utilized to assess the efficacy
of immunotherapies. The combination of therapies has demonstrated a synergistic impact, leading
to potent antitumor activity. One extensively studied method for establishing metastatic models involves
the intravenous administration of malignant cells, with several combined therapies under investigation.
The primary focus of evaluation has been on combined immunotherapies utilizing PD-
1/L1 and CTLA-4 blockade, although alternative immunotherapies not involving PD-1/L1 and
CTLA-4 blockade have also been identified. Additionally, the review provides detailed treatment regimens
for each combined approach.
Conclusion:
The identification of techniques for generating simulated models of metastatic melanoma
and investigating various therapeutic combinations will greatly aid in evaluating the overall systemic
efficacy of immunotherapy. This will be especially valuable for conducting short-term preclinical
experiments that have the potential for clinical studies.
Collapse
Affiliation(s)
- Israel Lara-Vega
- National School of Biological Sciences, IPN. Av. Wilfrido Massieu s/n, Professional Unit Adolfo Lopez Mateos, Mexico
City, CP 07738, Mexico
| |
Collapse
|
5
|
Miceli R, Allen NG, Subramaniam B, Carmody L, Dordick JS, Corr DT, Cotten M, Gross RA. Synergistic Treatment of Breast Cancer by Combining the Antimicrobial Peptide Piscidin with a Modified Glycolipid. ACS OMEGA 2024; 9:33408-33424. [PMID: 39130564 PMCID: PMC11308023 DOI: 10.1021/acsomega.3c09902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 08/13/2024]
Abstract
Piscidin 3 (P3), a peptide produced by fish, and a hexyl ester-modified sophorolipid (SL-HE), have individually shown promise as antimicrobial and anticancer drugs. A recent report by our team revealed that combining P3 with SL-HE in a 1:8 molar ratio resulted in an 8-fold enhancement in peptide activity, while SL-HE improved by 25-fold its antimicrobial activity against the Gram-positive microorganism Bacillus cereus. Extending these findings, the same P3/SL-HE combination was assessed on two breast cancer cell lines: BT-474, a hormonally positive cell line, and MDA-MB-231, an aggressive triple-negative cell line. The results demonstrated that the 1:8 molar ratio of P3/SL-HE synergistically enhances the anticancer effects against both tumorigenic breast cell lines. Mechanistic studies indicate the activation of an intrinsic apoptotic cell death mechanism through an increase in reactive oxygen species and mitochondrial dysfunction and a secondary programmed necrotic pathway that involves pore formation in the plasma membrane. When a fibroblast cell line, CCD1065SK HDF, was utilized to determine selectivity, the synergistic SL-HE/P3 combination exhibited a protective property compared to the use of SL-HE alone and therefore afforded vastly improved selectivity indices. Given the promising results reported herein, the synergistic combination of P3/SL-HE constitutes a novel strategy that merits further study for the treatment of breast cancer.
Collapse
Affiliation(s)
- Rebecca
T. Miceli
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Noah G. Allen
- Department
of Biomedical Engineering, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Bhagyashree Subramaniam
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Livia Carmody
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
| | - Jonathan S. Dordick
- Department
of Biomedical Engineering, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - David T. Corr
- Department
of Biomedical Engineering, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
| | - Myriam Cotten
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Richard A. Gross
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
6
|
Zheng J, Wang Y, Zhou Y, Li Z, Yang L, Gao J, Zhu J. Augmentation of hepatocellular carcinoma malignancy by annexin A5 through modulation of invasion and angiogenesis. Scand J Gastroenterol 2024; 59:939-953. [PMID: 38742797 DOI: 10.1080/00365521.2024.2353103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/13/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to play a substantial role in cancer-related morbidity and mortality, largely owing to its pronounced tumor heterogeneity and propensity for recurrence. This underscores the pressing need for in-depth examination of its highly malignant mechanisms. Annexin A5 (ANXA5), recognized as a hallmark tumor protein, has emerged as a focal point of interest because of its ambiguous function and mechanism in HCC prognosis. This study aimed to provide a comprehensive understanding of the role of ANXA5 in the malignant progression of human HCC cells by employing an integrative approach that combines conventional experimental methods with RNA sequencing. METHODS Differences in ANXA5 expression between HCC tissues and corresponding nontumor tissues were evaluated using immunofluorescence (n = 25). Correlation analysis was subsequently performed to assess the association between ANXA5 expression and clinicopathological features (n = 65). The role of ANXA5 in human HCC cell lines with ANXA5 gene knockout and overexpression was explored in vitro using migration and invasion assays and Ki-67 indices and in vivo based on node mice xenograft model. A tube formation assay using human umbilical vein endothelial cells (HUVECs) was conducted to demonstrate the angiogenic effects of ANXA5 in HCC. Single-cell and bulk RNA sequencing was used to further investigate the underlying mechanisms involved. RESULTS This study revealed that ANXA5 is highly expressed in patients with HCC and correlates with poor prognosis. Assays for migration, invasion, and proliferation based on ANXA5 gene knockout and overexpression systems in human HCC cell lines have demonstrated that ANXA5 enhances HCC malignancy in vitro and in vivo. Tube formation assays of HUVECs indicated that ANXA5 facilitates angiogenesis and recruits endothelial cells to HCC cells. Single-cell and bulk RNA sequencing data analysis further confirmed that ANXA5 expression in HCC is associated with hepatocyte metabolism, immune response activation, and various oncogenic signaling pathways. CONCLUSIONS This study revealed a meaningful association between elevated ANXA5 expression in tumor tissues and an unfavorable prognosis in patients with HCC. In addition, ANXA5 promotes HCC malignancy by promoting invasion and angiogenesis. Thus, ANXA5 has emerged as a promising therapeutic target for HCC and has the potential to improve patient outcomes.
Collapse
Affiliation(s)
- Jiaxi Zheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Yuheng Zhou
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Li Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| |
Collapse
|
7
|
Mosleh AM, El-Sherif AA, El-Sayed AA, Fahmy HM. Characterization and Cytotoxicity Assessment of Synthesized Palladium (II) Complex-Encapsulated Zinc Oxide Nanoparticles for Cancer Treatment. Cell Biochem Biophys 2024; 82:1225-1234. [PMID: 38744782 DOI: 10.1007/s12013-024-01273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
The treatment of cancer often leads to a range of adverse effects. Encapsulating drugs can mitigate these effects and enhance drug efficacy by enabling a controlled release at the site of interest. This study details the successful synthesis of zinc oxide nanoparticles (ZnONPs) through the precipitation of Zn(NO3)2·6H2O with KOH. A Pd(II) complex drug was synthesized from a Schiff base ligand derived from 2-hydroxybenzohydrazide and (E)-1-(2-(p-tolyl)hydrazono)propan-2-one using potassium tetrachloropalladate(II). This complex was subsequently incorporated into ZnONPs. Characterization of the resulting compounds was performed using Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS), Zeta Potential, Fourier Transform Infrared (FTIR) Spectroscopy, and UV-visible spectroscopy. TEM imaging revealed particle sizes of 160.69 ± 4.74 nm for ZnONPs and 185.28 ± 2.3 nm for the Pd(II) complex-encapsulated ZnONPs. The Zeta potential values were 6.53 mV for ZnONPs and 7.36 mV for Pd(II) complex-encapsulated ZnONPs. UV-visible spectroscopy showed an absorption peak at 360 nm for ZnONPs, while the Pd(II) complex-encapsulated ZnONPs exhibited a peak at 410 nm. FTIR analysis indicated the presence of the Pd(II) complex within the ZnONPs, as evidenced by a consistent Zn-O vibrational band at 832 cm-1 and a shift in another peak from 460 to 413 cm-1. Additionally, the detection of a C = N stretching vibration at 1548 cm-1 and a carbonyl stretch at 1626 cm-1 was observed. The Encapsulation Efficiency (E.E.) of the Pd(II) complex was 97.2%. A drug release experiment conducted at pH 7 showed a steady-state release pattern after 16 h, with a cumulative release of 44.3%. The cytotoxic effects of the Pd(II) complex and its encapsulated form in ZnONPs on the MCF-7 cell line were assessed via MTT test. The Pd(II) complex encapsulated within ZnONPs exhibited decreased toxicity relative to the unencapsulated drug, as evidenced by a higher IC50 value of 418.5 μg/ml. This suggests that the encapsulation facilitates a sustained release, which allows for targeted accumulation within cells. The elevated IC50 value indicates that the drug delivery system may be engineered to modulate the release of the drug in a more controlled manner, potentially resulting in a prolonged release profile rather than an immediate therapeutic impact.
Collapse
Affiliation(s)
- Ayaat M Mosleh
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Ahmed A El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Anwar A El-Sayed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt.
| |
Collapse
|
8
|
Cieniewicz B, Oliveira E, Saxton M, Torabi D, Bhatta A, Kukutla P, Arballo A, Yang Z, Yu B, Fate M, Ning H, Corey L, Maiti A, Corey D. Therapeutic Targeting of TIM-4-L with Engineered T Cells for Acute Myeloid Leukemia. Clin Cancer Res 2024; 30:1878-1888. [PMID: 38451195 DOI: 10.1158/1078-0432.ccr-23-3044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE Disruption of lipid bilayer asymmetry is a common feature observed in cancer cells and offers novel routes for therapeutic targeting. We used the natural immune receptor TIM-4 to interrogate for loss of plasma membrane phospholipid polarity in primary acute myelogenous leukemia (AML) samples and evaluated the anti-leukemic activity of TIM-4-L-directed T-cell therapy in preclinical AML models. EXPERIMENTAL DESIGN We performed FACS analysis on 33 primary AML bone marrow specimens and correlated TIM-4-L expression frequency and intensity with molecular disease characteristics. Using Kasumi-1 and MV-4-11 AML cell lines, we further tested the anti-leukemic effects of TIM-4-L-directed engineered T cells in vitro and in vivo. RESULTS We found that 86% of untreated AML blasts displayed upregulation of cell surface TIM-4-L. These observations were agnostic to AML genetic classification, as samples with mutations in TP53, ASXL1, and RUNX1 displayed TIM-4-L upregulation similar to that seen in favorable and intermediate subtypes. TIM-4-L dysregulation was also stably present in AML cell lines. To evaluate the potential of targeting upregulated TIM-4-L with adoptive T-cell therapy, we constructed TIM-4-L-directed engineered T cells, which demonstrated potent anti-leukemic effects, effectively eliminating AML cell lines with a range of endogenous TIM-4-L expression levels both in vitro and in vivo. CONCLUSIONS These results highlight TIM-4-L as a highly prevalent target on AML across a range of genetic classifications and novel target for T-cell-based therapy in AML. Further investigations into the role of TIM-4-L in AML pathogenesis and its potential as an anti-leukemic target for clinical development are warranted.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Mice
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Female
- Male
- Middle Aged
- Adult
- Aged
- Immunotherapy, Adoptive/methods
Collapse
Affiliation(s)
| | | | - Mike Saxton
- CERo Therapeutics Inc., South San Francisco, California
| | - Damoun Torabi
- CERo Therapeutics Inc., South San Francisco, California
| | - Ankit Bhatta
- CERo Therapeutics Inc., South San Francisco, California
| | | | | | - Zhuo Yang
- CERo Therapeutics Inc., South San Francisco, California
| | - Bi Yu
- CERo Therapeutics Inc., South San Francisco, California
| | - Maria Fate
- CERo Therapeutics Inc., South San Francisco, California
| | - Hongxiu Ning
- CERo Therapeutics Inc., South San Francisco, California
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Abhishek Maiti
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Corey
- CERo Therapeutics Inc., South San Francisco, California
| |
Collapse
|
9
|
Ngotho P, Press KD, Peedell M, Muasya W, Omondi BR, Otoboh SE, Seydel KB, Kapulu M, Laufer M, Taylor T, Bousema T, Marti M. Reversible host cell surface remodelling limits immune recognition and maximizes transmission of Plasmodium falciparum gametocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591837. [PMID: 38746342 PMCID: PMC11092622 DOI: 10.1101/2024.04.30.591837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Reducing malaria transmission has been a major pillar of control programmes and is considered crucial for achieving malaria elimination. Gametocytes, the transmissible forms of the P. falciparum parasite, arise during the blood stage of the parasite and develop through 5 morphologically distinct stages. Immature gametocytes (stage I-IV) sequester and develop in the extravascular niche of the bone marrow and possibly spleen. Only mature stage V gametocytes re-enter peripheral circulation to be taken up by mosquitoes for successful onward transmission. We have recently shown that immature, but not mature gametocytes are targets of host immune responses and identified putative target surface antigens. We hypothesize that these antigens play a role in gametocyte sequestration and contribute to acquired transmission-reducing immunity. Here we demonstrate that surface antigen expression, serum reactivity by human IgG, and opsonic phagocytosis by macrophages all show similar dynamics during gametocyte maturation, i.e., on in immature and off in mature gametocytes. Moreover, the switch in surface reactivity coincides with reversal in phosphatidylserine (PS) surface exposure, a marker for red blood cell age and clearance. PS is exposed on the surface of immature gametocytes (as well as in late asexual stages) but is removed from the surface in later gametocyte stages (IV-V). Using parasite reverse genetics and drug perturbations, we confirm that parasite protein export into the host cell and phospholipid scramblase activity are required for the observed surface modifications in asexual and sexual P. falciparum stages. These findings suggest that the dynamic surface remodelling allows (i) immature gametocyte sequestration in bone marrow and (ii) mature gametocyte release into peripheral circulation and immune evasion, therefore contributing to mature gametocyte survival in vivo and onward transmission to mosquitoes. Importantly, blocking scramblase activity during gametocyte maturation results in efficient clearance of mature gametocytes, revealing a potential path for transmission blocking interventions. Our studies have important implications for our understanding of parasite biology and form a starting point for novel intervention strategies to simultaneously reduce parasite burden and transmission.
Collapse
Affiliation(s)
- Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Megan Peedell
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - William Muasya
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Brian Roy Omondi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stanley E. Otoboh
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Miriam Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine Baltimore, MD, United States
| | - Terrie Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Talaat SM, Elnaggar YSR, Gowayed MA, El-Ganainy SO, Allam M, Abdallah OY. Novel PEGylated cholephytosomes for targeting fisetin to breast cancer: in vitro appraisal and in vivo antitumoral studies. Drug Deliv Transl Res 2024; 14:433-454. [PMID: 37644299 PMCID: PMC10761494 DOI: 10.1007/s13346-023-01409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
Fisetin (FIS) is a multifunctional bioactive flavanol that has been recently exploited as anticancer drug against various cancers including breast cancer. However, its poor aqueous solubility has constrained its clinical application. In the current work, fisetin is complexed for the first time with soy phosphatidylcholine in the presence of cholesterol to form a novel biocompatible phytosomal system entitled "cholephytosomes." To improve fisetin antitumor activity against breast cancer, stearylamine bearing cationic cholephytosomes (mPHY) were prepared and furtherly modified with hyaluronic acid (HPHY) to allow their orientation to cancer cells through their surface exposed phosphatidylserine and CD-44 receptors, respectively. In vitro characterization studies revealed promising physicochemical properties of both modified vesicles (mPHY and HPHY) including excellent FIS complexation efficiency (˷100%), improved octanol/water solubility along with a sustained drug release over 24 h. In vitro cell line studies against MDA-MB-231 cell line showed about 10- and 3.5-fold inhibition in IC50 of modified vesicles compared with free drug and conventional drug-phospholipid complex, respectively. Preclinical studies revealed that both modified cholephytosomes (mPHY and HPHY) had comparable cytotoxicity that is significantly surpassing free drug cytotoxicity. TGF-β1and its non-canonical related signaling pathway; ERK1/2, NF-κB, and MMP-9 were involved in halting tumorigenesis. Thus, tailoring novel phytosomal nanosystems for FIS could open opportunity for its clinical utility against cancer.
Collapse
Affiliation(s)
- Sara M Talaat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
- Head of International Publication and Nanotechnology Center INCC, Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University of Alexandria, Alexandria, Egypt.
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Maram Allam
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
García-Montoya C, García-Linares S, Heras-Márquez D, Majnik M, Laxalde-Fernández D, Amigot-Sánchez R, Martínez-Del-Pozo Á, Palacios-Ortega J. The interaction of the ribotoxin α-sarcin with complex model lipid vesicles. Arch Biochem Biophys 2024; 751:109836. [PMID: 38000493 DOI: 10.1016/j.abb.2023.109836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Fungal ribotoxins are extracellular RNases that inactivate ribosomes by cleaving a single phosphodiester bond at the universally conserved sarcin-ricin loop of the large rRNA. However, to reach the ribosomes, they need to cross the plasma membrane. It is there where these toxins show their cellular specificity, being especially active against tumoral or virus-infected cells. Previous studies have shown that fungal ribotoxins interact with negatively charged membranes, typically containing phosphatidylserine or phosphatidylglycerol. This ability is rooted on their long, non-structured, positively charged loops, and its N-terminal β-hairpin. However, its effect on complex lipid mixtures, including sphingophospholipids or cholesterol, remains poorly studied. Here, wild-type α-sarcin was used to evaluate its interaction with a variety of membranes not assayed before, which resemble much more closely mammalian cell membranes. The results confirm that α-sarcin is particularly sensitive to charge density on the vesicle surface. Its ability to induce vesicle aggregation is strongly influenced by both the lipid headgroup and the degree of saturation of the fatty acid chains. Acyl chain length is indeed particularly important for lipid mixing. Finally, cholesterol plays an important role in diluting the concentration of available negative charges and modulates the ability of α-sarcin to cross the membrane.
Collapse
Affiliation(s)
- Carmen García-Montoya
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Diego Heras-Márquez
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Manca Majnik
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | | | - Rafael Amigot-Sánchez
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | | | - Juan Palacios-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
12
|
Biegała Ł, Gajek A, Szymczak-Pajor I, Marczak A, Śliwińska A, Rogalska A. Targeted inhibition of the ATR/CHK1 pathway overcomes resistance to olaparib and dysregulates DNA damage response protein expression in BRCA2 MUT ovarian cancer cells. Sci Rep 2023; 13:22659. [PMID: 38114660 PMCID: PMC10730696 DOI: 10.1038/s41598-023-50151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
Olaparib is a PARP inhibitor (PARPi) approved for targeted treatment of ovarian cancer (OC). However, its efficacy is impeded by the inevitable occurrence of resistance. Here, we investigated whether the cytotoxic activity of olaparib could be synergistically enhanced in olaparib-resistant OC cells with BRCA2 reversion mutation by the addition of inhibitors of the ATR/CHK1 pathway. Moreover, we provide insights into alterations in the DNA damage response (DDR) pathway induced by combination treatments. Antitumor activity of olaparib alone or combined with an ATR inhibitor (ATRi, ceralasertib) or CHK1 inhibitor (CHK1i, MK-8776) was evaluated in OC cell lines sensitive (PEO1, PEO4) and resistant (PEO1-OR) to olaparib. Antibody microarrays were used to explore changes in expression of 27 DDR-related proteins. Olaparib in combination with ATR/CHK1 inhibitors synergistically induced a decrease in viability and clonogenic survival and an increase in apoptosis mediated by caspase-3/7 in all OC cells. Combination treatments induced cumulative alterations in expression of DDR-related proteins mediating distinct DNA repair pathways and cell cycle control. In the presence of ATRi and CHK1i, olaparib-induced upregulation of proteins determining cell fate after DNA damage (PARP1, CHK1, c-Abl, Ku70, Ku80, MDM2, and p21) was abrogated in PEO1-OR cells. Overall, the addition of ATRi or CHK1i to olaparib effectively overcomes resistance to PARPi exerting anti-proliferative effect in BRCA2MUT olaparib-resistant OC cells and alters expression of DDR-related proteins. These new molecular insights into cellular response to olaparib combined with ATR/CHK1 inhibitors might help improve targeted therapies for olaparib-resistant OC.
Collapse
Affiliation(s)
- Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Street, 90-237, Lodz, Poland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213, Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213, Lodz, Poland
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland.
| |
Collapse
|
13
|
Tagaeva R, Efimova S, Ischenko A, Zhakhov A, Shevtsov M, Ostroumova O. A new look at Hsp70 activity in phosphatidylserine-enriched membranes: chaperone-induced quasi-interdigitated lipid phase. Sci Rep 2023; 13:19233. [PMID: 37932471 PMCID: PMC10628215 DOI: 10.1038/s41598-023-46131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
70 kDa heat shock protein Hsp70 (also termed HSP70A1A) is the major stress-inducible member of the HSP70 chaperone family, which is present on the plasma membranes of various tumor cells, but not on the membranes of the corresponding normal cells. The exact mechanisms of Hsp70 anchoring in the membrane and its membrane-related functions are still under debate, since the protein does not contain consensus signal sequence responsible for translocation from the cytosol to the lipid bilayer. The present study was focused on the analysis of the interaction of recombinant human Hsp70 with the model phospholipid membranes. We have confirmed that Hsp70 has strong specificity toward membranes composed of negatively charged phosphatidylserine (PS), compared to neutral phosphatidylcholine membranes. Using differential scanning calorimetry, we have shown for the first time that Hsp70 affects the thermotropic behavior of saturated PS and leads to the interdigitation that controls membrane thickness and rigidity. Hsp70-PS interaction depended on the lipid phase state; the protein stabilized ordered domains enriched with high-melting PS, increasing their area, probably due to formation of quasi-interdigitated phase. Moreover, the ability of Hsp70 to form ion-permeable pores in PS membranes may also be determined by the bilayer thickness. These observations contribute to a better understanding of Hsp70-PS interaction and biological functions of membrane-bound Hsp70 in cancer cells.
Collapse
Affiliation(s)
- Ruslana Tagaeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, Saint Petersburg, 197341, Russia
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, Saint Petersburg, 194064, Russia
| | - Svetlana Efimova
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, Saint Petersburg, 194064, Russia
| | - Alexander Ischenko
- Saint-Petersburg Pasteur Institute, Mira Str. 14, Saint Petersburg, 197101, Russia
| | - Alexander Zhakhov
- Saint-Petersburg Pasteur Institute, Mira Str. 14, Saint Petersburg, 197101, Russia
| | - Maxim Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, Saint Petersburg, 197341, Russia.
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, Saint Petersburg, 194064, Russia.
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Olga Ostroumova
- Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave. 4, Saint Petersburg, 194064, Russia
| |
Collapse
|
14
|
Ali O, Szabó A. Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids. Int J Mol Sci 2023; 24:15693. [PMID: 37958678 PMCID: PMC10649022 DOI: 10.3390/ijms242115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Biological membranes, primarily composed of lipids, envelop each living cell. The intricate composition and organization of membrane lipids, including the variety of fatty acids they encompass, serve a dynamic role in sustaining cellular structural integrity and functionality. Typically, modifications in lipid composition coincide with consequential alterations in universally significant signaling pathways. Exploring the various fatty acids, which serve as the foundational building blocks of membrane lipids, provides crucial insights into the underlying mechanisms governing a myriad of cellular processes, such as membrane fluidity, protein trafficking, signal transduction, intercellular communication, and the etiology of certain metabolic disorders. Furthermore, comprehending how alterations in the lipid composition, especially concerning the fatty acid profile, either contribute to or prevent the onset of pathological conditions stands as a compelling area of research. Hence, this review aims to meticulously introduce the intricacies of membrane lipids and their constituent fatty acids in a healthy organism, thereby illuminating their remarkable diversity and profound influence on cellular function. Furthermore, this review aspires to highlight some potential therapeutic targets for various pathological conditions that may be ameliorated through dietary fatty acid supplements. The initial section of this review expounds on the eukaryotic biomembranes and their complex lipids. Subsequent sections provide insights into the synthesis, membrane incorporation, and distribution of fatty acids across various fractions of membrane lipids. The last section highlights the functional significance of membrane-associated fatty acids and their innate capacity to shape the various cellular physiological responses.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary
| |
Collapse
|
15
|
Yazlovitskaya EM, Graham TR. Type IV P-Type ATPases: Recent Updates in Cancer Development, Progression, and Treatment. Cancers (Basel) 2023; 15:4327. [PMID: 37686603 PMCID: PMC10486736 DOI: 10.3390/cancers15174327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Adaptations of cancer cells for survival are remarkable. One of the most significant properties of cancer cells to prevent the immune system response and resist chemotherapy is the altered lipid metabolism and resulting irregular cell membrane composition. The phospholipid distribution in the plasma membrane of normal animal cells is distinctly asymmetric. Lipid flippases are a family of enzymes regulating membrane asymmetry, and the main class of flippases are type IV P-type ATPases (P4-ATPases). Alteration in the function of flippases results in changes to membrane organization. For some lipids, such as phosphatidylserine, the changes are so drastic that they are considered cancer biomarkers. This review will analyze and discuss recent publications highlighting the role that P4-ATPases play in the development and progression of various cancer types, as well as prospects of targeting P4-ATPases for anti-cancer treatment.
Collapse
Affiliation(s)
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
16
|
Chen LC, Huang SP, Shih CT, Li CY, Chen YT, Huang CY, Yu CC, Lin VC, Lee CH, Geng JH, Bao BY. ATP8B1: A prognostic prostate cancer biomarker identified via genetic analysis. Prostate 2023; 83:602-611. [PMID: 36794287 DOI: 10.1002/pros.24495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Controlling the asymmetric distribution of phospholipids across biological membranes plays a pivotal role in the life cycle of cells; one of the most important contributors that maintain this lipid asymmetry are phospholipid-transporting adenosine triphosphatases (ATPases). Although sufficient information regarding their association with cancer exists, there is limited evidence linking the genetic variants of phospholipid-transporting ATPase family genes to prostate cancer in humans. METHODS In this study, we investigated the association of 222 haplotype-tagging single-nucleotide polymorphisms (SNPs) in eight phospholipid-transporting ATPase genes with cancer-specific survival (CSS) and overall survival (OS) of 630 patients treated with androgen-deprivation therapy (ADT) for prostate cancer. RESULTS After multivariate Cox regression analysis and multiple testing correction, we found that ATP8B1 rs7239484 was remarkably associated with CSS and OS after ADT. A pooled analysis of multiple independent gene-expression datasets demonstrated that ATP8B1 was under-expressed in tumor tissues and that a higher ATP8B1 expression was associated with a better patient prognosis. Moreover, we established highly invasive sublines using two human prostate cancer cell lines to mimic cancer progression traits in vitro. The expression of ATP8B1 was consistently downregulated in both highly invasive sublines. CONCLUSION Our study indicates that rs7239484 is a prognostic factor for patients treated with ADT and that ATP8B1 can potentially attenuate prostate cancer progression.
Collapse
Affiliation(s)
- Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chieh-Tien Shih
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yei-Tsung Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Cheng Yu
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Victor C Lin
- Department of Urology, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jiun-Hung Geng
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung, Taiwan
- Sex Hormone Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
17
|
Kapteijn MY, Zwaan S, Ter Linden E, Laghmani EH, van den Akker RFP, Rondon AMR, van der Zanden SY, Neefjes J, Versteeg HH, Buijs JT. Temozolomide and Lomustine Induce Tissue Factor Expression and Procoagulant Activity in Glioblastoma Cells In Vitro. Cancers (Basel) 2023; 15:cancers15082347. [PMID: 37190275 DOI: 10.3390/cancers15082347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Glioblastoma (GBM) patients have one of the highest risks of venous thromboembolism (VTE), which is even further increased upon treatment with chemotherapy. Tissue factor (TF) is the initiator of the extrinsic coagulation pathway and expressed by GBM cells. In this study, we aimed to examine the effect of routinely used chemotherapeutic agents Temozolomide (TMZ) and Lomustine (LOM) on TF procoagulant activity and expression in GBM cells in vitro. Three human GBM cell lines (U-251, U-87, U-118) were exposed to 100 µM TMZ or 30 µM LOM for 72 h. TF procoagulant activity was assessed via an FXa generation assay and TF gene and protein expression through qPCR and Western blotting. The externalization of phosphatidylserine (PS) was studied using Annexin V flow cytometry. Treatment with TMZ and LOM resulted in increased procoagulant activity in all cell lines. Furthermore, both agents induced procoagulant activity in the supernatant and tumor-cell-secreted extracellular vesicles. In line, TF gene and protein expression were increased upon TMZ and LOM treatment. Additionally, PS externalization and induction of inflammatory-associated genes were observed. Overall, the chemotherapeutic modalities TMZ and LOM induced procoagulant activity and increased TF gene and protein expression in all GBM cell lines tested, which may contribute to the increased VTE risk observed in GBM patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Maaike Y Kapteijn
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis & Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Shanna Zwaan
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis & Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Esther Ter Linden
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - El Houari Laghmani
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis & Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Rob F P van den Akker
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis & Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Araci M R Rondon
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis & Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Sabina Y van der Zanden
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Henri H Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis & Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jeroen T Buijs
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis & Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
18
|
Jing H, Wu X, Xiang M, Wang C, Novakovic VA, Shi J. Microparticle Phosphatidylserine Mediates Coagulation: Involvement in Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:cancers15071957. [PMID: 37046617 PMCID: PMC10093313 DOI: 10.3390/cancers15071957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor progression and cancer metastasis has been linked to the release of microparticles (MPs), which are shed upon cell activation or apoptosis and display parental cell antigens, phospholipids such as phosphatidylserine (PS), and nucleic acids on their external surfaces. In this review, we highlight the biogenesis of MPs as well as the pathophysiological processes of PS externalization and its involvement in coagulation activation. We review the available evidence, suggesting that coagulation factors (mainly tissue factor, thrombin, and fibrin) assist in multiple steps of tumor dissemination, including epithelial-mesenchymal transition, extracellular matrix remodeling, immune escape, and tumor angiogenesis to support the formation of the pre-metastatic niche. Platelets are not just bystander cells in circulation but are functional players in primary tumor growth and metastasis. Tumor-induced platelet aggregation protects circulating tumor cells (CTCs) from the blood flow shear forces and immune cell attack while also promoting the binding of CTCs to endothelial cells and extravasation, which activates tumor invasion and sustains metastasis. Finally, in terms of therapy, lactadherin can inhibit coagulation by competing effectively with coagulation factors for PS binding sites and may similarly delay tumor progression. Furthermore, we also investigate the therapeutic potential of coagulation factor inhibitors within the context of cancer treatment. The development of multiple therapies targeting platelet activation and platelet-tumor cell interactions may not only reduce the lethal consequences of thrombosis but also impede tumor growth and spread.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Chengyue Wang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02132, USA
| |
Collapse
|
19
|
Cruz Cruz J, Allison KC, Page LS, Jenkins AJ, Wang X, Earp HS, Frye SV, Graham DK, Verneris MR, Lee-Sherick AB. Inhibiting efferocytosis reverses macrophage-mediated immunosuppression in the leukemia microenvironment. Front Immunol 2023; 14:1146721. [PMID: 36960055 PMCID: PMC10027704 DOI: 10.3389/fimmu.2023.1146721] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Background Previous studies show that the spleen and bone marrow can serve as leukemia microenvironments in which macrophages play a significant role in immune evasion and chemoresistance. We hypothesized that the macrophage driven tolerogenic process of efferocytosis is a major contributor to the immunosuppressive leukemia microenvironment and that this was driven by aberrant phosphatidylserine expression from cell turnover and cell membrane dysregulation. Methods Since MerTK is the prototypic efferocytosis receptor, we assessed whether the MerTK inhibitor MRX2843, which is currently in clinical trials, would reverse immune evasion and enhance immune-mediated clearance of leukemia cells. Results We found that inhibition of MerTK decreased leukemia-associated macrophage expression of M2 markers PD-L1, PD-L2, Tim-3, CD163 and Arginase-1 compared to vehicle-treated controls. Additionally, MerTK inhibition led to M1 macrophage repolarization including elevated CD86 and HLA-DR expression, and increased production of T cell activating cytokines, including IFN-β, IL-18, and IL-1β through activation of NF-κB. Collectively, this macrophage repolarization had downstream effects on T cells within the leukemia microenvironment, including decreased PD-1+Tim-3+ and LAG3+ checkpoint expression, and increased CD69+CD107a+ expression. Discussion These results demonstrate that MerTK inhibition using MRX2843 altered the leukemia microenvironment from tumor-permissive toward immune responsiveness to leukemia and culminated in improved immune-mediated clearance of AML.
Collapse
Affiliation(s)
- Joselyn Cruz Cruz
- Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, CO, United States
| | - Kristen C. Allison
- Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, CO, United States
| | - Lauren S. Page
- Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, CO, United States
| | - Alexis J. Jenkins
- Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, CO, United States
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - H. Shelton Earp
- Lineberger Comprehensive Cancer Center, Departments of Medicine and Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Douglas K. Graham
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Michael R. Verneris
- Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, CO, United States
| | - Alisa B. Lee-Sherick
- Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, CO, United States
| |
Collapse
|
20
|
Alavi N, Maghami P, Fani Pakdel A, Rezaei M, Avan A. The advance anticancer role of polymeric core-shell ZnO nanoparticles containing oxaliplatin in colorectal cancer. J Biochem Mol Toxicol 2023; 37:e23325. [PMID: 36843533 DOI: 10.1002/jbt.23325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/10/2022] [Accepted: 02/08/2023] [Indexed: 02/28/2023]
Abstract
We evaluated the activity of core-shell ZnO nanoparticles (ZnO-NPs@polymer shell) containing Oxaliplatin via polymerization through in vitro studies and in vivo mouse models of colorectal cancer. ZnO NPs were synthesized in situ when the polymerization step was completed by co-precipitation. Gadolinium coordinated-ZnONPs@polymer shell (ZnO-Gd NPs@polymer shell) was synthesized by exploiting Gd's oxophilicity (III). The biophysical properties of the NPs were studied using powder X-ray diffraction (PXRD), Fourier transforms infrared spectroscopy, Ultraviolet-visible spectroscopy (UV-Vis), field emission electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy, dynamic light scattering, and z-potential. (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) was used to determine the antiproliferative activity of ZnO-Gd-OXA. Moreover, a xenograft mouse model of colon cancer was exerted to survey its antitumor activity and effect on tumor growth. In the following, the model was also evaluated by histological staining (H-E; Hematoxylin & Eosin and trichrome staining) and gene expression analyses through the application of RT-PCR/ELISA, which included biochemical evaluation (MDA, thiols, SOD, CAT). The formation of ZnO NPs, which contained a crystallite size of 16.8 nm, was confirmed by the outcomes of the PXRD analysis. The Plate-like morphology and presence of Pt were obtained in EDX outcomes. TEM analysis displayed the attained ZnO NPs in a spherical shape and a diameter of 33 ± 8.5 nm, while the hydrodynamic sizes indicated that the particles were highly aggregated. The biological results demonstrated that ZnO-Gd-OXA inhibited tumor growth by inducing reactive oxygen species and inhibiting fibrosis, warranting further research on this novel colorectal cancer treatment agent.
Collapse
Affiliation(s)
- Negin Alavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azar Fani Pakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezaei
- Medical Toxicology Research Center, University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology and Nanotechnology, School of Medicine, University of Medical Sciences, Mashhad, Iran.,Nanotechnology & Catalysis Research Centre, Institute of Postgraduate Studies, University Malaya, Kuala Lumpur, Malaysia
| | - Amir Avan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Kaynak A, N’Guessan KF, Patel PH, Lee JH, Kogan AB, Narmoneva DA, Qi X. Electric Fields Regulate In Vitro Surface Phosphatidylserine Exposure of Cancer Cells via a Calcium-Dependent Pathway. Biomedicines 2023; 11:biomedicines11020466. [PMID: 36831002 PMCID: PMC9953458 DOI: 10.3390/biomedicines11020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Cancer is the second leading cause of death worldwide after heart disease. The current treatment options to fight cancer are limited, and there is a critical need for better treatment strategies. During the last several decades, several electric field (EF)-based approaches for anti-cancer therapies have been introduced, such as electroporation and tumor-treating fields; still, they are far from optimal due to their invasive nature, limited efficacy and significant side effects. In this study, we developed a non-contact EF stimulation system to investigate the in vitro effects of a novel EF modality on cancer biomarkers in normal (human astrocytes, human pancreatic ductal epithelial -HDPE-cells) and cancer cell lines (glioblastoma U87-GBM, human pancreatic cancer cfPac-1, and MiaPaCa-2). Our results demonstrate that this EF modality can successfully modulate an important cancer cell biomarker-cell surface phosphatidylserine (PS). Our results further suggest that moderate, but not low, amplitude EF induces p38 mitogen-activated protein kinase (MAPK), actin polymerization, and cell cycle arrest in cancer cell lines. Based on our results, we propose a mechanism for EF-mediated PS exposure in cancer cells, where the magnitude of induced EF on the cell surface can differentially regulate intracellular calcium (Ca2+) levels, thereby modulating surface PS exposure.
Collapse
Affiliation(s)
- Ahmet Kaynak
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kombo F. N’Guessan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Priyankaben H. Patel
- Department of Biomedical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jing-Huei Lee
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Andrei B. Kogan
- Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Daria A. Narmoneva
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Xiaoyang Qi
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +1-513-558-4025
| |
Collapse
|
22
|
Banerjee N, Chatterjee O, Roychowdhury T, Basu D, Dutta A, Chowdhury M, Dastidar SG, Chatterjee S. Sequence driven interaction of amino acids in de-novo designed peptides determines c-Myc G-quadruplex unfolding inducing apoptosis in cancer cells. Biochim Biophys Acta Gen Subj 2023; 1867:130267. [PMID: 36334788 DOI: 10.1016/j.bbagen.2022.130267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
c-MYC proto-oncogene harbors a putative G-quadruplex structure (Pu27) at the NHEIII1 domain, which can shuffle between transcriptional inhibitor quadruplex and transcriptionally active duplex. In cancer cells this quadruplex destabilization is preferred and NHEIII1 domain assume a duplex topology thereby inducing c-MYC overexpression and tumorigenesis. Hence, the c-MYC quadruplex acts as an excellent target for anti-cancer therapy. Though researcher have tried to develop G-quadruplex targeted small molecules, work with G-quadruplex targeting peptides is very limited. Here we present a peptide that can bind to c-MYC quadruplex, destabilize the tetrad core, and permit the formation of a substantially different structure from the quartet core seen in the canonical G-quadruplexes. Such conformation potentially acted as a roadblock for transcription factors thereby reducing cMYC expression. This event sensitizes the cancer cell to activate apoptotic cascade via the c-MYC-VEGF-A-BCL2 axis. This study provides a detailed insight into the peptide-quadruplex interface that encourages better pharmacophore design to target dynamic quadruplex structure. We believe that our results will contribute to the development, characterization, and optimization of G-quadruplex binding peptides for potential clinical application.
Collapse
Affiliation(s)
- Nilanjan Banerjee
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Oishika Chatterjee
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Tanaya Roychowdhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Debadrita Basu
- Division of Bioinformatics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Anindya Dutta
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Madhurima Chowdhury
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Shubhra Ghosh Dastidar
- Division of Bioinformatics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India.
| |
Collapse
|
23
|
Duong DST, Jang CH. Detection of phosphatidylserine by using liquid crystal supported on the gold-deposited waveform surfaces with the annexin V-based signal enhancement. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Kurokawa GA, Hamamoto Filho PT, Delafiori J, Galvani AF, de Oliveira AN, Dias-Audibert FL, Catharino RR, Pardini MIMC, Zanini MA, Lima EDO, Ferrasi AC. Differential Plasma Metabolites between High- and Low-Grade Meningioma Cases. Int J Mol Sci 2022; 24:ijms24010394. [PMID: 36613836 PMCID: PMC9820229 DOI: 10.3390/ijms24010394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Meningiomas (MGMs) are currently classified into grades I, II, and III. High-grade tumors are correlated with decreased survival rates and increased recurrence rates. The current grading classification is based on histological criteria and determined only after surgical tumor sampling. This study aimed to identify plasma metabolic alterations in meningiomas of different grades, which would aid surgeons in predefining the ideal surgical strategy. Plasma samples were collected from 51 patients with meningioma and classified into low-grade (LG) (grade I; n = 43), and high-grade (HG) samples (grade II, n = 5; grade III, n = 3). An untargeted metabolomic approach was used to analyze plasma metabolites. Statistical analyses were performed to select differential biomarkers among HG and LG groups. Metabolites were identified using tandem mass spectrometry along with database verification. Five and four differential biomarkers were identified for HG and LG meningiomas, respectively. To evaluate the potential of HG MGM metabolites to differentiate between HG and LG tumors, a receiving operating characteristic curve was constructed, which revealed an area under the curve of 95.7%. This indicates that the five HG MGM metabolites represent metabolic alterations that can differentiate between LG and HG meningiomas. These metabolites may indicate tumor grade even before the appearance of histological features.
Collapse
Affiliation(s)
- Gabriel A. Kurokawa
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Pedro T. Hamamoto Filho
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-877, Brazil
| | - Aline F. Galvani
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Arthur N. de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-877, Brazil
| | - Flávia L. Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-877, Brazil
| | - Rodrigo R. Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-877, Brazil
| | - Maria Inês M. C. Pardini
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Marco A. Zanini
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Estela de O. Lima
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
- Correspondence: ; Tel.: +55-14-3880-1453
| | - Adriana C. Ferrasi
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| |
Collapse
|
25
|
Cellular function of (a)symmetric biological membranes. Emerg Top Life Sci 2022; 7:47-54. [PMID: 36562339 DOI: 10.1042/etls20220029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In mammalian cells, phospholipids are asymmetrically distributed between the outer and inner leaflets of the plasma membrane. The maintenance of asymmetric phospholipid distribution has been demonstrated to be required for a wide range of cellular functions including cell division, cell migration, and signal transduction. However, we recently reported that asymmetric phospholipid distribution is disrupted in Drosophila cell membranes, and this unique phospholipid distribution leads to the formation of highly deformable cell membranes. In addition, it has become clear that asymmetry in the trans-bilayer distribution of phospholipids is disturbed even in living mammalian cells under certain circumstances. In this article, we introduce our recent studies while focusing on the trans-bilayer distribution of phospholipids, and discuss the cellular functions of (a)symmetric biological membranes.
Collapse
|
26
|
Maja M, Tyteca D. Alteration of cholesterol distribution at the plasma membrane of cancer cells: From evidence to pathophysiological implication and promising therapy strategy. Front Physiol 2022; 13:999883. [PMID: 36439249 PMCID: PMC9682260 DOI: 10.3389/fphys.2022.999883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Cholesterol-enriched domains are nowadays proposed to contribute to cancer cell proliferation, survival, death and invasion, with important implications in tumor progression. They could therefore represent promising targets for new anticancer treatment. However, although diverse strategies have been developed over the years from directly targeting cholesterol membrane content/distribution to adjusting sterol intake, all approaches present more or less substantial limitations. Those data emphasize the need to optimize current strategies, to develop new specific cholesterol-targeting anticancer drugs and/or to combine them with additional strategies targeting other lipids than cholesterol. Those objectives can only be achieved if we first decipher (i) the mechanisms that govern the formation and deformation of the different types of cholesterol-enriched domains and their interplay in healthy cells; (ii) the mechanisms behind domain deregulation in cancer; (iii) the potential generalization of observations in different types of cancer; and (iv) the specificity of some alterations in cancer vs. non-cancer cells as promising strategy for anticancer therapy. In this review, we will discuss the current knowledge on the homeostasis, roles and membrane distribution of cholesterol in non-tumorigenic cells. We will then integrate documented alterations of cholesterol distribution in domains at the surface of cancer cells and the mechanisms behind their contribution in cancer processes. We shall finally provide an overview on the potential strategies developed to target those cholesterol-enriched domains in cancer therapy.
Collapse
|
27
|
Signatures of Co-Deregulated Genes and Their Transcriptional Regulators in Lung Cancer. Int J Mol Sci 2022; 23:ijms231810933. [PMID: 36142846 PMCID: PMC9504879 DOI: 10.3390/ijms231810933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the significant progress made towards comprehending the deregulated signatures in lung cancer, these vary from study to study. We reanalyzed 25 studies from the Gene Expression Omnibus (GEO) to detect and annotate co-deregulated signatures in lung cancer and in single-gene or single-drug perturbation experiments. We aimed to decipher the networks that these co-deregulated genes (co-DEGs) form along with their upstream regulators. Differential expression and upstream regulators were computed using Characteristic Direction and Systems Biology tools, including GEO2Enrichr and X2K. Co-deregulated gene expression profiles were further validated across different molecular and immune subtypes in lung adenocarcinoma (TCGA-LUAD) and lung adenocarcinoma (TCGA-LUSC) datasets, as well as using immunohistochemistry data from the Human Protein Atlas, before being subjected to subsequent GO and KEGG enrichment analysis. The functional alterations of the co-upregulated genes in lung cancer were mostly related to immune response regulating the cell surface signaling pathway, in contrast to the co-downregulated genes, which were related to S-nitrosylation. Networks of hub proteins across the co-DEGs consisted of overlapping TFs (SOX2, MYC, KAT2A) and kinases (MAPK14, CSNK2A1 and CDKs). Furthermore, using Connectivity Map we highlighted putative repurposing drugs, including valproic acid, betonicine and astemizole. Similarly, we analyzed the co-DEG signatures in single-gene and single-drug perturbation experiments in lung cancer cell lines. In summary, we identified critical co-DEGs in lung cancer providing an innovative framework for their potential use in developing personalized therapeutic strategies.
Collapse
|
28
|
Exosomes and cancer - Diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis 2022; 11:54. [PMID: 36109501 PMCID: PMC9477829 DOI: 10.1038/s41389-022-00431-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractExosomes belong to a subpopulation of extracellular vesicles secreted by the dynamic multistep endocytosis process and carry diverse functional molecular cargoes, including proteins, lipids, nucleic acids (DNA, messenger and noncoding RNA), and metabolites to promote intercellular communication. Proteins and noncoding RNA are among the most abundant contents in exosomes; they have biological functions and are selectively packaged into exosomes. Exosomes derived from tumor, stromal and immune cells contribute to the multiple stages of cancer progression as well as resistance to therapy. In this review, we will discuss the biogenesis of exosomes and their roles in cancer development. Since specific contents within exosomes originate from their cells of origin, this property allows exosomes to function as valuable biomarkers. We will also discuss the potential use of exosomes as diagnostic and prognostic biomarkers or predictors for different therapeutic strategies for multiple cancers. Furthermore, the applications of exosomes as direct therapeutic targets or engineered vehicles for drugs are an important field of exosome study. Better understanding of exosome biology may pave the way to promising exosome-based clinical applications.
Collapse
|
29
|
Vasquez‐Montes V, Tyagi V, Sikorski E, Kyrychenko A, Freites JA, Thévenin D, Tobias DJ, Ladokhin AS. Ca 2+ -dependent interactions between lipids and the tumor-targeting peptide pHLIP. Protein Sci 2022; 31:e4385. [PMID: 36040255 PMCID: PMC9366937 DOI: 10.1002/pro.4385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022]
Abstract
Cancerous tissues undergo extensive changes to their cellular environments that differentiate them from healthy tissues. These changes include changes in extracellular pH and Ca2+ concentrations, and the exposure of phosphatidylserine (PS) to the extracellular environment, which can modulate the interaction of peptides and proteins with the plasma membrane. Deciphering the molecular mechanisms of such interactions is critical for advancing the knowledge-based design of cancer-targeting molecular tools, such as pH-low insertion peptide (pHLIP). Here, we explore the effects of PS, Ca2+ , and peptide protonation state on the interactions of pHLIP with lipid membranes. Cellular studies demonstrate that exposed PS on the plasma membrane promotes pHLIP targeting. The magnitude of this effect is dependent on extracellular Ca2+ concentration, indicating that divalent cations play an important role in pHLIP targeting in vivo. The targeting mechanism is further explored with a combination of fluorescence and circular dichroism experiments in model membranes and microsecond-timescale all-atom molecular dynamics simulations. Our results demonstrate that Ca2+ is engaged in coupling peptide-lipid interactions in the unprotonated transmembrane conformation of pHLIP. The simulations reveal that while the pH-induced insertion leads to a strong depletion of PS around pHLIP, the Ca2+ -induced insertion has the opposite effect. Thus, extracellular levels of Ca2+ are crucial to linking cellular changes in membrane lipid composition with the selective targeting and insertion of pHLIP. The characterized Ca2+ -dependent coupling between pHLIP sidechains and PS provides atomistic insights into the general mechanism for lipid-coupled regulation of protein-membrane insertion by divalent cations.
Collapse
Affiliation(s)
- Victor Vasquez‐Montes
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Vivek Tyagi
- Department of ChemistryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Eden Sikorski
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - Alexander Kyrychenko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National UniversityKharkivUkraine
| | | | - Damien Thévenin
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | | | - Alexey S. Ladokhin
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
30
|
Annexin A5 as a targeting agent for cancer treatment. Cancer Lett 2022; 547:215857. [DOI: 10.1016/j.canlet.2022.215857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
|
31
|
Mitchell MI, Ma J, Carter CL, Loudig O. Circulating Exosome Cargoes Contain Functionally Diverse Cancer Biomarkers: From Biogenesis and Function to Purification and Potential Translational Utility. Cancers (Basel) 2022; 14:3350. [PMID: 35884411 PMCID: PMC9318395 DOI: 10.3390/cancers14143350] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Although diagnostic and therapeutic treatments of cancer have tremendously improved over the past two decades, the indolent nature of its symptoms has made early detection challenging. Thus, inter-disciplinary (genomic, transcriptomic, proteomic, and lipidomic) research efforts have been focused on the non-invasive identification of unique "silver bullet" cancer biomarkers for the design of ultra-sensitive molecular diagnostic assays. Circulating tumor biomarkers, such as CTCs and ctDNAs, which are released by tumors in the circulation, have already demonstrated their clinical utility for the non-invasive detection of certain solid tumors. Considering that exosomes are actively produced by all cells, including tumor cells, and can be found in the circulation, they have been extensively assessed for their potential as a source of circulating cell-specific biomarkers. Exosomes are particularly appealing because they represent a stable and encapsulated reservoir of active biological compounds that may be useful for the non-invasive detection of cancer. T biogenesis of these extracellular vesicles is profoundly altered during carcinogenesis, but because they harbor unique or uniquely combined surface proteins, cancer biomarker studies have been focused on their purification from biofluids, for the analysis of their RNA, DNA, protein, and lipid cargoes. In this review, we evaluate the biogenesis of normal and cancer exosomes, provide extensive information on the state of the art, the current purification methods, and the technologies employed for genomic, transcriptomic, proteomic, and lipidomic evaluation of their cargoes. Our thorough examination of the literature highlights the current limitations and promising future of exosomes as a liquid biopsy for the identification of circulating tumor biomarkers.
Collapse
Affiliation(s)
- Megan I Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Claire L Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
32
|
Kogan EA, Meerovich GA, Karshieva SS, Makarova EA, Romanishkin ID, Akhlyustina EV, Meerovich IG, Zharkov NV, Demura TA, Chen ZL, Koudan EV, Angelov IP, Loschenov VB. On the mechanisms of photodynamic action of photosensitizers based on polycationic derivatives of synthetic bacteriochlorin against human lung cancer cells A549 (in vitro study). Photodiagnosis Photodyn Ther 2022; 39:102955. [PMID: 35690323 DOI: 10.1016/j.pdpdt.2022.102955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND One of the tasks of anticancer photodynamic therapy is increasing the efficacy of treatment of cancer nodes with large (clinically relevant) sizes using near-infrared photosensitizers (PS). We study the photodynamic action against A549 human lung cancer cells using PS based on polycationic derivatives of synthetic bacteriochlorin. METHODS The efficacy and mechanisms of the photodynamic action of PS based on polycationic derivatives of synthetic bacteriochlorin against A549 lung cancer cells were studied in vitro using immunocytochemical and morphological methods. RESULTS It was found that PS based on tetracationic and octacationic derivatives of synthetic bacteriochlorin induce necrosis, apoptosis, decreasing of proliferative and mitotic activity, as well as reducing the number of ALDH1-positive cancer cells with signs of stem cells in A549 human lung cancer cell culture. The IC50 values (concentration of a PS that reduces cells survival by 50%) were about 0.69 μM for tetracationic PS and 0.57 μM for octacationic PS under irradiation at 30 J/cm2 while in the "dark" control they were higher than 100 μM for both PSs. CONCLUSIONS Photosensitizers based on polycationic derivatives of synthetic bacteriochlorin have high phototoxicity against A549 cancer cells caused by the induction of necrosis and apoptosis of cancer cells, including cells with signs of stemness, and a sharp decrease of mitotic and proliferative activity.
Collapse
Affiliation(s)
- Evgeniya A Kogan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Gennady A Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | - Saida Sh Karshieva
- N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; 3D Bioprinting Solutions Ltd., Moscow 115409, Russia
| | | | - Igor D Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Irina G Meerovich
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nikolai V Zharkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Tatiana A Demura
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Zhi-Long Chen
- Donghua University, Shanghai 200051, China; Huadong Hospital at Fudan University, Shanghai 200031, China
| | | | - Ivan P Angelov
- Institute of Electronics of the Bulgarian Academy of Sciences, Sofia 1784, Bulgaria; Institute of Organic Chemistry with Centre of Phytochemistry of the Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| | - Victor B Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| |
Collapse
|
33
|
Kaynak A, Davis HW, Kogan AB, Lee JH, Narmoneva DA, Qi X. Phosphatidylserine: The Unique Dual-Role Biomarker for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:2536. [PMID: 35626139 PMCID: PMC9139557 DOI: 10.3390/cancers14102536] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer is among the leading causes of death worldwide. In recent years, many cancer-associated biomarkers have been identified that are used for cancer diagnosis, prognosis, screening, and early detection, as well as for predicting and monitoring carcinogenesis and therapeutic effectiveness. Phosphatidylserine (PS) is a negatively charged phospholipid which is predominantly located in the inner leaflet of the cell membrane. In many cancer cells, PS externalizes to the outer cell membrane, a process regulated by calcium-dependent flippases and scramblases. Saposin C coupled with dioleoylphosphatidylserine (SapC-DOPS) nanovesicle (BXQ-350) and bavituximab, (Tarvacin, human-mouse chimeric monoclonal antibodies) are cell surface PS-targeting drugs being tested in clinical trial for treating a variety of cancers. Additionally, a number of other PS-selective agents have been used to trigger cytotoxicity in tumor-associated endothelial cells or cancer cells in pre-clinical studies. Recent studies have demonstrated that upregulation of surface PS exposure by chemodrugs, radiation, and external electric fields can be used as a novel approach to sensitize cancer cells to PS-targeting anticancer drugs. The objectives of this review are to provide an overview of a unique dual-role of PS as a biomarker/target for cancer imaging and therapy, and to discuss PS-based anticancer strategies that are currently under active development.
Collapse
Affiliation(s)
- Ahmet Kaynak
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
| | - Harold W. Davis
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Andrei B. Kogan
- Physics Department, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Jing-Huei Lee
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
| | - Daria A. Narmoneva
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
| | - Xiaoyang Qi
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| |
Collapse
|
34
|
Dadhich R, Kapoor S. Lipidomic and Membrane Mechanical Signatures in Triple-Negative Breast Cancer: Scope for Membrane-Based Theranostics. Mol Cell Biochem 2022; 477:2507-2528. [PMID: 35595957 DOI: 10.1007/s11010-022-04459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer associated with poor prognosis, higher grade, and a high rate of metastatic occurrence. Limited therapeutic interventions and the compounding issue of drug resistance in triple-negative breast cancer warrants the discovery of novel therapeutic targets and diagnostic modules. To this view, in addition to proteins, lipids also regulate cellular functions via the formation of membranes that modulate membrane protein function, diffusion, and their localization; thus, orchestrating signaling hot spots enriched in specific lipids/proteins on cell membranes. Lipid deregulation in cancer leads to reprogramming of the membrane dynamics and functions impacting cell proliferation, metabolism, and metastasis, providing exciting starting points for developing lipid-based approaches for treating TNBC. In this review, we provide a detailed account of specific lipidic changes in breast cancer, link the altered lipidome with membrane structure and mechanical properties, and describe how these are linked to subsequent downstream functions implicit in cancer progression, metastasis, and chemoresistance. At the fundamental level, we discuss how the lipid-centric findings in TNBC are providing cues for developing lipid-inspired theranostic strategies while bridging existing gaps in our understanding of the functional involvement of lipid membranes in cancer.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India. .,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8528, Japan.
| |
Collapse
|
35
|
3,4,5-Trimethoxybenzoate of Catechin, an Anticarcinogenic Semisynthetic Catechin, Modulates the Physical Properties of Anionic Phospholipid Membranes. Molecules 2022; 27:molecules27092910. [PMID: 35566261 PMCID: PMC9105813 DOI: 10.3390/molecules27092910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/21/2022] Open
Abstract
3,4,5-Trimethoxybenzoate of catechin (TMBC) is a semisynthetic catechin which shows strong antiproliferative activity against malignant melanoma cells. The amphiphilic nature of the molecule suggests that the membrane could be a potential site of action, hence the study of its interaction with lipid bilayers is mandatory in order to gain information on the effect of the catechin on the membrane properties and dynamics. Anionic phospholipids, though being minor components of the membrane, possess singular physical and biochemical properties that make them physiologically essential. Utilizing phosphatidylserine biomimetic membranes, we study the interaction between the catechin and anionic bilayers, bringing together a variety of experimental techniques and molecular dynamics simulation. The experimental data suggest that the molecule is embedded into the phosphatidylserine bilayers, where it perturbs the thermotropic gel to liquid crystalline phase transition. In the gel phase, the catechin promotes the formation of interdigitation, and in the liquid crystalline phase, it decreases the bilayer thickness and increases the hydrogen bonding pattern of the interfacial region of the bilayer. The simulation data agree with the experimental ones and indicate that the molecule is located in the interior of the anionic bilayer as monomer and small clusters reaching the carbonyl region of the phospholipid, where it also disturbs the intermolecular hydrogen bonding between neighboring lipids. Our observations suggest that the catechin incorporates well into phosphatidylserine bilayers, where it produces structural changes that could affect the functioning of the membrane.
Collapse
|
36
|
Maurici CE, Colenbier R, Wylleman B, Brancato L, van Zwol E, Van den Bossche J, Timmermans JP, Giovannetti E, Mori da Cunha MGMC, Bogers J. Hyperthermia Enhances Efficacy of Chemotherapeutic Agents in Pancreatic Cancer Cell Lines. Biomolecules 2022; 12:651. [PMID: 35625581 PMCID: PMC9138677 DOI: 10.3390/biom12050651] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy (CT) is the standard care for advanced pancreatic ductal adenocarcinoma (PDAC); however, with limited efficacy. Hyperthermia (HT) treatment has been suggested as a sensitizer to improve outcomes. However, the direct effect of the HT and CT combination is not fully understood. Therefore, we aim to assess the direct cytotoxic effect of HT in PDAC cells as monotherapy or in combination with chemotherapeutics. Different temperatures (37-, 40.5-, 41-, and 41.5 °C) and durations (6-, 12-, and 24 h) were tested in PDAC cell lines (BxPC-3, Capan-1, Capan-2, PANC-1, and MIA-PaCa-2). Different concentrations of gemcitabine, 5-fluorouracil, and cisplatin were also tested in these conditions. The impact on cell metabolic activity was determined by an MTS assay. Enhancement of chemosensitivity was assessed by a reduction in half-maximal inhibitory concentration (IC50). HT and chemotherapeutics interactions were classified as antagonistic, additive, or synergistic using the combination index. HT inhibited cell proliferation in a cell type, temperature, and duration-dependent manner. The induction of apoptosis was seen after 6 h of HT treatment, eventually followed by secondary necrosis. The HT and CT combination led to an IC50 reduction of the tested CT. At 12 h of HT, this effect was between 25 to 90% and reached a 95% reduction at 24 h. The additive or synergistic effect was demonstrated in all cell lines and chemotherapeutics, although, again, this depended on cell type, duration, and temperature. HT is cytotoxic and enhances the therapeutic effectiveness of gemcitabine, 5-fluorouracil, and cisplatin on PDAC cells. This result was further confirmed by the decrease in the expression of RRM2, TS, and ERCC1 in BxPC-3 and Capan-2 cells. These observations warrant further study in specific subsets of PDAC patients to improve their clinical outcomes.
Collapse
Affiliation(s)
- Costanza E. Maurici
- ElmediX NV, 2800 Mechelen, Belgium; (C.E.M.); (B.W.); (L.B.); (E.v.Z.); (J.V.d.B.); (M.G.M.C.M.d.C.)
| | - Robin Colenbier
- Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (R.C.); (J.-P.T.)
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, 1006 Amsterdam, The Netherlands;
| | - Britta Wylleman
- ElmediX NV, 2800 Mechelen, Belgium; (C.E.M.); (B.W.); (L.B.); (E.v.Z.); (J.V.d.B.); (M.G.M.C.M.d.C.)
| | - Luigi Brancato
- ElmediX NV, 2800 Mechelen, Belgium; (C.E.M.); (B.W.); (L.B.); (E.v.Z.); (J.V.d.B.); (M.G.M.C.M.d.C.)
| | - Eke van Zwol
- ElmediX NV, 2800 Mechelen, Belgium; (C.E.M.); (B.W.); (L.B.); (E.v.Z.); (J.V.d.B.); (M.G.M.C.M.d.C.)
| | - Johan Van den Bossche
- ElmediX NV, 2800 Mechelen, Belgium; (C.E.M.); (B.W.); (L.B.); (E.v.Z.); (J.V.d.B.); (M.G.M.C.M.d.C.)
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (R.C.); (J.-P.T.)
| | - Elisa Giovannetti
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, 1006 Amsterdam, The Netherlands;
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, 56017 Pisa, Italy
| | | | - Johannes Bogers
- ElmediX NV, 2800 Mechelen, Belgium; (C.E.M.); (B.W.); (L.B.); (E.v.Z.); (J.V.d.B.); (M.G.M.C.M.d.C.)
- Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium; (R.C.); (J.-P.T.)
- Applied Molecular Biology Research Group (AMBIOR), University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
37
|
Krzyżanowska N, Wojas-Krawczyk K, Milanowski J, Krawczyk P. Future Prospects of Immunotherapy in Non-Small-Cell Lung Cancer Patients: Is There Hope in Other Immune Checkpoints Targeting Molecules? Int J Mol Sci 2022; 23:3087. [PMID: 35328510 PMCID: PMC8950480 DOI: 10.3390/ijms23063087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Currently, one of the leading treatments for non-small-cell lung cancer is immunotherapy involving immune checkpoint inhibitors. These monoclonal antibodies restore the anti-tumour immune response altered by negative immune checkpoint interactions. The most commonly used immunotherapeutics in monotherapy are anti-PD-1 and anti-PD-L1 antibodies. The effectiveness of both groups of antibodies has been proven in many clinical trials, which have translated into positive immunotherapeutic registrations for cancer patients worldwide. These antibodies are generally well tolerated, and certain patients achieve durable responses. However, given the resistance of some patients to this form of therapy, along with its other drawbacks, such as adverse events, alternatives are constantly being sought. Specifically, new drugs targeting already known molecules are being tested, and new potential targets are being explored. The aim of this paper is to provide an overview of the latest developments in this area.
Collapse
Affiliation(s)
- Natalia Krzyżanowska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland; (K.W.-K.); (J.M.); (P.K.)
| | | | | | | |
Collapse
|
38
|
Tretyakova MS, Subbalakshmi AR, Menyailo ME, Jolly MK, Denisov EV. Tumor Hybrid Cells: Nature and Biological Significance. Front Cell Dev Biol 2022; 10:814714. [PMID: 35242760 PMCID: PMC8886020 DOI: 10.3389/fcell.2022.814714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is the leading cause of cancer death and can be realized through the phenomenon of tumor cell fusion. The fusion of tumor cells with other tumor or normal cells leads to the appearance of tumor hybrid cells (THCs) exhibiting novel properties such as increased proliferation and migration, drug resistance, decreased apoptosis rate, and avoiding immune surveillance. Experimental studies showed the association of THCs with a high frequency of cancer metastasis; however, the underlying mechanisms remain unclear. Many other questions also remain to be answered: the role of genetic alterations in tumor cell fusion, the molecular landscape of cells after fusion, the lifetime and fate of different THCs, and the specific markers of THCs, and their correlation with various cancers and clinicopathological parameters. In this review, we discuss the factors and potential mechanisms involved in the occurrence of THCs, the types of THCs, and their role in cancer drug resistance and metastasis, as well as potential therapeutic approaches for the prevention, and targeting of tumor cell fusion. In conclusion, we emphasize the current knowledge gaps in the biology of THCs that should be addressed to develop highly effective therapeutics and strategies for metastasis suppression.
Collapse
Affiliation(s)
- Maria S Tretyakova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Ayalur R Subbalakshmi
- Cancer Systems Biology Laboratory, Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Maxim E Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Mohit Kumar Jolly
- Cancer Systems Biology Laboratory, Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
39
|
Elucidation of the Interactions of Reactive Oxygen Species and Antioxidants in Model Membranes Mimicking Cancer Cells and Normal Cells. MEMBRANES 2022; 12:membranes12030286. [PMID: 35323761 PMCID: PMC8949560 DOI: 10.3390/membranes12030286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/18/2023]
Abstract
Photosensitizers (PSs) used in photodynamic therapy (PDT) have been developed to selectively destroy tumor cells. However, PSs recurrently reside on the extracellular matrix or affect normal cells in the vicinity, causing side effects. Additionally, the membrane stability of tumor cells and normal cells in the presence of reactive oxygen species (ROS) has not been studied, and the effects of ROS at the membrane level are unclear. In this work, we elucidate the stabilities of model membranes mimicking tumor cells and normal cells in the presence of ROS. The model membranes are constructed according to the degree of saturation in lipids and the bilayers are prepared either in symmetric or asymmetric form. Interestingly, membranes mimicking normal cells are the most vulnerable to ROS, while membranes mimicking tumor cells remain relatively stable. The instability of normal cell membranes may be one cause of the side effects of PDT. Moreover, we also show that ROS levels are controlled by antioxidants, helping to maintain an appropriate amount of ROS when PDT is applied.
Collapse
|
40
|
Barth ND, Mendive‐Tapia L, Subiros‐Funosas R, Ghashghaei O, Lavilla R, Maiorino L, He X, Dransfield I, Egeblad M, Vendrell M. A Bivalent Activatable Fluorescent Probe for Screening and Intravital Imaging of Chemotherapy-Induced Cancer Cell Death. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202113020. [PMID: 38505298 PMCID: PMC10947113 DOI: 10.1002/ange.202113020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/11/2022]
Abstract
The detection and quantification of apoptotic cells is a key process in cancer research, particularly during the screening of anticancer therapeutics and in mechanistic studies using preclinical models. Intravital optical imaging enables high-resolution visualisation of cellular events in live organisms; however, there are few fluorescent probes that can reliably provide functional readouts in situ without interference from tissue autofluorescence. We report the design and optimisation of the fluorogenic probe Apotracker Red for real-time detection of cancer cell death. The strong fluorogenic behaviour, high selectivity, and excellent stability of Apotracker Red make it a reliable optical reporter for the characterisation of the effects of anticancer drugs in cells in vitro and for direct imaging of chemotherapy-induced apoptosis in vivo in mouse models of breast cancer.
Collapse
Affiliation(s)
- Nicole D. Barth
- Centre for Inflammation ResearchThe University of EdinburghUK
| | | | | | - Ouldouz Ghashghaei
- Laboratory of Medicinal ChemistryFaculty of Pharmacy and Institute of Biomedicine (IBUB)University of BarcelonaSpain
| | - Rodolfo Lavilla
- Laboratory of Medicinal ChemistryFaculty of Pharmacy and Institute of Biomedicine (IBUB)University of BarcelonaSpain
| | - Laura Maiorino
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Xue‐Yan He
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Ian Dransfield
- Centre for Inflammation ResearchThe University of EdinburghUK
| | - Mikala Egeblad
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghUK
| |
Collapse
|
41
|
Barth ND, Mendive‐Tapia L, Subiros‐Funosas R, Ghashghaei O, Lavilla R, Maiorino L, He X, Dransfield I, Egeblad M, Vendrell M. A Bivalent Activatable Fluorescent Probe for Screening and Intravital Imaging of Chemotherapy-Induced Cancer Cell Death. Angew Chem Int Ed Engl 2022; 61:e202113020. [PMID: 34762762 PMCID: PMC8991960 DOI: 10.1002/anie.202113020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/21/2022]
Abstract
The detection and quantification of apoptotic cells is a key process in cancer research, particularly during the screening of anticancer therapeutics and in mechanistic studies using preclinical models. Intravital optical imaging enables high-resolution visualisation of cellular events in live organisms; however, there are few fluorescent probes that can reliably provide functional readouts in situ without interference from tissue autofluorescence. We report the design and optimisation of the fluorogenic probe Apotracker Red for real-time detection of cancer cell death. The strong fluorogenic behaviour, high selectivity, and excellent stability of Apotracker Red make it a reliable optical reporter for the characterisation of the effects of anticancer drugs in cells in vitro and for direct imaging of chemotherapy-induced apoptosis in vivo in mouse models of breast cancer.
Collapse
Affiliation(s)
- Nicole D. Barth
- Centre for Inflammation ResearchThe University of EdinburghUK
| | | | | | - Ouldouz Ghashghaei
- Laboratory of Medicinal ChemistryFaculty of Pharmacy and Institute of Biomedicine (IBUB)University of BarcelonaSpain
| | - Rodolfo Lavilla
- Laboratory of Medicinal ChemistryFaculty of Pharmacy and Institute of Biomedicine (IBUB)University of BarcelonaSpain
| | - Laura Maiorino
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Xue‐Yan He
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Ian Dransfield
- Centre for Inflammation ResearchThe University of EdinburghUK
| | - Mikala Egeblad
- Cold Spring Harbor LaboratoryCold Spring HarborNY11724USA
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghUK
| |
Collapse
|
42
|
Molecular Profile Study of Extracellular Vesicles for the Identification of Useful Small “Hit” in Cancer Diagnosis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor-secreted extracellular vesicles (EVs) are the main mediators of cell-cell communication, permitting cells to exchange proteins, lipids, and metabolites in varying physiological and pathological conditions. They contain signature tumor-derived molecules that reflect the intracellular status of their cell of origin. Recent studies have shown that tumor cell-derived EVs can aid in cancer metastasis through the modulation of the tumor microenvironment, suppression of the immune system, pre-metastatic niche formation, and subsequent metastasis. EVs can easily be isolated from a variety of biological fluids, and their content makes them useful biomarkers for the diagnosis, prognosis, monitorization of cancer progression, and response to treatment. This review aims to explore the biomarkers of cancer cell-derived EVs obtained from liquid biopsies, in order to understand cancer progression and metastatic evolution for early diagnosis and precision therapy.
Collapse
|
43
|
Chang W, Xiao D, Fang X, Wang J. Phospholipids in small extracellular vesicles: emerging regulators of neurodegenerative diseases and cancer. Cytotherapy 2021; 24:93-100. [PMID: 34742629 DOI: 10.1016/j.jcyt.2021.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/26/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
Small extracellular vesicles (sEVs) are generated by almost all cell types. They have a bilayer membrane structure that is similar to cell membranes. Thus, the phospholipids contained in sEVs are the main components of cell membranes and function as structural support elements. However, as in-depth research on sEV membrane components is conducted, some phospholipids have been found to participate in cellular biological processes and function as targets for cell-cell communication. Currently, sEVs are being developed as part of drug delivery systems and diagnostic factors for various diseases, especially neurodegenerative diseases and cancer. An understanding of the physiological and pathological roles of sEV phospholipids in cellular processes is essential for their future medical application. In this review, the authors discuss phospholipid components in sEVs of different origins and summarize the roles of phospholipids in sEV biogenesis. The authors further collect the current knowledge on the functional roles of sEV phospholipids in cell-cell communication and bioactivities as signals regulating neurodegenerative diseases and cancer and the possibility of using sEV phospholipids as biomarkers or in drug delivery systems for cancer diagnosis and treatment. Knowledge of sEV phospholipids is important to help us identify directions for future studies.
Collapse
Affiliation(s)
- Wenguang Chang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China.
| | - Dandan Xiao
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China; School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Xinyu Fang
- Institute for Translational Medicine, The Affiliated Hospital, College of Medicine, Qingdao University, Qingdao, China; School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
44
|
Davis HW, Kaynak A, Vallabhapurapu SD, Qi X. Targeting of elevated cell surface phosphatidylserine with saposin C-dioleoylphosphatidylserine nanodrug as individual or combination therapy for pancreatic cancer. World J Gastrointest Oncol 2021; 13:550-559. [PMID: 34163572 PMCID: PMC8204355 DOI: 10.4251/wjgo.v13.i6.550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the deadliest of cancers with a five-year survival of roughly 8%. Current therapies are: surgery, radiation and chemotherapy. Surgery is curative only if the cancer is caught very early, which is rare, and the latter two modalities are only marginally effective and have significant side effects. We have developed a nanosome comprised of the lysosomal protein, saposin C (SapC) and the acidic phospholipid, dioleoylphosphatidylserine (DOPS). In the acidic tumor microenvironment, this molecule, SapC-DOPS, targets the phosphatidylserine cancer-biomarker which is predominantly elevated on the surface of cancer cells. Importantly, SapC-DOPS can selectively target pancreatic tumors and metastases. Furthermore, SapC-DOPS has exhibited an impressive safety profile with only a few minor side effects in both preclinical experiments and in phase I clinical trials. With the dismal outcomes for pancreatic cancer there is an urgent need for better treatments and SapC-DOPS is a good candidate for addition to the oncologist’s toolbox.
Collapse
Affiliation(s)
- Harold W Davis
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Brain Tumor Center at UC Neuroscience Institute, Cincinnati, OH 45267, United States
| | - Ahmet Kaynak
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Brain Tumor Center at UC Neuroscience Institute, Cincinnati, OH 45267, United States
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Subrahmanya D Vallabhapurapu
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Brain Tumor Center at UC Neuroscience Institute, Cincinnati, OH 45267, United States
| | - Xiaoyang Qi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Brain Tumor Center at UC Neuroscience Institute, Cincinnati, OH 45267, United States
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, United States
| |
Collapse
|
45
|
Shiomi A, Nagao K, Yokota N, Tsuchiya M, Kato U, Juni N, Hara Y, Mori MX, Mori Y, Ui-Tei K, Murate M, Kobayashi T, Nishino Y, Miyazawa A, Yamamoto A, Suzuki R, Kaufmann S, Tanaka M, Tatsumi K, Nakabe K, Shintaku H, Yesylevsky S, Bogdanov M, Umeda M. Extreme deformability of insect cell membranes is governed by phospholipid scrambling. Cell Rep 2021; 35:109219. [PMID: 34107250 DOI: 10.1016/j.celrep.2021.109219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/02/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022] Open
Abstract
Organization of dynamic cellular structure is crucial for a variety of cellular functions. In this study, we report that Drosophila and Aedes have highly elastic cell membranes with extremely low membrane tension and high resistance to mechanical stress. In contrast to other eukaryotic cells, phospholipids are symmetrically distributed between the bilayer leaflets of the insect plasma membrane, where phospholipid scramblase (XKR) that disrupts the lipid asymmetry is constitutively active. We also demonstrate that XKR-facilitated phospholipid scrambling promotes the deformability of cell membranes by regulating both actin cortex dynamics and mechanical properties of the phospholipid bilayer. Moreover, XKR-mediated construction of elastic cell membranes is essential for hemocyte circulation in the Drosophila cardiovascular system. Deformation of mammalian cells is also enhanced by the expression of Aedes XKR, and thus phospholipid scrambling may contribute to formation of highly deformable cell membranes in a variety of living eukaryotic cells.
Collapse
Affiliation(s)
- Akifumi Shiomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan.
| | - Nobuhiro Yokota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masaki Tsuchiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Utako Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Naoto Juni
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Masayuki X Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motohide Murate
- UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Toshihide Kobayashi
- UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Yuri Nishino
- Graduate School of Life Science, University of Hyogo, Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Atsuo Miyazawa
- Graduate School of Life Science, University of Hyogo, Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Ryo Suzuki
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Stefan Kaufmann
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan; Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Kazuya Tatsumi
- Department of Mechanical Engineering and Science, Kyoto University, Katsura, Kyoto 615-8540, Japan
| | - Kazuyoshi Nakabe
- Department of Mechanical Engineering and Science, Kyoto University, Katsura, Kyoto 615-8540, Japan
| | - Hirofumi Shintaku
- Microfluidics RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Semen Yesylevsky
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France; Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03680 Kyiv, Ukraine
| | - Mikhail Bogdanov
- Department of Biochemistry & Molecular Biology, University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin, Houston, TX 77030, USA
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan.
| |
Collapse
|
46
|
Ide AD, Wight EM, Damer CK. Phosphatidylserine exposure promotes increased adhesion in Dictyostelium Copine A mutants. PLoS One 2021; 16:e0250710. [PMID: 34043641 PMCID: PMC8158977 DOI: 10.1371/journal.pone.0250710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/13/2021] [Indexed: 12/04/2022] Open
Abstract
The phospholipid phosphatidylserine (PS) is a key signaling molecule and binding partner for many intracellular proteins. PS is normally found on the inner surface of the cell membrane, but PS can be flipped to the outer surface in a process called PS exposure. PS exposure is important in many cell functions, yet the mechanisms that control PS exposure have not been extensively studied. Copines (Cpn), found in most eukaryotic organisms, make up a family of calcium-dependent phospholipid binding proteins. In Dictyostelium, which has six copine genes, CpnA strongly binds to PS and translocates from the cytosol to the plasma membrane in response to a rise in calcium. Cells lacking the cpnA gene (cpnA-) have defects in adhesion, chemotaxis, membrane trafficking, and cytokinesis. In this study we used both flow cytometry and fluorescent microscopy to show that cpnA- cells have increased adhesion to beads and bacteria and that the increased adhesion was not due to changes in the actin cytoskeleton or cell surface proteins. We found that cpnA- cells bound higher amounts of Annexin V, a PS binding protein, than parental cells and showed that unlabeled Annexin V reduced the increased cell adhesion property of cpnA- cells. We also found that cpnA- cells were more sensitive to Polybia-MP1, which binds to external PS and induces cell lysis. Overall, this suggests that cpnA- cells have increased PS exposure and this property contributes to the increased cell adhesion of cpnA- cells. We conclude that CpnA has a role in the regulation of plasma membrane lipid composition and may act as a negative regulator of PS exposure.
Collapse
Affiliation(s)
- Amber D. Ide
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Elise M. Wight
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Cynthia K. Damer
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, United States of America
| |
Collapse
|
47
|
Philippe GJB, Mittermeier A, Lawrence N, Huang YH, Condon ND, Loewer A, Craik DJ, Henriques ST. Angler Peptides: Macrocyclic Conjugates Inhibit p53:MDM2/X Interactions and Activate Apoptosis in Cancer Cells. ACS Chem Biol 2021; 16:414-428. [PMID: 33533253 DOI: 10.1021/acschembio.0c00988] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptides are being developed as targeted anticancer drugs to modulate cytosolic protein-protein interactions involved in cancer progression. However, their use as therapeutics is often limited by their low cell membrane permeation and/or inability to reach cytosolic targets. Conjugation to cell penetrating peptides has been successfully used to improve the cytosolic delivery of high affinity binder peptides, but cellular uptake does not always result in modulation of the targeted pathway. To overcome this limitation, we developed "angler peptides" by conjugating KD3, a noncell permeable but potent and specific peptide inhibitor of p53:MDM2 and p53:MDMX interactions, with a set of cyclic cell-penetrating peptides. We examined their binding affinity for MDM2 and MDMX, the cell entry mechanism, and role in reactivation of the p53 pathway. We identified two angler peptides, cTAT-KD3 and cR10-KD3, able to activate the p53 pathway in cancer cells. cTAT-KD3 entered cells via endocytic pathways, escaped endosomes, and activated the p53 pathway in breast (MCF7), lung (A549), and colon (HCT116) cancer cell lines at concentrations in the range of 1-12 μM. cR10-KD3 reached the cytosol via direct membrane translocation and activated the p53 pathway at 1 μM in all the tested cell lines. Our work demonstrates that nonpermeable anticancer peptides can be delivered into the cytosol and inhibit intracellular cancer pathways when they are conjugated with stable cell penetrating peptides. The mechanistic studies suggest that direct translocation leads to less toxicity, higher cytosol delivery at lower concentrations, and lower dependencies on the membrane of the tested cell line than occurs for an endocytic pathway with endosomal escape. The angler strategy can rescue high affinity peptide binders identified from high throughput screening and convert them into targeted anticancer therapeutics, but investigation of their cellular uptake and cell death mechanisms is essential to confirming modulation of the targeted cancer pathways.
Collapse
Affiliation(s)
- Grégoire J.-B. Philippe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Nicole Lawrence
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicholas D. Condon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sónia T. Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
- Queensland University of Technology, School of Biomedical Sciences, Institute of Health & Biomedical Innovation and Translational Research Institute, Brisbane, Queensland 4102, Australia
| |
Collapse
|
48
|
Converting peptides into drugs targeting intracellular protein-protein interactions. Drug Discov Today 2021; 26:1521-1531. [PMID: 33524603 DOI: 10.1016/j.drudis.2021.01.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/15/2020] [Accepted: 01/22/2021] [Indexed: 12/31/2022]
Abstract
Peptides are gaining increasing attention as therapeutics to target intracellular protein-protein interactions that are involved in disease progression. In this review, we discuss how peptides that are able to bind and inhibit a therapeutic target can be translated into drug leads. We discuss the advantages of using peptides as therapeutics to target intracellular protein-protein interactions, chemical strategies to generate macrocyclic peptides that are resistant to proteolytic enzymes, high-throughput screening approaches to identify peptides that have high affinity for therapeutic targets, strategies that permit these peptides to cross cell membranes and so reach intracellular targets, and the importance of investigating their mode-of-action in guiding the development of novel therapeutics.
Collapse
|
49
|
Koehler A, Karve A, Desai P, Arbiser J, Plas DR, Qi X, Read RD, Sasaki AT, Gawali VS, Toukam DK, Bhattacharya D, Kallay L, Pomeranz Krummel DA, Sengupta S. Reuse of Molecules for Glioblastoma Therapy. Pharmaceuticals (Basel) 2021; 14:99. [PMID: 33525329 PMCID: PMC7912673 DOI: 10.3390/ph14020099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant primary brain tumor. The current standard of care for GBM is the Stupp protocol which includes surgical resection, followed by radiotherapy concomitant with the DNA alkylator temozolomide; however, survival under this treatment regimen is an abysmal 12-18 months. New and emerging treatments include the application of a physical device, non-invasive 'tumor treating fields' (TTFs), including its concomitant use with standard of care; and varied vaccines and immunotherapeutics being trialed. Some of these approaches have extended life by a few months over standard of care, but in some cases are only available for a minority of GBM patients. Extensive activity is also underway to repurpose and reposition therapeutics for GBM, either alone or in combination with the standard of care. In this review, we present select molecules that target different pathways and are at various stages of clinical translation as case studies to illustrate the rationale for their repurposing-repositioning and potential clinical use.
Collapse
Affiliation(s)
- Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Aniruddha Karve
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (A.K.); (P.D.)
| | - Pankaj Desai
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (A.K.); (P.D.)
| | - Jack Arbiser
- Department of Dermatology, Emory School of Medicine, Atlanta, GA 30322, USA;
- Atlanta Veterans Administration Medical Center, Decatur, GA 30033, USA
| | - David R. Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Xiaoyang Qi
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (X.Q.); (A.T.S.)
| | - Renee D. Read
- Department of Pharmacology and Chemical Biology, Emory School of Medicine, Atlanta, GA 30322, USA;
| | - Atsuo T. Sasaki
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (X.Q.); (A.T.S.)
| | - Vaibhavkumar S. Gawali
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Donatien K. Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Laura Kallay
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Daniel A. Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| |
Collapse
|
50
|
Haider T, Pandey V, Behera C, Kumar P, Gupta PN, Soni V. Spectrin conjugated PLGA nanoparticles for potential membrane phospholipid interactions: Development, optimization and in vitro studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|