1
|
Zhang Z, Zheng Q, Li P, Xu X, Zhou Y, Qian C. Expression and mechanism of PRDXs family in oral squamous cell carcinoma. Discov Oncol 2025; 16:415. [PMID: 40153088 PMCID: PMC11953502 DOI: 10.1007/s12672-025-01872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/03/2025] [Indexed: 03/30/2025] Open
Abstract
AIM Our study mainly focused on exploring the expression and mechanism of PRDXs family members in OSCC, as well as the diagnostic and prognostic monitoring value of PRDXs family members in OSCC. METHOD We used bioinformatics tools to perform and visualize gene differential analysis on OSCC, analyse the expression of PRDXs family members in OSCC, and evaluate the diagnostic and prognostic monitoring value of PRDXs family members in OSCC patients. We utilized UALCAN, Cbioportal, and STRING websites to analyze the expression and gene mutations of the PRDXs family in pan-cancer, as well as the correlation of PRDXs family members. We used RT-qPCR technology to analyze the expression of PRDXs family members in OSCC cells. We used CCK8 technology to analyze the effect of PRDXs family members on the proliferation of OSCC cells. RESULT PRDX1, PRDX2, PRDX4 and PRDX5 are generally highly expressed in pan cancer, but PRDX6 is generally low expressed in pan-cancer. PRDX2 and PRDX6 have higher alteration frequency and the mutation of PRDXs family mainly focus on amplification in Pan-Cancer. PRDX1, PRDX4, and PRDX5 are highly expressed in OSCC tissue, while PRDX2 is low expressed in OSCC tissue. Similarly, PRDX1, PRDX4, and PRDX5 are also highly expressed in OSCC cells. Furthermore, PRDX1, PRDX4, and PRDX6 can promote the proliferation of OSCC cells. Except for PRDX6, all other members of the PRDXs family interact with TXN, and TXN plays a crucial role in the PRDXs family. PRDX4 has the highest diagnostic efficiency for OSCC, while PRDX2 and PRDX5 also have high diagnostic efficiency. The high expression of PRDX1 and PRDX6 suggests poor prognosis in OSCC patients, while the low expression of PRDX5 suggests poor prognosis in OSCC patients. CONCLUSION PRDXs family members are expressed to varying degrees in OSCC and have different diagnostic and prognostic monitoring values for OSCC, which may provide a new direction for the clinical diagnosis and treatment of OSCC patients.
Collapse
Affiliation(s)
- Zhou Zhang
- Department of Clinical Laboratory, Xishan People's Hospital Of Wuxi city, No.1128, Dacheng Road, Anzhen Street, Wuxi, 214105, China
- Central Laboratory, Xishan People's Hospital Of Wuxi city, No.1128, Dacheng Road, Anzhen Street, Wuxi, 214105, China
| | - Quan Zheng
- Department of Otorhinolaryngology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, China
| | - Ping Li
- Department of Pathology, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, Wuxi, 214002, China
| | - Xiaopeng Xu
- Department of Clinical Laboratory, Xishan People's Hospital Of Wuxi city, No.1128, Dacheng Road, Anzhen Street, Wuxi, 214105, China
| | - Yanzhou Zhou
- Department of Clinical Laboratory, Xishan People's Hospital Of Wuxi city, No.1128, Dacheng Road, Anzhen Street, Wuxi, 214105, China
| | - Chen Qian
- Department of Clinical Laboratory, Xishan People's Hospital Of Wuxi city, No.1128, Dacheng Road, Anzhen Street, Wuxi, 214105, China.
- Central Laboratory, Xishan People's Hospital Of Wuxi city, No.1128, Dacheng Road, Anzhen Street, Wuxi, 214105, China.
| |
Collapse
|
2
|
Mallick S, Qamar Q, Mishra B, Nayak A. The mechanism underlying the oncogenic potential of AAA+ ATPase PSMC4 in cancer is revealed by mutations and copy number amplifications. Mutat Res 2025; 830:111901. [PMID: 39985882 DOI: 10.1016/j.mrfmmm.2025.111901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
Recent research has discovered a connection between the AAA+ ATPase PSMC4 (Proteasome 26S Subunit, ATPase 4) and several forms of cancer. However, a detailed analysis of the oncogenic potential of PSMC4 was elusive. In this study, we anticipate PSMC4's potential as a cancer biomarker. We aimed to comprehensively assess the expression profiles, prognostic significance, and relevant cellular pathways associated with it. Through our examination of various types of cancers, PSMC4 is found to be overexpressed. Interestingly, our result finds a positive correlation between PSMC4 overexpression and unfavourable overall survival rates in cancer. Further, we looked into the mutations and copy number amplifications of PSMC4 across various cancers. Our study reveals that missense mutations plays a great role behind the oncogenic potential of PSMC4. Several possible mutation sites are predicted. Interestingly, we found fifteen hotspot mutations in the ATPase domain of PSMC4. Additionally, PSMC4 has shown a high amplification percentage in various cancers. We are additionally attentive to the functional characteristics of the protein PSMC4 across various types of cancer. In the protein-protein interaction analyses, it was found that multiple oncoproteins were directly interacting with PSMC4. The top signaling pathways of PSMC4 also indicate that it plays a crucial role in cancer development. Overall, this study reveals that PSMC4 could be a potential diagnostic and prognostic marker for cancer, making it a promising biomarker and target.
Collapse
Affiliation(s)
- Sanjida Mallick
- Department of Life Science, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Qurratulain Qamar
- Department of Life Science, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Bibhudutta Mishra
- Department of Biotechnology, NIST University, Bramhapur, Odisha 761008, India
| | - Aditi Nayak
- Department of Life Science, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India.
| |
Collapse
|
3
|
Kasperski A, Heng HH. The Digital World of Cytogenetic and Cytogenomic Web Resources. Methods Mol Biol 2024; 2825:361-391. [PMID: 38913321 DOI: 10.1007/978-1-0716-3946-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The dynamic growth of technological capabilities at the cellular and molecular level has led to a rapid increase in the amount of data on the genes and genomes of organisms. In order to store, access, compare, validate, classify, and understand the massive data generated by different researchers, and to promote effective communication among research communities, various genome and cytogenetic online databases have been established. These data platforms/resources are essential not only for computational analyses and theoretical syntheses but also for helping researchers select future research topics and prioritize molecular targets. Furthermore, they are valuable for identifying shared recurrent genomic patterns related to human diseases and for avoiding unnecessary duplications among different researchers. The website interface, menu, graphics, animations, text layout, and data from databases are displayed by a front end on the screen of a monitor or smartphone. A database front-end refers to the user interface or application that enables accessing tabular, structured, or raw data stored in the database. The Internet makes it possible to reach a greater number of users around the world and gives them quick access to information stored in databases. The number of ways of presenting this data by front-ends increases as well. This requires unifying the ways of operating and presenting information by front-ends and ensuring contextual switching between front-ends of different databases. This chapter aims to present selected cytogenetic and cytogenomic Internet resources in terms of obtaining the needed information and to indicate how to increase the efficiency of access to stored information. Through a brief introduction of these databases and by providing examples of their usage in cytogenetic analyses, we aim to bridge the gap between cytogenetics and molecular genomics by encouraging their utilization.
Collapse
Affiliation(s)
- Andrzej Kasperski
- Institute of Biological Sciences, Department of Biotechnology, Laboratory of Bioinformatics and Control of Bioprocesses, University of Zielona Góra, Zielona Góra, Poland.
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, and Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
4
|
Simón-Carrasco L, Pietrini E, López-Contreras AJ. Integrated analysis of FHIT gene alterations in cancer. Cell Cycle 2024; 23:92-113. [PMID: 38234243 PMCID: PMC11005815 DOI: 10.1080/15384101.2024.2304509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
The Fragile Histidine Triad Diadenosine Triphosphatase (FHIT) gene is located in the Common Fragile Site FRA3B and encodes an enzyme that hydrolyzes the dinucleotide Ap3A. Although FHIT loss is one of the most frequent copy number alterations in cancer, its relevance for cancer initiation and progression remains unclear. FHIT is frequently lost in cancers from the digestive tract, which is compatible with being a cancer driver event in these tissues. However, FHIT loss could also be a passenger event due to the inherent fragility of the FRA3B locus. Moreover, the physiological relevance of FHIT enzymatic activity and the levels of Ap3A is largely unclear. We have conducted here a systematic pan-cancer analysis of FHIT status in connection with other mutations and phenotypic alterations, and we have critically discussed our findings in connection with the literature to provide an overall view of FHIT implications in cancer.
Collapse
Affiliation(s)
- Lucía Simón-Carrasco
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain
| | - Elena Pietrini
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain
| | - Andrés J. López-Contreras
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
5
|
Chen C, Zhang Y, Lin Y, Shen C, Zhang Z, Wu Z, Qie Y, Zhao G, Hu H. The prognostic significance and immune characteristics of bone morphogenetic proteins (BMPs) family: A pan-cancer multi-omics analysis. Technol Health Care 2024; 32:4123-4175. [PMID: 39031404 PMCID: PMC11613112 DOI: 10.3233/thc-232004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) are a group of cancer-related proteins vital for development and progression of certain cancer types. Nevertheless, function of BMP family in pan-cancer was not detailedly researched. OBJECTIVE Investigating expression pattern and prognostic value of the BMPs family (BMP1-8A and BMP8B) expression across multiple cancer types. METHODS Our research integrated multi-omics data for exploring potential associations between BMPs expression and prognosis, clinicopathological characteristics, copy number or somatic mutations, immune characteristics, tumor microenvironment (TME), tumor mutation burden (TMB), microsatellite instability (MSI), immune checkpoint genes and drug sensitivity in The Cancer Genome Atlas (TCGA) tumors. Furthermore, association of BMPs expression and immunotherapy effectiveness was investigated in some confirmatory cohorts (GSE111636, GSE78220, GSE67501, GSE176307, IMvigor210 and mRNA sequencing data from currently undergoing TRUCE01 clinical research included), and biological function and potential signaling pathways of BMPs in bladder cancer (BCa) was explored via Gene Set Enrichment Analysis (GSEA). Eventually, immune infiltration analysis was done via BMPs expression, copy number or somatic mutations in BCa, as well as validation of the expression levels by reverse transcription-quantitative PCR and western blot, and in vitro functional experiments of BMP8A. RESULTS Discoveries displayed BMPs expression was related to prognosis, clinicopathological characteristics, mutations, TME, TMB, MSI and immune checkpoint genes of TCGA tumors. Anticancer drug sensitivity analysis displayed BMPs were associated with various drug sensitivities. What's more, it was discovered that expression level of certain BMP family members related to objective response to immunotherapy. By GSEA, we discovered multiple immune-associated functions and pathways were enriched. Immune infiltration analysis on BCa also displayed significant associations among BMPs copy number variations, mutation status and infiltration level of diverse immune cells. Furthermore, differential expression validation and in vitro phenotypic experiment indicated that BMP8A significantly promoted BCa cell proliferation, migration and invasion. CONCLUSIONS Current results confirmed significance of both BMPs expression and genomic alteration in the prognosis and treatment of diverse cancer types, and suggested that BMPs may be vital for BCa and can possibly be utilized as biomarkers for immunotherapy.
Collapse
Affiliation(s)
- Changsheng Chen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Tianjin Haihe Hospital, Tianjin, China
| | - Yu Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Eco-City Hospital of Tianjin Fifth Central Hospital, Tianjin, China
| | - Yuda Lin
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yunkai Qie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gangjian Zhao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Zhou F. Prognostic value of CASC15 and LINC01600 as competitive endogenous RNAs in lung adenocarcinoma: An observational study. Medicine (Baltimore) 2023; 102:e36026. [PMID: 37960753 PMCID: PMC10637420 DOI: 10.1097/md.0000000000036026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) can directly or indirectly regulate gene expression through interacting with microRNAs (miRNAs). Competitive endogenous RNAs render the roles of lncRNAs more complicated in the process of tumor occurrence and progression. However, the prognostic value of lncRNAs as potential biomarkers and their functional roles as competitive endogenous RNAs have not been clearly described for lung adenocarcinoma (LUAD). In the present study, the aberrant expression profiles of lncRNAs and miRNAs were analyzed at cBioPortal by interrogating LUAD dataset from The Cancer Genome Atlas (TCGA) database with 517 tissue samples. A total of 92 lncRNAs and 125 miRNAs with highly genetic alterations were identified. Further bioinformatics analysis was performed to construct a LUAD-related lncRNA-miRNA-mRNA ceRNA network, which included 24 highly altered lncRNAs, 21 miRNAs and 142 mRNAs. Some key lncRNAs in this network were subsequently identified as LUAD prognosis-related, and of those, CASC15 and LINC01600 both performed the potential prognostic characteristics with LUAD regarding OS and recurrence. Comprehensive analysis indicated that the expression of LINC01600 was significantly associated with KRAS mutation and lymph node metastasis, and CASC15 and LINC01600 were significantly tended towards co-occurrence, which may be due to the similarity of genes co-expressed by these 2 lncRNAs. Our findings provided novel insight into better understanding of ceRNA regulatory mechanisms in the pathogenesis of LUAD and facilitated the identification of potential biomarkers for prognosis.
Collapse
Affiliation(s)
- Fangbin Zhou
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Shen C, Zhang S, Zhang Z, Yang S, Zhang Y, Lin Y, Fu C, Li Z, Wu Z, Wang Z, Li Z, Guo J, Li P, Hu H. Pan-cancer evidence of prognosis, immune infiltration, and immunotherapy efficacy for annexin family using multi-omics data. Funct Integr Genomics 2023; 23:211. [PMID: 37358720 DOI: 10.1007/s10142-023-01106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/27/2023]
Abstract
The annexin superfamily (ANXA) is made up of 12 calcium (Ca2+) and phospholipid binding protein members that have a high structural homology and play a key function in cancer cells. However, little research has been done on the annexin family's function in pan-cancer. We examined the ANXA family's expression in various tumors through public databases using bioinformatics analysis, assessed the differences in ANXA expression between tumor and normal tissues in pan-cancer, and then investigated the relationship between ANXA expression and patient survival, prognosis, and clinicopathologic traits. Additionally, we investigated the relationships among TCGA cancers' mutations, tumor mutation burden (TMB), microsatellite instability (MSI), immunological subtypes, immune infiltration, tumor microenvironment, immune checkpoint genes, chemotherapeutics sensitivity, and ANXAs expression. cBioPortal was also used to uncover pan-cancer genomic anomalies in the ANXA family, study relationships between pan-cancer ANXA mRNA expression and copy number or somatic mutations, and assess the prognostic values of these variations. Moreover, we investigated the relationship between ANXAs expression and effectiveness of immunotherapy in multiple cohorts, including one melanoma (GSE78220), one renal cell carcinoma (GSE67501), and three bladder cancer cohorts (GSE111636, IMvigor210 and our own sequencing dataset (TRUCE-01)), and further analyzed the changes of ANXAs expression before and after treatment (tislelizumab combined with nab-paclitaxel) of bladder cancer. Then, we explored the biological function and potential signaling pathway of ANXAs using gene set enrichment analysis (GSEA), and first conducted immune infiltration analysis with ANXAs family genes expression, copy number, or somatic mutations of bladder cancer by TIMER 2.0. Most cancer types and surrounding normal tissues expressed ANXA differently. ANXA expression was linked to patient survival, prognosis, clinicopathologic features, mutations, TMB, MSI, immunological subtypes, tumor microenvironment, immune cell infiltration, and immune checkpoint gene expression in 33 TCGA cancers, with ANXA family members varied. The anticancer drug sensitivity analysis showed that ANXAs family members were significantly related to a variety of drug sensitivities. In addition, we also discovered that the expression level of ANXA1/2/3/4/5/7/9/10 was positively or negatively correlated with objective responses to anti-PD-1/PD-L1 across multiple immunotherapy cohorts. The immune infiltration analysis of bladder cancer further showed the significant relationships between ANXAs copy number variations or mutation status, and infiltration level of different immune cells. Overall, our analyses confirm the importance of ANXAs expression or genomic alterations in prognosis and immunological features of various cancer and identified ANXA-associated genes that may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Siyang Zhang
- Department of Urology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Jiangsu, 225300, China
| | - Zhe Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shaobo Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yu Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuda Lin
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Fu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhi Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zejin Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhuolun Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jian Guo
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peng Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, No. 23, Pingjiang Road, Tianjin, 300211, China.
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
8
|
Kwan BM, Brownson RC, Glasgow RE, Morrato EH, Luke DA. Designing for Dissemination and Sustainability to Promote Equitable Impacts on Health. Annu Rev Public Health 2022; 43:331-353. [PMID: 34982585 PMCID: PMC9260852 DOI: 10.1146/annurev-publhealth-052220-112457] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Designing for dissemination and sustainability (D4DS) refers to principles and methods for enhancing the fit between a health program, policy, or practice and the context in which it is intended to be adopted. In this article we first summarize the historical context of D4DS and justify the need to shift traditional health research and dissemination practices. We present a diverse literature according to a D4DS organizing schema and describe a variety of dissemination products, design processes and outcomes, and approaches to messaging, packaging, and distribution. D4DS design processes include stakeholder engagement, participatory codesign, and context and situation analysis, and leverage methods and frameworks from dissemination and implementation science, marketing and business, communications and visualarts, and systems science. Finally, we present eight recommendations to adopt a D4DS paradigm, reflecting shifts in ways of thinking, skills and approaches, and infrastructure and systems for training and evaluation.
Collapse
Affiliation(s)
- Bethany M Kwan
- Department of Family Medicine and Adult & Child Consortium for Health Outcomes Research and Delivery Science, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Ross C Brownson
- Prevention Research Center, Brown School, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Surgery (Division of Public Health Sciences) and Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Russell E Glasgow
- Department of Family Medicine and Adult & Child Consortium for Health Outcomes Research and Delivery Science, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Elaine H Morrato
- Parkinson School of Health Sciences and Public Health and Institute for Translational Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Douglas A Luke
- Center for Public Health Systems Science, Brown School, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Li S, Li H, Cao Y, Geng H, Ren F, Li K, Dai C, Li N. Integrated bioinformatics analysis reveals CDK1 and PLK1 as potential therapeutic targets of lung adenocarcinoma. Medicine (Baltimore) 2021; 100:e26474. [PMID: 34397869 PMCID: PMC8360490 DOI: 10.1097/md.0000000000026474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/15/2021] [Accepted: 06/08/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT This study is to identify potential biomarkers and therapeutic targets for lung adenocarcinoma (LUAD).GSE6044 and GSE118370 raw data from the Gene Expression Omnibus database were normalized with Robust Multichip Average. After merging these two datasets, the combat function of sva packages was used to eliminate batch effects. Then, limma packages were used to filtrate differentially expressed genes. We constructed protein-protein interaction relationships using STRING database and hub genes were identified based on connectivity degrees. The cBioportal database was used to explore the alterations of the hub genes. The promoter methylation of cyclin dependent kinase 1 (CDK1) and polo-like Kinase 1 (PLK1) and their association with tumor immune infiltration in patients with LUAD were investigated using DiseaseMeth version 2.0 and TIMER databases. The Cancer Genome Atlas-LUAD dataset was used to perform gene set enrichment analysis.We identified 10 hub genes, which were upregulated in LUAD, among which 8 were successfully verified in the Cancer Genome Atlas and Oncomine databases. Kaplan-Meier analysis indicated that the expressions of CDK1 and PLK1 in LUAD patients were associated with overall survival and disease-free survival. The methylation levels in the promoter regions of these 2 genes in LUAD patients were lower than those in normal lung tissues. Their expressions in LUAD were associated with tumor stages and relative abundance of tumor infiltrating immune cells, such as B cells, CD4+ T cells, and macrophages. Moreover, cell cycle, DNA replication, homologous recombination, mismatch repair, P53 signaling pathway, and small cell lung cancer signaling were significantly enriched in CDK1 and PLK1 high expression phenotype.CDK1 and PLK1 may be used as potential biomarkers and therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Shuzhen Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, PR China
| | - Hua Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, PR China
| | - Yajie Cao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, PR China
| | - Haiying Geng
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, PR China
| | - Fu Ren
- Liaoning Province Key Laboratory of Human Phenome Research, Jinzhou Medical University, Jinzhou, Liaoning Province, PR China
| | - Keyan Li
- Department of Cardiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, Liaoning Province, PR China
| | - Chunmei Dai
- School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning, PR China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, PR China
- Liaoning Province Key Laboratory of Human Phenome Research, Jinzhou Medical University, Jinzhou, Liaoning Province, PR China
| |
Collapse
|
10
|
Sui Y, Liu J, Zhang J, Zheng Z, Wang Z, Jia Z, Meng Z. Expression and Gene Regulation Network of Adenosine Receptor A2B in Lung Adenocarcinoma: A Potential Diagnostic and Prognostic Biomarker. Front Mol Biosci 2021; 8:663011. [PMID: 34350210 PMCID: PMC8326519 DOI: 10.3389/fmolb.2021.663011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022] Open
Abstract
Adenosinereceptor A2B (ADORA2B) encodes a protein belonging to the G protein–coupled receptor superfamily. Abnormal expression of ADORA2B may play a pathophysiological role in some human cancers. We investigated whether ADORA2B is a potential diagnostic and prognostic biomarker for lung adenocarcinoma (LUAD). The expression, various mutations, copy number variations, mRNA expression levels, and related network signaling pathways of ADORA2B were analyzed using bioinformatics-related websites, including Oncomine, UALCAN, cBioPortal, GeneMANIA, LinkedOmics, KM Plotter, and TIMER. We found that ADORA2B was overexpressed and amplified in LUAD, and a high ADORA2B expression predicted a poor prognosis for LUAD patients. Pathway analyses of ADORA2B in LUAD revealed ADORA2B-correlated signaling pathways, and the expression level of ADORA2B was associated with immune cell infiltration. Furthermore, ADORA2B mRNA and protein levels were significantly higher in human LUAD cell lines (A549 cells and NCl-H1299 cells) than in normal human bronchial epithelial (HBE) cells, and the transcript levels of genes positively or negatively correlated with ADORA2B were consistent and statistically significant. siRNA transfection experiments and functional experiments further confirmed these results. In vitro results were also consistent with those of bioinformatics analysis. Our findings provide a foundation for studying the role of ADORA2B in tumorigenesis and support the development of new drug targets for LUAD.
Collapse
Affiliation(s)
- Yutong Sui
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jiayin Liu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jing Zhang
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zena Zheng
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Ziwei Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhenghu Jia
- The First Affiliated Hospital, Biomedical Translational Research Institute and Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, China
| | - Ziyu Meng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Moin AT, Sarkar B, Ullah MA, Araf Y, Ahmed N, Rudra B. In silico assessment of EpCAM transcriptional expression and determination of the prognostic biomarker for human lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Biochem Biophys Rep 2021; 27:101074. [PMID: 34345719 PMCID: PMC8319582 DOI: 10.1016/j.bbrep.2021.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein which is involved in cell signaling, proliferation, maturation, and movement, all of which are crucial for the proper development of cells and tissues. Cleavage of the EpCAM protein leads to the up-regulation of c-myc, e-fabp, and cyclins A and E which promote tumorigenesis. EpCAM can act as potential diagnostic and prognostic biomarker for different types of cancers as it is also found to be expressed in epithelia and epithelial-derived neoplasms. Hence, we aimed to analyze the EpCAM gene expression and any associated feedback in the patients of two major types of lung cancer (LC) i.e., lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), based on the publicly available online databases. In this study, server-based gene expression analysis represents the up-regulation of EpCAM in both LUAD and LUSC subtypes as compared to the corresponding normal tissues. Besides, the histological sections revealed the over-expression of EpCAM protein in cancerous tissues by depicting strong staining signals. Furthermore, mutation analysis suggested missense as the predominant type of mutation both in LUAD and LUSC in the EpCAM gene. A significant correlation (P-value < 0.05) between the higher EpCAM expression and lower patient survival was also found in this study. Finally, the co-expressed genes were identified with their ontological features and signaling pathways associated in LC development. The overall study suggests EpCAM to be a significant biomarker for human LC prognosis.
Collapse
Affiliation(s)
- Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Bishajit Sarkar
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Md Asad Ullah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Nafisa Ahmed
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Bashudev Rudra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
12
|
Shen YT, Huang X, Zhang G, Jiang B, Li CJ, Wu ZS. Pan-Cancer Prognostic Role and Targeting Potential of the Estrogen-Progesterone Axis. Front Oncol 2021; 11:636365. [PMID: 34322374 PMCID: PMC8311599 DOI: 10.3389/fonc.2021.636365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction Estrogen receptors (ESRs) and progesterone receptors (PGRs) are associated with the development and progression of various tumors. The feasibility of ESRs and PGRs as prognostic markers and therapeutic targets for multiple cancers was evaluated via pan-cancer analysis. Methods The pan-cancer mRNA expression levels, genetic variations, and prognostic values of ESR1, ESR2, and PGR were analyzed using the Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and cBioPortal. The expression levels of ERa, ERb, and PGR proteins were detected by immunohistochemical staining using paraffin-embedded tissue specimens of ovarian serous cystadenocarcinoma (OV) and uterine endometrioid adenocarcinoma (UTEA). Correlation between immunomodulators and immune cells was determined based on the Tumor and Immune System Interaction Database (TISIDB). Results ESR1, ESR2, and PGR mRNAs were found to be differentially expressed in different cancer types, and were associated with tumor progression and clinical prognosis. ERa, ERb, and PGR proteins were further determined to be significantly differentially expressed in OV and UTEA via immunohistochemical staining. The expression of ERa protein was positively correlated with a high tumor stage, whereas the expression of PGR protein was conversely associated with a high tumor stage in patients with OV. In patients with UTEA, the expression levels of both ERa and PGR proteins were conversely associated with tumor grade and stage. In addition, the expression levels of ESR1, ESR2, and PGR mRNAs were significantly associated with the expression of immunomodulators and immune cells. Conclusion ESR1, ESR2, and PGR are potential prognostic markers and therapeutic targets, as well as important factors for the prediction, evaluation, and individualized treatment in several cancer types.
Collapse
Affiliation(s)
- Yu-Ting Shen
- Department of Pathology, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Jiang
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Cheng-Jun Li
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Potential functions of hsa-miR-155-5p and core genes in chronic myeloid leukemia and emerging role in human cancer: A joint bioinformatics analysis. Genomics 2021; 113:1647-1658. [PMID: 33862181 DOI: 10.1016/j.ygeno.2021.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/07/2021] [Accepted: 04/05/2021] [Indexed: 12/13/2022]
Abstract
Considering the critical roles of hsa-miR-155-5p participated in hematopoietic system, this study aims to clarify the possible pathogenesis of chronic myeloid leukemia (CML) induced by hsa-miR-155-5p.Three different strategies were employed, namely a network-based pipeline, a survival analysis and genetic screening method, and a simulation modeling approach, to assess the oncogenic role of hsa-miR-155-5p in CML. We identified new potential roles of hsa-miR-155-5p in CML, involving the BCR/ABL-mediated leukemogenesis through MAPK signaling. Several promising targets including E2F2, KRAS and FLI1 were screened as candidate diagnostic marker genes. The survival analysis revealed that mRNA expression of E2F2, KRAS and FLI1 was negatively correlated with hsa-miR-155-5p and these targets were significantly associated with poor overall survival. Furthermore, an overlap between CML-related genes and hsa-miR-155-5p target genes was revealed using competing endogenous RNA (ceRNA) networks analysis. Taken together, our results reveal the dynamic regulatory aspect of hsa-miR-155-5p as potential player in CML pathogenesis.
Collapse
|
14
|
Golden E, Rashwan R, Woodward EA, Sgro A, Wang E, Sorolla A, Waryah C, Tie WJ, Cuyàs E, Ratajska M, Kardaś I, Kozlowski P, Johnstone EKM, See HB, Duffy C, Parry J, Lagerborg KA, Czapiewski P, Menendez JA, Gorczyński A, Wasag B, Pfleger KDG, Curtis C, Lee BK, Kim J, Cursons J, Pavlos NJ, Biernat W, Jain M, Woo AJ, Redfern A, Blancafort P. The oncogene AAMDC links PI3K-AKT-mTOR signaling with metabolic reprograming in estrogen receptor-positive breast cancer. Nat Commun 2021; 12:1920. [PMID: 33772001 PMCID: PMC7998036 DOI: 10.1038/s41467-021-22101-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Adipogenesis associated Mth938 domain containing (AAMDC) represents an uncharacterized oncogene amplified in aggressive estrogen receptor-positive breast cancers. We uncover that AAMDC regulates the expression of several metabolic enzymes involved in the one-carbon folate and methionine cycles, and lipid metabolism. We show that AAMDC controls PI3K-AKT-mTOR signaling, regulating the translation of ATF4 and MYC and modulating the transcriptional activity of AAMDC-dependent promoters. High AAMDC expression is associated with sensitization to dactolisib and everolimus, and these PI3K-mTOR inhibitors exhibit synergistic interactions with anti-estrogens in IntClust2 models. Ectopic AAMDC expression is sufficient to activate AKT signaling, resulting in estrogen-independent tumor growth. Thus, AAMDC-overexpressing tumors may be sensitive to PI3K-mTORC1 blockers in combination with anti-estrogens. Lastly, we provide evidence that AAMDC can interact with the RabGTPase-activating protein RabGAP1L, and that AAMDC, RabGAP1L, and Rab7a colocalize in endolysosomes. The discovery of the RabGAP1L-AAMDC assembly platform provides insights for the design of selective blockers to target malignancies having the AAMDC amplification.
Collapse
Affiliation(s)
- Emily Golden
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Rabab Rashwan
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Eleanor A Woodward
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Agustin Sgro
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Edina Wang
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Anabel Sorolla
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Charlene Waryah
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Wan Jun Tie
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Elisabet Cuyàs
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Girona Biomedical Research Institute, Girona, Catalonia, Spain
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Magdalena Ratajska
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
- The Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Pathology, Otago University, Dunedin, New Zealand
| | - Iwona Kardaś
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
- Laboratory of Clinical Genetics, University Clinical Centre, Gdansk, Poland
| | - Piotr Kozlowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Elizabeth K M Johnstone
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne and Perth, Australia
| | - Heng B See
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne and Perth, Australia
| | - Ciara Duffy
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jeremy Parry
- Department of Anatomical Pathology, Path West Laboratory, Fiona Stanley Hospital Network, Murdoch, WA, Australia
| | - Kim A Lagerborg
- Departments of Medicine and Pharmacology, University of California, San Diego, CA, USA
| | - Piotr Czapiewski
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
- Institute of Pathology, Dessau Medical Centre, Dessau, Germany
| | - Javier A Menendez
- Girona Biomedical Research Institute, Girona, Catalonia, Spain
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism & Cancer Group, Catalan Institute of Oncology, Girona, Catalonia, Spain
| | - Adam Gorczyński
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Wasag
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
- Laboratory of Clinical Genetics, University Clinical Centre, Gdansk, Poland
| | - Kevin D G Pfleger
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne and Perth, Australia
- Dimerix Limited, Nedlands, WA, Australia
| | - Christina Curtis
- Stanford University School of Medicine (Departments of Medicine & Genetics) and Stanford Cancer Institute, Stanford, CA, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany-State University of New York, Rensselaer, NY, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Joseph Cursons
- Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Nathan J Pavlos
- The Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Wojciech Biernat
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California, San Diego, CA, USA
| | - Andrew J Woo
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Andrew Redfern
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, The Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia.
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
- The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
15
|
Wang J, Peng R, Zhang Z, Zhang Y, Dai Y, Sun Y. Identification and Validation of Key Genes in Hepatocellular Carcinoma by Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6662114. [PMID: 33688500 PMCID: PMC7925030 DOI: 10.1155/2021/6662114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Accepted: 02/17/2021] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer and has poor outcomes. However, the potential molecular biological process underpinning the occurrence and development of HCC is still largely unknown. The purpose of this study was to identify the core genes related to HCC and explore their potential molecular events using bioinformatics methods. HCC-related expression profiles GSE25097 and GSE84005 were selected from the Gene Expression Omnibus (GEO) database, and the differentially expressed genes (DEGs) between 306 HCC tissues and 281 corresponding noncancerous tissues were identified using GEO2R online tools. The protein-protein interaction network (PPIN) was constructed and visualized using the STRING database. Gene Ontology (GO) and KEGG pathway enrichment analyses of the DEGs were carried out using DAVID 6.8 and KOBAS 3.0. Additionally, module analysis and centrality parameter analysis were performed by Cytoscape. The expression differences of key genes in normal hepatocyte cells and HCC cells were verified by quantitative real-time fluorescence polymerase chain reaction (qRT-PCR). Additionally, survival analysis of key genes was performed by GEPIA. Our results showed that a total of 291 DEGs were identified including 99 upregulated genes and 192 downregulated genes. Our results showed that the PPIN of HCC was made up of 287 nodes and 2527 edges. GO analysis showed that these genes were mainly enriched in the molecular function of protein binding. Additionally, KEGG pathway analysis also revealed that DEGs were mainly involved in the metabolic, cell cycle, and chemical carcinogenesis pathways. Interestingly, a significant module with high centrality features including 10 key genes was found. Among these, CDK1, NDC80, HMMR, CDKN3, and PTTG1, which were only upregulated in HCC patients, have attracted much attention. Furthermore, qRT-PCR also confirmed the upregulation of these five key genes in the normal human hepatocyte cell line (HL-7702) and HCC cell lines (SMMC-7721, MHCC-97L, and MHCC-97H); patients with upregulated expression of these five key genes had significantly poorer survival and prognosis. CDK1, NDC80, HMMR, CDKN3, and PTTG1 can be used as molecular markers for HCC. This finding provides potential strategies for clinical diagnosis, accurate treatment, and prognosis analysis of liver cancer.
Collapse
Affiliation(s)
- Jia Wang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Zheng Zhang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yixi Zhang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yuke Dai
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Das T, Andrieux G, Ahmed M, Chakraborty S. Integration of Online Omics-Data Resources for Cancer Research. Front Genet 2020; 11:578345. [PMID: 33193699 PMCID: PMC7645150 DOI: 10.3389/fgene.2020.578345] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The manifestations of cancerous phenotypes necessitate alterations at different levels of information-flow from genome to proteome. The molecular alterations at different information processing levels serve as the basis for the cancer phenotype to emerge. To understand the underlying mechanisms that drive the acquisition of cancer hallmarks it is required to interrogate cancer cells using multiple levels of information flow represented by different omics - such as genomics, epigenomics, transcriptomics, and proteomics. The advantage of multi-omics data integration comes with a trade-off in the form of an added layer of complexity originating from inherently diverse types of omics-datasets that may pose a challenge to integrate the omics-data in a biologically meaningful manner. The plethora of cancer-specific online omics-data resources, if able to be integrated efficiently and systematically, may facilitate the generation of new biological insights for cancer research. In this review, we provide a comprehensive overview of the online single- and multi-omics resources that are dedicated to cancer. We catalog various online omics-data resources such as The Cancer Genome Atlas (TCGA) along with various TCGA-associated data portals and tools for multi-omics analysis and visualization, the International Cancer Genome Consortium (ICGC), Catalogue of Somatic Mutations in Cancer (COSMIC), The Pathology Atlas, Gene Expression Omnibus (GEO), and PRoteomics IDEntifications (PRIDE). By comparing the strengths and limitations of the respective online resources, we aim to highlight the current biological and technological challenges and possible strategies to overcome these challenges. We outline the available schemes for the integration of the multi-omics dimensions for stratifying cancer patients and biomarker prediction based on the integrated molecular-signatures of cancer. Finally, we propose the multi-omics driven systems-biology approaches to realize the potential of precision onco-medicine as the future of cancer research. We believe this systematic review will encourage scientists and clinicians worldwide to utilize the online resources to explore and integrate the available omics datasets that may provide a window of opportunity to generate new biological insights and contribute to the advancement of the field of cancer research.
Collapse
Affiliation(s)
- Tonmoy Das
- Molecular Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Geoffroy Andrieux
- Medical Center - University of Freiburg, Faculty of Medicine, Institute of Medical Bioinformatics and Systems Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sajib Chakraborty
- Molecular Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
17
|
Samad A, Haque F, Nain Z, Alam R, Al Noman MA, Rahman Molla MH, Hossen MS, Islam MR, Khan MI, Ahammad F. Computational assessment of MCM2 transcriptional expression and identification of the prognostic biomarker for human breast cancer. Heliyon 2020; 6:e05087. [PMID: 33024849 PMCID: PMC7530310 DOI: 10.1016/j.heliyon.2020.e05087] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/09/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Minichromosome maintenance protein 2 (MCM2) is a highly conserved protein from the MCM protein family that plays an important role in eukaryotic DNA replication as well as in cell cycle progression. In addition, it maintains the ploidy level consistency in eukaryotic cells, hence, mutations or alteration of this protein could result in the disintegration of the fine-tuned molecular machinery that can lead to uncontrolled cell proliferation. Moreover, MCM2 has been found to be an important marker for progression and prognosis in different cancers. Therefore, we aimed to analyze the MCM2 expression and the associated outcome in breast cancer (BC) patients based on the publicly available online databases. In this study, server-based gene expression analyses indicate the upregulation of MCM2 (p < 10-6; fold change>2.0) in various BC subtypes as compared to the respective normal tissues. Besides, the evaluation of histological sections from healthy and cancer tissues showed strong staining signals indicating higher expression of MCM2 protein. The overexpression of MCM2 was significantly correlated to promoter methylation and was related to patients' clinical features. Further, mutation analysis suggested missense as the predominant type of mutation (71.4%) with 18 copy-number alterations and 0.2% mutation frequency in the MCM2 gene. This study revealed a significant correlation (Cox p ≤ 0.05) between the higher MCM2 expression and lower patient survival. Finally, we identified the co-expressed genes with gene ontological features and signaling pathways associated in BC development. We believe that this study will provide a basis for MCM2 to be a significant biomarker for human BC prognosis.
Collapse
Affiliation(s)
- Abdus Samad
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Farhana Haque
- Department of Biotechnology and Genetic Engineering, Khulna University, Khulna, 9208, Bangladesh
| | - Zulkar Nain
- Department of Genetic Engineering and Biotechnology, Faculty of Sciences and Engineering, East West University, Dhaka, 1212, Bangladesh.,Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Rahat Alam
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Molecular and Cellular Biology Laboratory, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Abdullah Al Noman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Molecular and Cellular Biology Laboratory, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mohammad Habibur Rahman Molla
- Institute of Marine Sciences and Fisheries, University of Chittagong, Chittagong, 4331, Bangladesh.,Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Md Saddam Hossen
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Raquibul Islam
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Iqbal Khan
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Department of Biotechnology and Genetic Engineering, Khulna University, Khulna, 9208, Bangladesh
| | - Foysal Ahammad
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Molecular and Cellular Biology Laboratory, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.,Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
18
|
Saha SK, Islam SMR, Kwak KS, Rahman MS, Cho SG. PROM1 and PROM2 expression differentially modulates clinical prognosis of cancer: a multiomics analysis. Cancer Gene Ther 2020; 27:147-167. [PMID: 31164716 PMCID: PMC7170805 DOI: 10.1038/s41417-019-0109-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/03/2019] [Accepted: 05/19/2019] [Indexed: 12/11/2022]
Abstract
Prominin 1 (PROM1) is considered a biomarker for cancer stem cells, although its biological role is unclear. Prominin 2 (PROM2) has also been associated with certain cancers. However, the prognostic value of PROM1 and PROM2 in cancer is controversial. Here, we performed a systematic data analysis to examine whether prominins can function as prognostic markers in human cancers. The expression of prominins was assessed and their prognostic value in human cancers was determined using univariate and multivariate survival analyses, via various online platforms. We selected a group of prominent functional protein partners of prominins by protein-protein interaction analysis. Subsequently, we investigated the relationship between mutations and copy number alterations in prominin genes and various types of cancers. Furthermore, we identified genes that correlated with PROM1 and PROM2 in certain cancers, based on their levels of expression. Gene ontology and pathway analyses were performed to assess the effect of these correlated genes on various cancers. We observed that PROM1 was frequently overexpressed in esophageal, liver, and ovarian cancers and its expression was negatively associated with prognosis, whereas PROM2 overexpression was associated with poor overall survival in lung and ovarian cancers. Based on the varying characteristics of prominins, we conclude that PROM1 and PROM2 expression differentially modulates the clinical outcomes of cancers.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| | - S M Riazul Islam
- Department of Computer Science and Engineering, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Kyung-Sup Kwak
- School of Information and Communication Engineering, Inha University, 100, Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
19
|
Wagenbach M, Vicente JJ, Ovechkina Y, Domnitz S, Wordeman L. Functional characterization of MCAK/Kif2C cancer mutations using high-throughput microscopic analysis. Mol Biol Cell 2020; 31:580-588. [PMID: 31746663 PMCID: PMC7202071 DOI: 10.1091/mbc.e19-09-0503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The microtubule (MT)-depolymerizing activity of MCAK/Kif2C can be quantified by expressing the motor in cultured cells and measuring tubulin fluorescence levels after enough hours have passed to allow tubulin autoregulation to proceed. This method allows us to score the impact of point mutations within the motor domain. We found that, despite their distinctly different activities, many mutations that impact transport kinesins also impair MCAK/Kif2C's depolymerizing activity. We improved our workflow using CellProfiler to significantly speed up the imaging and analysis of transfected cells. This allowed us to rapidly interrogate a number of MCAK/Kif2C motor domain mutations documented in the cancer database cBioPortal. We found that a large proportion of these mutations adversely impact the motor. Using green fluorescent protein-FKBP-MCAK CRISPR cells we found that one deleterious hot-spot mutation increased chromosome instability in a wild-type (WT) background, suggesting that such mutants have the potential to promote tumor karyotype evolution. We also found that increasing WT MCAK/Kif2C protein levels over that of endogenous MCAK/Kif2C similarly increased chromosome instability. Thus, endogenous MCAK/Kif2C activity in normal cells is tuned to a mean level to achieve maximal suppression of chromosome instability.
Collapse
Affiliation(s)
- Mike Wagenbach
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
| | - Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
| | - Yulia Ovechkina
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
| | - Sarah Domnitz
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
| | - Linda Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
20
|
Yim A, Koti P, Bonnard A, Marchiano F, Dürrbaum M, Garcia-Perez C, Villaveces J, Gamal S, Cardone G, Perocchi F, Storchova Z, Habermann BH. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations. Nucleic Acids Res 2020; 48:605-632. [PMID: 31799603 PMCID: PMC6954439 DOI: 10.1093/nar/gkz1128] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/30/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Mitochondria participate in metabolism and signaling. They adapt to the requirements of various cell types. Publicly available expression data permit to study expression dynamics of genes with mitochondrial function (mito-genes) in various cell types, conditions and organisms. Yet, we lack an easy way of extracting these data for mito-genes. Here, we introduce the visual data mining platform mitoXplorer, which integrates expression and mutation data of mito-genes with a manually curated mitochondrial interactome containing ∼1200 genes grouped in 38 mitochondrial processes. User-friendly analysis and visualization tools allow to mine mitochondrial expression dynamics and mutations across various datasets from four model species including human. To test the predictive power of mitoXplorer, we quantify mito-gene expression dynamics in trisomy 21 cells, as mitochondrial defects are frequent in trisomy 21. We uncover remarkable differences in the regulation of the mitochondrial transcriptome and proteome in one of the trisomy 21 cell lines, caused by dysregulation of the mitochondrial ribosome and resulting in severe defects in oxidative phosphorylation. With the newly developed Fiji plugin mitoMorph, we identify mild changes in mitochondrial morphology in trisomy 21. Taken together, mitoXplorer (http://mitoxplorer.ibdm.univ-mrs.fr) is a user-friendly, web-based and freely accessible software, aiding experimental scientists to quantify mitochondrial expression dynamics.
Collapse
Affiliation(s)
- Annie Yim
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Prasanna Koti
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Adrien Bonnard
- Aix-Marseille University, INSERM, TAGC U1090, 13009 Marseille, France
| | - Fabio Marchiano
- Aix-Marseille University, CNRS, IBDM UMR 7288, 13009 Marseille, France
| | - Milena Dürrbaum
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Cecilia Garcia-Perez
- Functional Genomics of Mitochondrial Signaling, Gene Center, Ludwig Maximilian University (LMU), Munich, Germany
| | - Jose Villaveces
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Salma Gamal
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Giovanni Cardone
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Fabiana Perocchi
- Functional Genomics of Mitochondrial Signaling, Gene Center, Ludwig Maximilian University (LMU), Munich, Germany
| | - Zuzana Storchova
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.,Department of Molecular Genetics, TU Kaiserslautern, Paul Ehrlich Strasse 24, 67663 Kaiserslautern, Germany
| | - Bianca H Habermann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.,Aix-Marseille University, CNRS, IBDM UMR 7288, 13009 Marseille, France
| |
Collapse
|
21
|
Fadaka AO, Bakare OO, Sibuyi NRS, Klein A. Gene Expression Alterations and Molecular Analysis of CHEK1 in Solid Tumors. Cancers (Basel) 2020; 12:cancers12030662. [PMID: 32178478 PMCID: PMC7139733 DOI: 10.3390/cancers12030662] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Alterations in the Checkpoint kinase (CHEK1) gene, its regulation, and the possible clinical outcomes in human solid tumors have not been previously examined. Therefore, the present study was carried out to evaluate the expression of CHEK1 in solid tumors as well as the mechanism by which it can be regulated through non-coding RNAs. The expression of CHEK1 was investigated using Oncomine analysis. cBioPortal, Kaplan-Meier Plotter, and PrognoScan were performed to identify the prognostic roles of this gene in solid tumors. The copy number alteration, mutation, interactive analysis, and visualization of the altered networks were performed by cBioPortal. The molecular binding analysis was carried out by Schrodinger suite, PATCHDOCK, and discovery studio visualizer. The study demonstrated that the CHEK1 gene was differentially expressed in four different cancers, and that reduced CHEK1 mRNA expression is an unfavorable prognostic factor for patients with gastric and colorectal cancer. The molecular docking results showed that the CHEK1 gene can be regulated by microRNAs (miR-195-5p) due to the number of stable hydrogen atoms observed within the distance of 2.0 Å and the favorable amino acids (Ala221, Ile353, Ile365, Ile756, Val797, Val70, Val154, Ile159, Val347, Tyr804, Phe811, Tyr815, and Phe156) identified in the binding pocket of the argonaute protein. Due to the possibility of CHEK1's involvement in solid tumors, it may potentially be a target for therapeutic intervention in cancer. Further studies into the interaction between CHEK1 and other co-expressed genes may give further insight into other modes of regulation of this gene in cancer patients.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Bioinformatics research group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
- Correspondence: ; Tel.: +27-630511928 or +234-8039242052
| | - Olalekan Olanrewaju Bakare
- Bioinformatics research group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Technology/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Ashwil Klein
- Plant Omics group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
22
|
Karim MA, Samad A, Adhikari UK, Kader MA, Kabir MM, Islam MA, Hasan MN. A Multi-Omics Analysis of Bone Morphogenetic Protein 5 ( BMP5) mRNA Expression and Clinical Prognostic Outcomes in Different Cancers Using Bioinformatics Approaches. Biomedicines 2020; 8:E19. [PMID: 31973134 PMCID: PMC7168281 DOI: 10.3390/biomedicines8020019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/27/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
Cumulative studies have provided controversial evidence for the prognostic values of bone morphogenetic protein 5 (BMP5) in different types of cancers such as colon, breast, lung, bladder, and ovarian cancer. To address the inconsistent correlation of BMP5 expression with patient survival and molecular function of BMP5 in relation to cancer progression, we performed a systematic study to determine whether BMP5 could be used as a prognostic marker in human cancers. BMP5 expression and prognostic values were assessed using different bioinformatics tools such as ONCOMINE, GENT, TCGA, GEPIA, UALCAN, PrognoScan, PROGgene V2 server, and Kaplan-Meier Plotter. In addition, we used cBioPortal database for the identification and analysis of BMP5 mutations, copy number alterations, altered expression, and protein-protein interaction (PPI). We found that BMP5 is frequently down-regulated in our queried cancer types. Use of prognostic analysis showed negative association of BMP5 down-regulation with four types of cancer except for ovarian cancer. The highest mutation was found in the R321*/Q amino acid of BMP5 corresponding to colorectal and breast cancer whereas the alteration frequency was higher in lung squamous carcinoma datasets (>4%). In PPI analysis, we found 31 protein partners of BMP5, among which 11 showed significant co-expression (p-value < 0.001, log odds ratio > 1). Pathway analysis of differentially co-expressed genes with BMP5 in breast, lung, colon, bladder and ovarian cancers revealed the BMP5-correlated pathways. Collectively, this data-driven study demonstrates the correlation of BMP5 expression with patient survival and identifies the involvement of BMP5 pathways that may serve as targets of a novel biomarker for various types of cancers in human.
Collapse
Affiliation(s)
- Md. Adnan Karim
- Department of Genetic Engineering and Biotechnology, Jashore University of Science & Technology, Jashore 7408, Bangladesh
| | - Abdus Samad
- Department of Genetic Engineering and Biotechnology, Jashore University of Science & Technology, Jashore 7408, Bangladesh
| | - Utpal Kumar Adhikari
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Md. Ashraful Kader
- Department of Genetic Engineering and Biotechnology, Jashore University of Science & Technology, Jashore 7408, Bangladesh
| | - Md. Masnoon Kabir
- Laboratory Science & Service Division (LSSD), International Centre for Diarrhoeal Disease Research, Dhaka 1213, Bangladesh
| | - Md. Aminul Islam
- Department of Genetic Engineering and Biotechnology, Jashore University of Science & Technology, Jashore 7408, Bangladesh
| | - Md. Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Jashore University of Science & Technology, Jashore 7408, Bangladesh
| |
Collapse
|
23
|
Alam MM, Chakma K, Mahmud S, Hossain MN, Ahsan T. A systemic analysis reveals TRIM24-SMARCC1 dependent poor prognosis of hepatocellular carcinoma. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
24
|
Tu Y, Chen C, Fan G. Association between the expression of secreted phosphoprotein - related genes and prognosis of human cancer. BMC Cancer 2019; 19:1230. [PMID: 31849319 PMCID: PMC6918603 DOI: 10.1186/s12885-019-6441-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 12/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background While many studies have assessed the predictive value of secreted phosphoprotein (SPP) genes in cancer, the findings have been inconsistent. To resolve these inconsistencies, we systematically analyzed the available data to determine whether SPP1 and SPP2 are prognostic markers in the context of human cancer. Methods The expression of SPP1 and SPP2 was assessed by Oncomine analysis. The PrognoScan database was used to assess the prognostic value of SPP1 and SPP2, with cBioPortal used to assess copy number variations. The STRING database was used to generate a Protein - Protein Interaction (PPI) network for SPP genes. Results SPP1 was more likely to be over-expressed in breast, bladder, colorectal, head, neck, liver, lung, and esophageal cancers. SPP2 was expressed at lower levels in colorectal cancer, leukemia, liver cancer and pancreatic cancer. In addition, SPP1 and SPP2 mutations mainly occurred in cutaneous melanoma and endometrial cancer. Conclusions Our results suggest that SPP1 and SPP2 may be effective therapeutic or diagnostic targets in certain cancers. Further research is required to confirm these results and verify the value of SPP1 and SPP2 as clinical markers of cancer prognosis.
Collapse
Affiliation(s)
- Yaqin Tu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cai Chen
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guorun Fan
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Li C, Cui J, Zou L, Zhu L, Wei W. Bioinformatics analysis of the expression of HOXC13 and its role in the prognosis of breast cancer. Oncol Lett 2019; 19:899-907. [PMID: 31897205 PMCID: PMC6924138 DOI: 10.3892/ol.2019.11140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
The homeobox (HOX) genes, a class of transcription factors, are known to promote embryonic development and induce tumor formation. To date, the HOXA and HOXB gene families have been reported to be associated with breast cancer. However, the expression and exact role of homeobox C13 (HOXC13) in breast cancer has not yet been investigated. In the present study, the HOXC13 expression in human breast cancer was evaluated using the Oncomine database and Cancer Cell Line Encyclopedia (CCLE). Next, the Gene expression-based Outcome for Breast cancer online database, cBioportal, University of California Santa Cruz Xena browser and bc-GenExMinerv were used to explore the specific expression of HOXC13 in breast cancer. The methylation and mutation status of HOXC13 in breast cancer was then validated using the CCLE and cBioportal databases. Finally, the co-expression of HOX transcript antisense RNA (HOTAIR) and HOXC13 in breast cancer were analyzed and their impact on clinical prognosis determined. It was found that the expression of HOXC13 was high in breast cancer compared with other types of cancer, such as gastric cancer and colon cancer. Following co-expression analysis, a significant positive association was identified between HOTAIR and HOXC13. An association between HOTAIR and HOXC13, and lymph node and distant metastasis recurrence was also revealed during the development of breast cancer. Of note, survival analysis showed that high expression of HOTAIR and HOXC13 predicted poor prognosis. These findings revealed that HOXC13 plays an important role in the progression of breast cancer. However, the specific mechanism needs to be confirmed by subsequent experiments.
Collapse
Affiliation(s)
- Changyou Li
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Junwei Cui
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Li Zou
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Lizhang Zhu
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| | - Wei Wei
- Department of Breast Surgery, Shenzhen Hospital, Peking University, Shenzhen, Guangdong 518036, P.R. China
| |
Collapse
|
26
|
Cao T, Pan W, Sun X, Shen H. Increased expression of TET3 predicts unfavorable prognosis in patients with ovarian cancer-a bioinformatics integrative analysis. J Ovarian Res 2019; 12:101. [PMID: 31656201 PMCID: PMC6816171 DOI: 10.1186/s13048-019-0575-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/27/2019] [Indexed: 12/27/2022] Open
Abstract
Ovarian carcinoma is a lethal gynecological malignancy. Women with ovarian cancer (OC) are highly recurrent and typically diagnosed at late stage. Ten-eleven translocation protein 3 (TET3) belongs to the family of ten-eleven translocations (TETs) which induce DNA demethylation and gene regulation in epigenetic level by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Previous studies indicated that TET3 is overexpressed in ovarian cancer tissues. However, the clinic-pathological functions and prognostic values of TET3 remain unclear. Here we performed an integrative study to identify the role of TET3 by bioinformatics analysis. The TET3 expression in ovarian cancer was assessed with Oncomine database, and validated with TCGA and GTEx database. The correlation of TET3 gene alteration and clinic-pathological functions was addressed by integrative analysis of GEO datasets. Then we showed mainly TET3 gain and diploid but less deletion in ovarian cancer by copy number alteration (CNA) or mutation analysis with cBioPortal. Furthermore, by using Kaplan-Meier plotter (K-M plotter), we evaluated that high TET3 level was associated with poor survival in ovarian cancer patients, which was validated with analysis by PrognoScan database and gene differential analyses with TCGA and GTEx. This is the first study demonstrated that elevated expression of TET3 is associated with poor clinic-pathological functions, poor prognosis, wherein TET3, which presents epigenetic changes or methylation changes, might be served as a diagnostic marker or therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Tiefeng Cao
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510070, People's Republic of China.
| | - Wenwei Pan
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510070, People's Republic of China
| | - Xiaoli Sun
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Huimin Shen
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510070, People's Republic of China
| |
Collapse
|
27
|
Wu VT, Kiriazov B, Koch KE, Gu VW, Beck AC, Borcherding N, Li T, Addo P, Wehrspan ZJ, Zhang W, Braun TA, Brown BJ, Band V, Band H, Kulak MV, Weigel RJ. A TFAP2C Gene Signature Is Predictive of Outcome in HER2-Positive Breast Cancer. Mol Cancer Res 2019; 18:46-56. [PMID: 31619506 DOI: 10.1158/1541-7786.mcr-19-0359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/05/2019] [Accepted: 10/11/2019] [Indexed: 11/16/2022]
Abstract
The AP-2γ transcription factor, encoded by the TFAP2C gene, regulates the expression of estrogen receptor-alpha (ERα) and other genes associated with hormone response in luminal breast cancer. Little is known about the role of AP-2γ in other breast cancer subtypes. A subset of HER2+ breast cancers with amplification of the TFAP2C gene locus becomes addicted to AP-2γ. Herein, we sought to define AP-2γ gene targets in HER2+ breast cancer and identify genes accounting for physiologic effects of growth and invasiveness regulated by AP-2γ. Comparing HER2+ cell lines that demonstrated differential response to growth and invasiveness with knockdown of TFAP2C, we identified a set of 68 differentially expressed target genes. CDH5 and CDKN1A were among the genes differentially regulated by AP-2γ and that contributed to growth and invasiveness. Pathway analysis implicated the MAPK13/p38δ and retinoic acid regulatory nodes, which were confirmed to display divergent responses in different HER2+ cancer lines. To confirm the clinical relevance of the genes identified, the AP-2γ gene signature was found to be highly predictive of outcome in patients with HER2+ breast cancer. We conclude that AP-2γ regulates a set of genes in HER2+ breast cancer that drive cancer growth and invasiveness. The AP-2γ gene signature predicts outcome of patients with HER2+ breast cancer and pathway analysis predicts that subsets of patients will respond to drugs that target the MAPK or retinoic acid pathways. IMPLICATIONS: A set of genes regulated by AP-2γ in HER2+ breast cancer that drive proliferation and invasion were identified and provided a gene signature that is predictive of outcome in HER2+ breast cancer.
Collapse
Affiliation(s)
- Vincent T Wu
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | - Boris Kiriazov
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | - Kelsey E Koch
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | - Vivian W Gu
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Anna C Beck
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | | | - Tiandao Li
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | - Peter Addo
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | | | - Weizhou Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Terry A Braun
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Bartley J Brown
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hamid Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Ronald J Weigel
- Department of Surgery, University of Iowa, Iowa City, Iowa. .,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa.,Department of Biochemistry, University of Iowa, Iowa City, Iowa
| |
Collapse
|
28
|
Pearson A, Proszek P, Pascual J, Fribbens C, Shamsher MK, Kingston B, O'Leary B, Herrera-Abreu MT, Cutts RJ, Garcia-Murillas I, Bye H, Walker BA, Gonzalez De Castro D, Yuan L, Jamal S, Hubank M, Lopez-Knowles E, Schuster EF, Dowsett M, Osin P, Nerurkar A, Parton M, Okines AF, Johnston SR, Ring A, Turner NC. Inactivating NF1 Mutations Are Enriched in Advanced Breast Cancer and Contribute to Endocrine Therapy Resistance. Clin Cancer Res 2019; 26:608-622. [DOI: 10.1158/1078-0432.ccr-18-4044] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/23/2019] [Accepted: 10/02/2019] [Indexed: 11/16/2022]
|
29
|
Willems SM, Abeln S, Feenstra KA, de Bree R, van der Poel EF, Baatenburg de Jong RJ, Heringa J, van den Brekel MWM. The potential use of big data in oncology. Oral Oncol 2019; 98:8-12. [PMID: 31521885 DOI: 10.1016/j.oraloncology.2019.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/31/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
In this era of information technology, big data analysis is entering biomedical sciences. But what is big data, where do they come from and what can we do with it? In this commentary, the main sources of big data are explained, especially in (head and neck) oncology. It also touches upon the need to integrate various sources of clinical, pathological and quality-of-life data. It discusses some initiatives in linking of such datasets on a nation-wide scale in the Netherlands. Finally, it touches upon important issues regarding governance, FAIRness of data and the need to bring into place the necessary infrastructures needed to fully exploit the full potential of big data sets in head and neck cancer.
Collapse
Affiliation(s)
- Stefan M Willems
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Sanne Abeln
- Department of Computer Science, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - K Anton Feenstra
- Department of Computer Science, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Egge F van der Poel
- Department of Head and Neck Surgery, Erasmus Cancer Center, Erasmus MC, Rotterdam, the Netherlands
| | | | - Jaap Heringa
- Department of Computer Science, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Michiel W M van den Brekel
- Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
30
|
Su C, Wang T, Zhao J, Cheng J, Hou J. Meta-analysis of gene expression alterations and clinical significance of the HECT domain-containing ubiquitin ligase HUWE1 in cancer. Oncol Lett 2019; 18:2292-2303. [PMID: 31404287 PMCID: PMC6676739 DOI: 10.3892/ol.2019.10579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 05/17/2019] [Indexed: 12/27/2022] Open
Abstract
E3 ubiquitin-protein ligase (HUWE1) has previously been identified as a HECT domain-containing ubiquitin ligase (E3) that is involved in several signaling pathways, transcriptional regulation, neural differentiation, DNA damage responses and apoptosis. However, the function of HUWE1 in the various types of cancer remains unclear. A previous study indicated that HUWE1 exhibited different roles depending on the cancer type due to the ubiquitination of various substrates. The objective of the present study was to determine whether HUWE1 can be employed as a prognostic indicator in human cancer. The expression of HUWE1 was examined using the Oncomine database, and gene alterations during carcinogenesis, copy number alterations and mutations of HUWE1 were then analyzed using cBioPortal, which is the International Cancer Genome Consortium and the Tumorscape database. Furthermore, the association between HUWE1 expression and patient survival was evaluated using Kaplan-Meier plotter and the PrognoScan databases. In addition, the present study attempted to establish the functional association between HUWE1 expression and cancer phenotypes, and the results revealed that HUWE1 may serve as a diagnostic marker or therapeutic target for certain types of cancer. HUWE1 may serve an oncogenic role in breast, brain and prostate cancer, while it may serve an anti-oncogenic role in colorectal cancer and certain lung cancers. The function of HUWE1 and its mechanisms require more in-depth and extensive investigation in future studies.
Collapse
Affiliation(s)
- Chen Su
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, P.R. China.,Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Tao Wang
- Department of Urology Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Jiabao Zhao
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, P.R. China.,Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jia Cheng
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, P.R. China.,Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian 361004, P.R. China.,Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
31
|
Agajanian S, Oluyemi O, Verkhivker GM. Integration of Random Forest Classifiers and Deep Convolutional Neural Networks for Classification and Biomolecular Modeling of Cancer Driver Mutations. Front Mol Biosci 2019; 6:44. [PMID: 31245384 PMCID: PMC6579812 DOI: 10.3389/fmolb.2019.00044] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Development of machine learning solutions for prediction of functional and clinical significance of cancer driver genes and mutations are paramount in modern biomedical research and have gained a significant momentum in a recent decade. In this work, we integrate different machine learning approaches, including tree based methods, random forest and gradient boosted tree (GBT) classifiers along with deep convolutional neural networks (CNN) for prediction of cancer driver mutations in the genomic datasets. The feasibility of CNN in using raw nucleotide sequences for classification of cancer driver mutations was initially explored by employing label encoding, one hot encoding, and embedding to preprocess the DNA information. These classifiers were benchmarked against their tree-based alternatives in order to evaluate the performance on a relative scale. We then integrated DNA-based scores generated by CNN with various categories of conservational, evolutionary and functional features into a generalized random forest classifier. The results of this study have demonstrated that CNN can learn high level features from genomic information that are complementary to the ensemble-based predictors often employed for classification of cancer mutations. By combining deep learning-generated score with only two main ensemble-based functional features, we can achieve a superior performance of various machine learning classifiers. Our findings have also suggested that synergy of nucleotide-based deep learning scores and integrated metrics derived from protein sequence conservation scores can allow for robust classification of cancer driver mutations with a limited number of highly informative features. Machine learning predictions are leveraged in molecular simulations, protein stability, and network-based analysis of cancer mutations in the protein kinase genes to obtain insights about molecular signatures of driver mutations and enhance the interpretability of cancer-specific classification models.
Collapse
Affiliation(s)
- Steve Agajanian
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Odeyemi Oluyemi
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Gennady M Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States.,Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| |
Collapse
|
32
|
Integrative analysis of transcriptomics and clinical data uncovers the tumor-suppressive activity of MITF in prostate cancer. Cell Death Dis 2018; 9:1041. [PMID: 30310055 PMCID: PMC6181952 DOI: 10.1038/s41419-018-1096-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
The dysregulation of gene expression is an enabling hallmark of cancer. Computational analysis of transcriptomics data from human cancer specimens, complemented with exhaustive clinical annotation, provides an opportunity to identify core regulators of the tumorigenic process. Here we exploit well-annotated clinical datasets of prostate cancer for the discovery of transcriptional regulators relevant to prostate cancer. Following this rationale, we identify Microphthalmia-associated transcription factor (MITF) as a prostate tumor suppressor among a subset of transcription factors. Importantly, we further interrogate transcriptomics and clinical data to refine MITF perturbation-based empirical assays and unveil Crystallin Alpha B (CRYAB) as an unprecedented direct target of the transcription factor that is, at least in part, responsible for its tumor-suppressive activity in prostate cancer. This evidence was supported by the enhanced prognostic potential of a signature based on the concomitant alteration of MITF and CRYAB in prostate cancer patients. In sum, our study provides proof-of-concept evidence of the potential of the bioinformatics screen of publicly available cancer patient databases as discovery platforms, and demonstrates that the MITF-CRYAB axis controls prostate cancer biology.
Collapse
|
33
|
Saha SK, Jeong Y, Cho S, Cho SG. Systematic expression alteration analysis of master reprogramming factor OCT4 and its three pseudogenes in human cancer and their prognostic outcomes. Sci Rep 2018; 8:14806. [PMID: 30287838 PMCID: PMC6172215 DOI: 10.1038/s41598-018-33094-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
OCT4 is a master transcription factor that regulates the pluripotency of pluripotent stem cells and cancer stem cells along with other factors, including SOX2, KLF4, and C-MYC. Three different transcripts, OCT4A, OCT4B, and OCT4B1, are known to be generated by alternative splicing and eight OCT4 pseudogenes have been found in the human genome. Among them, we examined OCT4 and three pseudogenes (POU5F1P1, POU5F1P3, and POU5F1P4) because of their high expression possibility in cancer. In addition, previous studies indicated that OCT4 expression is augmented in cervical cancer and associated with poor prognosis, whereas OCT4 is down-regulated and correlated with good clinical outcomes in breast cancer. Because of these conflicting reports, we systematically evaluated whether expression of OCT4 and its pseudogenes can serve as oncogenic markers in various human cancers using the Oncomine database. Moreover, copy number alterations and mutations in OCT4 gene and its pseudogenes were analyzed using cBioPortal and the relationship between expression of OCT4 and pseudogenes and survival probability of cancer patients were explored using Kaplan-Meier plotter, OncoLnc, PROGgeneV2, and PrognoScan databases. Multivariate survival analysis was further conducted to determine the risk of the expression of the occurrence of OCT4 and its pseudogenes on certain cancer types using data from the Kaplan-Meier plotter. Overall, an association between expression of OCT4 and pseudogenes and cancer prognosis were established, which may serve as a therapeutic target for various human cancers.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, 05029, Republic of Korea
| | - Yeojin Jeong
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, 05029, Republic of Korea
| | - Sungha Cho
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
34
|
Agajanian S, Odeyemi O, Bischoff N, Ratra S, Verkhivker GM. Machine Learning Classification and Structure–Functional Analysis of Cancer Mutations Reveal Unique Dynamic and Network Signatures of Driver Sites in Oncogenes and Tumor Suppressor Genes. J Chem Inf Model 2018; 58:2131-2150. [DOI: 10.1021/acs.jcim.8b00414] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Steve Agajanian
- Graduate Program in Computational and Data Sciences, Department of Computational Sciences, Schmid College of Science and Technology, Chapman University, One University
Drive, Orange, California 92866, United States
| | - Oluyemi Odeyemi
- Graduate Program in Computational and Data Sciences, Department of Computational Sciences, Schmid College of Science and Technology, Chapman University, One University
Drive, Orange, California 92866, United States
| | - Nathaniel Bischoff
- Graduate Program in Computational and Data Sciences, Department of Computational Sciences, Schmid College of Science and Technology, Chapman University, One University
Drive, Orange, California 92866, United States
| | - Simrath Ratra
- Graduate Program in Computational and Data Sciences, Department of Computational Sciences, Schmid College of Science and Technology, Chapman University, One University
Drive, Orange, California 92866, United States
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Department of Computational Sciences, Schmid College of Science and Technology, Chapman University, One University
Drive, Orange, California 92866, United States
- Chapman University, School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
35
|
Luo B, Gu YY, Wang XD, Chen G, Peng ZG. Identification of potential drugs for diffuse large b-cell lymphoma based on bioinformatics and Connectivity Map database. Pathol Res Pract 2018; 214:1854-1867. [PMID: 30244948 DOI: 10.1016/j.prp.2018.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most main subtype in non-Hodgkin lymphoma. After chemotherapy, about 30% of patients with DLBCL develop resistance and relapse. This study was to identify potential therapeutic drugs for DLBCL using the bioinformatics method. The differentially expressed genes (DEGs) between DLBCL and non-cancer samples were downloaded from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs were analyzed using the Database for Annotation, Visualization, and Integrated Discovery. The R software package (SubpathwayMiner) was used to perform pathway analysis on DEGs affected by drugs found in the Connectivity Map (CMap) database. Protein-protein interaction (PPI) networks of DEGs were constructed using the Search Tool for the Retrieval of Interacting Genes online database and Cytoscape software. In order to identify potential novel drugs for DLBCL, the DLBCL-related pathways and drug-affected pathways were integrated. The results showed that 1927 DEGs were identified from TCGA and GEO. We found 54 significant pathways of DLBCL using KEGG pathway analysis. By integrating pathways, we identified five overlapping pathways and 47 drugs that affected these pathways. The PPI network analysis results showed that the CDK2 is closely associated with three overlapping pathways (cell cycle, p53 signaling pathway, and small cell lung cancer). The further literature verification results showed that etoposide, rinotecan, methotrexate, resveratrol, and irinotecan have been used as classic clinical drugs for DLBCL. Anisomycin, naproxen, gossypol, vorinostat, emetine, mycophenolic acid and daunorubicin also act on DLBCL. It was found through bioinformatics analysis that paclitaxel in the drug-pathway network can be used as a potential novel drug for DLBCL.
Collapse
Affiliation(s)
- Bin Luo
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Yong-Yao Gu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Xiao-Dong Wang
- The Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Zhi-Gang Peng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China.
| |
Collapse
|
36
|
Xie S, Shen C, Tan M, Li M, Song X, Wang C. Systematic analysis of gene expression alterations and clinical outcomes of adenylate cyclase-associated protein in cancer. Oncotarget 2018; 8:27216-27239. [PMID: 28423713 PMCID: PMC5432330 DOI: 10.18632/oncotarget.16111] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Adenylate Cyclase-associated protein (CAP) is an evolutionarily conserved protein that regulates actin dynamics. Our previous study indicates that CAP1 is overexpressed in NSCLC tissues and correlated with poor clinical outcomes, but CAP1 in HeLa cells actually inhibited migration and invasion, the role of CAP was discrepancy in different cancer types. The present study aims to determine whether CAP can serve as a prognostic marker in human cancers. The CAP expression was assessed using Oncomine database to determine the gene alteration during carcinogenesis, the copy number alteration, or mutations of CAP using cBioPortal, International Cancer Genome Consortium, and Tumorscape database investigated, and the association between CAP expression and the survival of cancer patient using Kaplan-Meier plotter and PrognoScan database evaluated. Therefore, the functional correlation between CAP expression and cancer phenotypes can be established; wherein CAP might serve as a diagnostic marker or therapeutic target for certain types of cancers.
Collapse
Affiliation(s)
- Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Changxing Shen
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Min Tan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Ming Li
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xiaolian Song
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| |
Collapse
|
37
|
Gonzalez-Hernandez G, Sarker A, O’Connor K, Greene C. Advances in Text Mining and Visualization for Precision Medicine. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2018; 23:559-565. [PMID: 29218914 PMCID: PMC7466870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
According to the National Institutes of Health (NIH), precision medicine is "an emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment, and lifestyle for each person." Although the text mining community has explored this realm for some years, the official endorsement and funding launched in 2015 with the Precision Medicine Initiative are beginning to bear fruit. This session sought to elicit participation of researchers with strong background in text mining and/or visualization who are actively collaborating with bench scientists and clinicians for the deployment of integrative approaches in precision medicine that could impact scientific discovery and advance the vision of precision medicine as a universal, accessible approach at the point of care.
Collapse
|
38
|
Cui X, Jing X, Yi Q, Long C, Tan B, Li X, Chen X, Huang Y, Xiang Z, Tian J, Zhu J. Systematic analysis of gene expression alterations and clinical outcomes of STAT3 in cancer. Oncotarget 2017; 9:3198-3213. [PMID: 29423040 PMCID: PMC5790457 DOI: 10.18632/oncotarget.23226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Accumulated studies have provided controversial evidences of prognostic value for signal transducer and activator of transcription proteins 3 (STAT3) in cancers. To address this inconsistency, we performed a systematic analysis to determine whether STAT3 can serve as a prognostic marker in human cancers. STAT3 expression was assessed using Oncomine analysis. cBioPortal, Kaplan-Meier Plotter, and Prognoscan were performed to identify the prognostic roles of STAT3 in human cancers. The copy number alteration, mutation, interactive analysis, and visualize the altered networks were performed by cBioPortal. We found that STAT3 was more frequently overexpressed in lung, ovarian, gastric, blood and brain cancers than their normal tissues and its expression might be negatively related with the prognosis. In addition, STAT3 mutation mainly occurred in uterine cancer and existed in a hotspot in SH2 domain. Those findings suggest that STAT3 might serve as a diagnostic and therapeutic target for certain types of cancer, such as lung, ovarian, gastric, blood and brain cancers. However, future research is required to validate our findings and thus promote the clinical utility of STAT3 in those cancers prognosis evaluation.
Collapse
Affiliation(s)
- Xiangrong Cui
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xuan Jing
- Clinical laboratory, Shanxi Province people's hospital, Shanxi 030000, Taiyuan, China
| | - Qin Yi
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Bin Tan
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xin Li
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xueni Chen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Yue Huang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Zhongping Xiang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Jie Tian
- Cardiovascular Department (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jing Zhu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
39
|
Hegde NR, Gauthami S, Sampath Kumar HM, Bayry J. The use of databases, data mining and immunoinformatics in vaccinology: where are we? Expert Opin Drug Discov 2017; 13:117-130. [PMID: 29226722 DOI: 10.1080/17460441.2018.1413088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Vaccinology has evolved from a sub-discipline focussed on simplistic vaccine development based on antibody-mediated protection to a separate discipline involving epidemiology, host and pathogen biology, immunology, genomics, proteomics, structure biology, protein engineering, chemical biology, and delivery systems. Data mining in combination with bioinformatics has provided a scaffold linking all these disciplines to the design of vaccines and vaccine adjuvants. Areas covered: This review provides background knowledge on immunological aspects which have been exploited with informatics for the in silico analysis of immune responses and the design of vaccine antigens. Furthermore, the article presents various databases and bioinformatics tools, and discusses B and T cell epitope predictions, antigen design, adjuvant research and systems immunology, highlighting some important examples, and challenges for the future. Expert opinion: Informatics and data mining have not only reduced the time required for experimental immunology, but also contributed to the identification and design of novel vaccine candidates and the determination of biomarkers and pathways of vaccine response. However, more experimental data is required for benchmarking immunoinformatic tools. Nevertheless, developments in immunoinformatics and reverse vaccinology, which are nascent fields, are likely to hasten vaccine discovery, although the path to regulatory approval is likely to remain a necessary impediment.
Collapse
Affiliation(s)
| | - S Gauthami
- b Ella Foundation, Turkapally , Hyderabad , India
| | - H M Sampath Kumar
- c Council of Scientific and Industrial Research - Indian Institute of Chemical Technology , Hyderabad , India
| | - Jagadeesh Bayry
- d Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1138 , Centre de Recherche des Cordeliers, Paris , France
| |
Collapse
|
40
|
Gugliandolo A, Rajan TS, Scionti D, Diomede F, Bramanti P, Mazzon E, Trubiani O. Reprogramming of Oncogene Expression in Gingival Mesenchymal Stem Cells Following Long-Term Culture In Vitro. Cell Reprogram 2017; 19:159-170. [DOI: 10.1089/cell.2016.0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | | | | | - Francesca Diomede
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”, Chieti-Pescara, Chieti, Italy
| | | | | | - Oriana Trubiani
- Stem Cells and Regenerative Medicine Laboratory, Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”, Chieti-Pescara, Chieti, Italy
| |
Collapse
|
41
|
Tian XP, Jin XH, Li M, Huang WJ, Xie D, Zhang JX. The depletion of PinX1 involved in the tumorigenesis of non-small cell lung cancer promotes cell proliferation via p15/cyclin D1 pathway. Mol Cancer 2017; 16:74. [PMID: 28372542 PMCID: PMC5379637 DOI: 10.1186/s12943-017-0637-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/13/2017] [Indexed: 11/10/2022] Open
Abstract
Background The telomerase/telomere interacting protein PinX1 has been suggested as a tumor suppressor. However, the clinical and biological significance of PinX1 in human non-small cell lung cancer (NSCLC) is unclear. Methods PinX1 gene/expression pattern and its association with NSCLC patient survival were analyzed in cBioportal Web resource and two cohorts of NSCLC samples. A series of in vivo and in vitro assays were performed to elucidate the function of PinX1 on NSCLC cells proliferation and underlying mechanisms. Results More frequency of gene PinX1 homozygous deletion and heterozygote deficiency was first retrieved from cBioportal Web resource. Low expression of PinX1 correlated with smoking condition, histological type, T stage, N stage, M stage and TNM stage, and was an independent predictor for overall survival in a learning cohort (n = 93) and a validation cohort (n = 51) of NSCLC patients. Furthermore, knockdown of PinX1 dramatically accelerated NSCLC cell proliferation and G1/S transition, whereas ectopic overexpression of PinX1 substantially inhibited cell viability and cell cycle transition in vitro and in vivo. p15/cyclin D1 pathway and BMP5 might contribute to PinX1-associated cell proliferation and cell cycle transition. Conclusion The cost-effective expression of PinX1 could constitute a novel molecular predictor/marker for NSCLC management. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0637-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Peng Tian
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Han Jin
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Mei Li
- Department of Pathology, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Wei-Juan Huang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Xing Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China. .,Department of Oncology, The first Affiliated Hospital, Sun Yat-Sen University, No.58, Zhongshan Second Road, 510080, Guangzhou, China.
| |
Collapse
|
42
|
Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 2016; 17:719-732. [DOI: 10.1038/nrg.2016.134] [Citation(s) in RCA: 468] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Belizário JE, Sangiuliano BA, Perez-Sosa M, Neyra JM, Moreira DF. Using Pharmacogenomic Databases for Discovering Patient-Target Genes and Small Molecule Candidates to Cancer Therapy. Front Pharmacol 2016; 7:312. [PMID: 27746730 PMCID: PMC5040751 DOI: 10.3389/fphar.2016.00312] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 08/31/2016] [Indexed: 01/10/2023] Open
Abstract
With multiple omics strategies being applied to several cancer genomics projects, researchers have the opportunity to develop a rational planning of targeted cancer therapy. The investigation of such numerous and diverse pharmacogenomic datasets is a complex task. It requires biological knowledge and skills on a set of tools to accurately predict signaling network and clinical outcomes. Herein, we describe Web-based in silico approaches user friendly for exploring integrative studies on cancer biology and pharmacogenomics. We briefly explain how to submit a query to cancer genome databases to predict which genes are significantly altered across several types of cancers using CBioPortal. Moreover, we describe how to identify clinically available drugs and potential small molecules for gene targeting using CellMiner. We also show how to generate a gene signature and compare gene expression profiles to investigate the complex biology behind drug response using Connectivity Map. Furthermore, we discuss on-going challenges, limitations and new directions to integrate molecular, biological and epidemiological information from oncogenomics platforms to create hypothesis-driven projects. Finally, we discuss the use of Patient-Derived Xenografts models (PDXs) for drug profiling in vivo assay. These platforms and approaches are a rational way to predict patient-targeted therapy response and to develop clinically relevant small molecules drugs.
Collapse
Affiliation(s)
- José E Belizário
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Beatriz A Sangiuliano
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Marcela Perez-Sosa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Jennifer M Neyra
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| | - Dayson F Moreira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo São Paulo, Brazil
| |
Collapse
|