1
|
Akunevich AA, Khrustalev VV, Khrustaleva TA, Yermalovich MA. The Agonistic Activity of the Human Epidermal Growth Factor is Reduced by the D46G Substitution. Protein Pept Lett 2024; 31:504-518. [PMID: 39041280 DOI: 10.2174/0109298665297321240708044223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Resistance to anti-tumor agents targeting the epidermal growth factor receptor (EGFR) reduces treatment response and requires the development of novel EGFR antagonists. Mutant epidermal growth factor (EGF) forms with reduced agonistic activity could be promising agents in cancer treatment. METHODS EGF D46G affinity to EGFR domain III was assessed with affinity chromatography. EGF D46G acute toxicity in Af albino mice at 320 and 3200 μg/kg subcutaneous doses was evaluated. EGF D46G activity in human epidermoid carcinoma cells at 10 ng/mL concentration in serum-free medium and in subcutaneous Ehrlich ascites carcinoma mice model at 320 μg/kg dose was studied. RESULTS The D46G substitution decreases the thermal stability of EGF complexes with EGFR domain III by decreasing the ability of the C-terminus to be released from the intermolecular β- sheet. However, with remaining binding sites for EGFR domain I, EGF D46G effectively competes with other EGF-like growth factors for binding to EGFR and does not demonstrate toxic effects in mice. EGF D46G inhibits the proliferation of human epidermoid carcinoma cells compared to native EGF. A single subcutaneous administration of EGF D46G along with Ehrlich carcinoma cells injection inhibits the proliferation of these cells and delays tumor formation for up to seven days. CONCLUSION EGF D46G can be defined as a partial EGFR agonist as this mutant form demonstrates reduced agonistic activity compared to native EGF. The study emphasizes the role of the EGF C-terminus in establishing interactions with EGFR domain III, which are necessary for EGFR activation and subsequent proliferation of cells.
Collapse
Affiliation(s)
| | | | | | - Marina Anatolyevna Yermalovich
- Laboratory of Vaccine Controlled Infections, Republican Research and Practical Center for Epidemiology and Microbiology, Filimonava 23, Minsk, 220114, Belarus
| |
Collapse
|
2
|
Tobias GC, Gomes JLP, Fernandes LG, Voltarelli VA, de Almeida NR, Jannig PR, de Souza RWA, Negrão CE, Oliveira EM, Chammas R, Alves CRR, Brum PC. Aerobic exercise training mitigates tumor growth and cancer-induced splenomegaly through modulation of non-platelet platelet factor 4 expression. Sci Rep 2023; 13:21970. [PMID: 38081853 PMCID: PMC10713653 DOI: 10.1038/s41598-023-47217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Exercise training reduces the incidence of several cancers, but the mechanisms underlying these effects are not fully understood. Exercise training can affect the spleen function, which controls the hematopoiesis and immune response. Analyzing different cancer models, we identified that 4T1, LLC, and CT26 tumor-bearing mice displayed enlarged spleen (splenomegaly), and exercise training reduced spleen mass toward control levels in two of these models (LLC and CT26). Exercise training also slowed tumor growth in melanoma B16F10, colon tumor 26 (CT26), and Lewis lung carcinoma (LLC) tumor-bearing mice, with minor effects in mammary carcinoma 4T1, MDA-MB-231, and MMTV-PyMT mice. In silico analyses using transcriptome profiles derived from these models revealed that platelet factor 4 (Pf4) is one of the main upregulated genes associated with splenomegaly during cancer progression. To understand whether exercise training would modulate the expression of these genes in the tumor and spleen, we investigated particularly the CT26 model, which displayed splenomegaly and had a clear response to the exercise training effects. RT-qPCR analysis confirmed that trained CT26 tumor-bearing mice had decreased Pf4 mRNA levels in both the tumor and spleen when compared to untrained CT26 tumor-bearing mice. Furthermore, exercise training specifically decreased Pf4 mRNA levels in the CT26 tumor cells. Aspirin treatment did not change tumor growth, splenomegaly, and tumor Pf4 mRNA levels, confirming that exercise decreased non-platelet Pf4 mRNA levels. Finally, tumor Pf4 mRNA levels are deregulated in The Cancer Genome Atlas Program (TCGA) samples and predict survival in multiple cancer types. This highlights the potential therapeutic value of exercise as a complementary approach to cancer treatment and underscores the importance of understanding the exercise-induced transcriptional changes in the spleen for the development of novel cancer therapies.
Collapse
Affiliation(s)
- Gabriel C Tobias
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil.
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - João L P Gomes
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
| | - Larissa G Fernandes
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
| | - Vanessa A Voltarelli
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Ney R de Almeida
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
| | - Paulo R Jannig
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Rodrigo W Alves de Souza
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Carlos E Negrão
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
- Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Edilamar M Oliveira
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
| | - Roger Chammas
- Department of Radiology and Oncology, Faculdade de Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Christiano R R Alves
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil
| | - Patricia C Brum
- School of Physical Education and Sport, Universidade de São Paulo, Avenida Professor Mello Moraes, 65-Butantã, São Paulo, SP, 05508-030, Brazil.
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Huang C, Yu QP, Ding Z, Zhou Z, Shi X. The clinical characteristics, novel predictive tool, and risk classification system for primary Ewing sarcoma patients that underwent chemotherapy: A large population-based retrospective cohort study. Cancer Med 2023; 12:6244-6259. [PMID: 36271609 PMCID: PMC10028057 DOI: 10.1002/cam4.5379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/07/2022] [Accepted: 10/09/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study aims to determine the independent prognostic predictors of cancer-specific survival (CSS) in patients with primary Ewing sarcoma (ES) that underwent chemotherapy and create a novel prognostic nomogram and risk stratification system. METHODS Demographic and clinicopathologic characteristics related to patients with primary ES that underwent chemotherapy between 2000 and 2018 were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. CSS was the primary endpoint of this study. First, independent prognostic predictors of CSS identified from univariate and multivariate Cox regression analyses were used to construct a prognostic nomogram for predicting 1-, 3-, and 5-year CSS of patients with primary ES that underwent chemotherapy. Then, calibration curves and receiver operating characteristic (ROC) curves were used to evaluate the nomogram's prediction accuracy, while decision curve analysis (DCA) was used to evaluate the nomogram's clinical utility. Finally, a mortality risk stratification system was constructed for this subpopulation. RESULTS A total of 393 patients were included in this study. Age, tumor size, bone metastasis, and surgery were independent prognostic predictors of CSS. The calibration curves, ROC, and DCA showed that the nomogram had excellent discrimination and clinical value, with the 1-, 3-, and 5-year AUCs higher than 0.700. Moreover, the mortality risk stratification system could effectively divide all patients into three risk subgroups and achieve targeted patient management. CONCLUSIONS Based on the SEER database, a novel prognostic nomogram for predicting 1-, 3-, and 5- year CSS in patients with primary ES that underwent chemotherapy has been constructed and validated. The nomogram showed relatively good performance, which could be used in clinical practice to assist clinicians in individualized treatment strategies.
Collapse
Affiliation(s)
- Chao Huang
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, China
| | - Qiu-Ping Yu
- Health Management Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zichuan Ding
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, China
| | - Zongke Zhou
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaojun Shi
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Cao S, Hung YW, Wang YC, Chung Y, Qi Y, Ouyang C, Zhong X, Hu W, Coblentz A, Maghami E, Sun Z, Lin HH, Ann DK. Glutamine is essential for overcoming the immunosuppressive microenvironment in malignant salivary gland tumors. Theranostics 2022; 12:6038-6056. [PMID: 35966597 PMCID: PMC9373812 DOI: 10.7150/thno.73896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Rationale: Immunosuppression in the tumor microenvironment (TME) is key to the pathogenesis of solid tumors. Tumor cell-intrinsic autophagy is critical for sustaining both tumor cell metabolism and survival. However, the role of autophagy in the host immune system that allows cancer cells to escape immune destruction remains poorly understood. Here, we determined if attenuated host autophagy is sufficient to induce tumor rejection through reinforced adaptive immunity. Furthermore, we determined whether dietary glutamine supplementation, mimicking attenuated host autophagy, is capable of promoting antitumor immunity. Methods: A syngeneic orthotopic tumor model in Atg5+/+ and Atg5flox/flox mice was established to determine the impact of host autophagy on the antitumor effects against mouse malignant salivary gland tumors (MSTs). Multiple cohorts of immunocompetent mice were used for oncoimmunology studies, including inflammatory cytokine levels, macrophage, CD4+, and CD8+ cells tumor infiltration at 14 days and 28 days after MST inoculation. In vitro differentiation and in vivo dietary glutamine supplementation were used to assess the effects of glutamine on Treg differentiation and tumor expansion. Results: We showed that mice deficient in the essential autophagy gene, Atg5, rejected orthotopic allografts of isogenic MST cells. An enhanced antitumor immune response evidenced by reduction of both M1 and M2 macrophages, increased infiltration of CD8+ T cells, elevated IFN-γ production, as well as decreased inhibitory Tregs within TME and spleens of tumor-bearing Atg5flox/flox mice. Mechanistically, ATG5 deficiency increased glutamine level in tumors. We further demonstrated that dietary glutamine supplementation partially increased glutamine levels and restored potent antitumor responses in Atg5+/+ mice. Conclusions: Dietary glutamine supplementation exposes a previously undefined difference in plasticity between cancer cells, cytotoxic CD8+ T cells and Tregs.
Collapse
Affiliation(s)
- Shuting Cao
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yu-Wen Hung
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yi-Chang Wang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yiyin Chung
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yue Qi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Ching Ouyang
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Xiancai Zhong
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Weidong Hu
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Alaysia Coblentz
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Ellie Maghami
- Division of Head and Neck Surgery, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zuoming Sun
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - H. Helen Lin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - David K. Ann
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Zhuang B, Chen T, Huang Y, Xiao Z, Jin Y. Chemo-photothermal immunotherapy for eradication of orthotopic tumors and inhibition of metastasis by intratumoral injection of polydopamine versatile hydrogels. Acta Pharm Sin B 2022; 12:1447-1459. [PMID: 35530148 PMCID: PMC9069317 DOI: 10.1016/j.apsb.2021.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer remains one of the leading causes of death globally and metastasis always leads to treatment failure. Here, we develop a versatile hydrogel loading photothermal agents, chemotherapeutics, and immune-adjuvants to eradicate orthotopic tumors and inhibit metastasis by combinational therapy. Hydrogel networks were synthesized via the thiol-Michael addition of polydopamine (PDA) with thiolated hyaluronic acid. PDA acted as a cross-linking agent and endowed the hydrogel with excellent photothermal property. Meanwhile, a chemotherapeutic agent, doxorubicin (DOX), was loaded in the hydrogel via π‒π stacking with PDA and an immune-adjuvant, CpG-ODN, was loaded via electrostatic interaction. The release of DOX from the hydrogel was initially slow but accelerated due to near infrared light irradiation. The hydrogels showed remarkably synergistic effect against 4T1 cancer cells and stimulated plenty of cytokines secreting from RAW264.7 cells. Moreover, the hydrogels eradicated orthotopic murine breast cancer xenografts and strongly inhibited metastasis after intratumoral injection and light irradiation. The high anticancer efficiency of this chemo-photothermal immunotherapy resulted from the strong synergistic effect of the versatile hydrogels, including the evoked host immune response. The combinational strategy of chemo-photothermal immunotherapy is promising for highly effective treatment of breast cancer.
Collapse
Key Words
- ALT, alanine aminotransferase
- Breast cancer
- CCK-8, cell counting kit-8
- CRE, creatinine
- Chemotherapy
- DOX, doxorubicin
- DOX@PDA, DOX-loaded PDA nanoparticles
- DTT, dithiothreitol
- EDC, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
- ELISA, enzyme-linked immunosorbent assay
- FBS, fetal bovine serum
- FDA, fluorescein diacetate
- H&E, Hematoxylin and Eosin
- HA, hyaluronic acid
- HA-SH, thiolated hyaluronic acid
- Hydrogel
- Immunotherapy
- Intratumoral injection
- LPS, lipopolysaccharide
- Metastasis
- NHS, N-hydroxysuccinimide
- NIR, near-infrared
- PDA, polydopamine
- PI, propidium iodide
- PTT, photothermal therapy
- Photothermal
- Polydopamine
- RBC, red blood cells
- SEM, scanning electron microscope
- Tunel, terminal deoxynucleotidyl transferase dUTP nick end labeling
- WBC, white blood cells
Collapse
|
6
|
Ravi D, Beheshti A, Abermil N, Lansigan F, Kinlaw W, Matthan NR, Mokhtar M, Passero FC, Puliti P, David KA, Dolnikowski GG, Su X, Chen Y, Bijan M, Varshney RR, Kim B, Dave SS, Rudolph MC, Evens AM. Oncogenic Integration of Nucleotide Metabolism via Fatty Acid Synthase in Non-Hodgkin Lymphoma. Front Oncol 2021; 11:725137. [PMID: 34765544 PMCID: PMC8576537 DOI: 10.3389/fonc.2021.725137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic dysfunctions enabling increased nucleotide biosynthesis are necessary for supporting malignant proliferation. Our investigations indicate that upregulation of fatty acid synthase (FASN) and de novo lipogenesis, commonly observed in many cancers, are associated with nucleotide metabolic dysfunction in lymphoma. The results from our experiments showed that ribonucleotide and deoxyribonucleotide pool depletion, suppression of global RNA/DNA synthesis, and cell cycle inhibition occurred in the presence of FASN inhibition. Subsequently, we observed that FASN inhibition caused metabolic blockade in the rate-limiting step of the oxidative branch of the pentose phosphate pathway (oxPPP) catalyzed by phosphogluconate dehydrogenase (PGDH). Furthermore, we determined that FASN inhibitor treatment resulted in NADPH accumulation and inhibition of PGDH enzyme activity. NADPH is a cofactor utilized by FASN, also a known allosteric inhibitor of PGDH. Through cell-free enzyme assays consisting of FASN and PGDH, we delineated that the PGDH-catalyzed ribulose-5-phosphate synthesis is enhanced in the presence of FASN and is suppressed by increasing concentrations of NADPH. Additionally, we observed that FASN and PGDH were colocalized in the cytosol. The results from these experiments led us to conclude that NADP–NADPH turnover and the reciprocal stimulation of FASN and PGDH catalysis are involved in promoting oxPPP and nucleotide biosynthesis in lymphoma. Finally, a transcriptomic analysis of non-Hodgkin’s lymphoma (n = 624) revealed the increased expression of genes associated with metabolic functions interlinked with oxPPP, while the expression of genes participating in oxPPP remained unaltered. Together we conclude that FASN–PGDH enzymatic interactions are involved in enabling oxPPP and nucleotide metabolic dysfunction in lymphoma tumors.
Collapse
Affiliation(s)
- Dashnamoorthy Ravi
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States.,KBR, Space Biosciences Division, National Aeronautical and Space Administration, Ames Research Center, Moffett Field, CA, United States
| | - Nasséra Abermil
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
| | - Frederick Lansigan
- Department of Medicine, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States.,Department of Medicine, Section of Endocrinology and Metabolism, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - William Kinlaw
- Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Nirupa R Matthan
- Jean Mayer United States Department of Agriculture (USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Maisarah Mokhtar
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Frank C Passero
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Patrick Puliti
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Medicine, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States.,Department of Medicine, Section of Endocrinology and Metabolism, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Kevin A David
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Gregory G Dolnikowski
- Jean Mayer United States Department of Agriculture (USDA) Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States.,Metabolomics Core, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Ying Chen
- Bioinformatics Core, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Mahboubi Bijan
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, United States
| | - Rohan R Varshney
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, United States.,Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Sandeep S Dave
- Department of Medicine, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Michael C Rudolph
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Andrew M Evens
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
7
|
Subasic CN, Kuilamu E, Cowin G, Minchin RF, Kaminskas LM. The pharmacokinetics of PEGylated liposomal doxorubicin are not significantly affected by sex in rats or humans, but may be affected by immune dysfunction. J Control Release 2021; 337:71-80. [PMID: 34245788 DOI: 10.1016/j.jconrel.2021.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
PEGylated liposomal doxorubicin (PLD, Caelyx®, Doxil®) has been suggested to show significant sex-based differences in plasma clearance, as well as high inter-individual variability that may be driven by monocyte counts in cancer patients. This study aimed to establish if these differences are similarly observed in rats, which exhibit similar liposome clearance mechanisms to humans, and to use this model to identify sources of inter-individual and sex-based pharmacokinetic variability. The plasma and lymphatic pharmacokinetics of PLD were evaluated in male and female rats by quantifying doxorubicin as well as the 3H-labelled liposome. In general, the pharmacokinetics of doxorubicin and the 3H-liposome did not differ significantly between male and female rats when corrected for body surface area. Female rats did, however, show significantly higher doxorubicin concentrations in lymph compared to male rats. With the exception of serum testosterone concentrations in males, none of the physiological parameters evaluated correlated with plasma clearance. Further, reanalysis of published human data that formerly reported sex-differences in PLD plasma clearance similarly revealed no significant differences in PLD plasma clearance between males and females with solid tumours, but increased plasma clearance in patients with Kaposi's sarcoma (generally HIV+/immunocompromised). These data suggest that with the exception of lymphatic exposure, there are unlikely to be significant sex effects in the pharmacokinetics of liposomes, but immune function may contribute to inter individual variability.
Collapse
Affiliation(s)
- Christopher N Subasic
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Esther Kuilamu
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Gary Cowin
- National Imaging Facility, Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
8
|
Zhang L, Xiong L, Wu LM, Shen WH, Zhou P, Lian CL, Zhang WT, Wu SG. The patterns of distant metastasis and prognostic factors in patients with primary metastatic Ewing sarcoma of the bone. J Bone Oncol 2021; 30:100385. [PMID: 34401227 PMCID: PMC8355910 DOI: 10.1016/j.jbo.2021.100385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 10/25/2022] Open
Abstract
Background Ewing sarcoma (ES) of bone is accounting for the second most common type of primary bone cancer in children and adolescents. However, the patterns of distant metastasis (DM) and the effect of the sites of DM on survival outcomes were not investigated. Aims This study aimed to investigate the patterns of DM and the prognostic factors related to outcomes in primary metastatic ES of the bone. Methods Patients who were diagnosed with primary metastatic ES between 2010 and 2018 were identified from the Surveillance, Epidemiology, and End Results database. Kaplan-Meier analysis, log-rank tests, and Cox proportional-hazards regression models were used for statistical analyses. Results We identified 277 patients in this study and 95.3% of them (n = 264) receiving chemotherapy. A total of 371 sites of DM were observed. Lung was the most common distant metastatic site (n = 182, 49.1%), followed by bone (n = 139, 37.5%), distant lymph node (n = 26, 7.0%), liver (n = 14, 3.8%), and brain (n = 10, 2.7%). Three-year cause-specific survival (CSS) was 56.1% in the entire cohort. Older age (hazard ratio [HR] 2.210, P < 0.001) and bone metastasis (HR 1.903, P = 0.002) were the independent prognostic factors associated with inferior CSS. Similar results were found in those with bone-only metastasis (n = 80) or lung-only metastasis (n = 117), which showed that patients with bone-only metastasis had an inferior CSS compared to those with metastases only to the lung (HR 1.926, P = 0.005). Conclusions Lung and bone are the most frequently distant metastatic sites in patients with primary metastatic ES of bone. Bone metastasis is an independent risk factor for inferior survival.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Orthopaedic Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen 361000, People's Republic of China
| | - Lu Xiong
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, People's Republic of China
| | - Li-Mei Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| | - Wen-Hui Shen
- Department of Orthopaedic Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen 361000, People's Republic of China
| | - Ping Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| | - Chen-Lu Lian
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| | - Wen-Tong Zhang
- Department of Orthopaedic Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen 361000, People's Republic of China
| | - San-Gang Wu
- Department of Radiation Oncology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, People's Republic of China
| |
Collapse
|
9
|
Rajalekshmi Dhanya C, Jeyaraman J, Sainulabdeen S, Soumya MS, Abraham A, Sivakumar S. Biocompatible Multifunctional Theranostic Nanoprobe for Imaging and Chemotherapy in Solid‐Tumor‐Bearing Mice. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Jaishree Jeyaraman
- Department of Chemical Engineering Center for Nanoscience and Center for Environmental Science and Engineering Institute of Technology Kanpur Kanpur, Uttar Pradesh India
| | | | | | - Annie Abraham
- Department of Biochemistry University of Kerala 695581 Kerala India
| | - Sri Sivakumar
- Department of Chemical Engineering Center for Nanoscience and Center for Environmental Science and Engineering Institute of Technology Kanpur Kanpur, Uttar Pradesh India
| |
Collapse
|
10
|
Aizik G, Waiskopf N, Agbaria M, Ben-David-Naim M, Levi-Kalisman Y, Shahar A, Banin U, Golomb G. Liposomes of Quantum Dots Configured for Passive and Active Delivery to Tumor Tissue. NANO LETTERS 2019; 19:5844-5852. [PMID: 31424944 DOI: 10.1021/acs.nanolett.9b01027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The majority of developed and approved anticancer nanomedicines have been designed to exploit the dogma of the enhanced permeability and retention (EPR) effect, which is based on the leakiness of the tumor's blood vessels accompanied by impeded lymphatic drainage. However, the EPR effect has been under scrutiny recently because of its variable manifestation across tumor types and animal species and its poor translation to human cancer therapy. To facilitate the EPR effect, systemically injected NPs should overcome the obstacle of rapid recognition and elimination by the mononuclear phagocyte system (MPS). We hypothesized that circulating monocytes, major cells of the MPS that infiltrate the tumor, may serve as an alternative method for achieving increased tumor accumulation of NPs, independent of the EPR effect. We describe here the accumulation of liposomal quantum dots (LipQDs) designed for active delivery via monocytes, in comparison to LipQDs designed for passive delivery (via the EPR effect), following IV administration in a mammary carcinoma model. Hydrophilic QDs were synthesized and entrapped in functionalized liposomes, conferring passive ("stealth" NPs; PEGylated, neutral charge) and active (monocyte-mediated delivery; positively charged) properties by differing in their lipid composition, membrane PEGylation, and charge (positively, negatively, and neutrally charged). The various physicochemical parameters affecting the entrapment yield and optical stability were examined in vitro and in vivo. Biodistribution in the blood, various organs, and in the tumor was determined by the fluorescence intensity and Cd analyses. Following the treatment of animals (intact and mammary-carcinoma-bearing mice) with disparate formulations of LipQDs (differing by their lipid composition, neutrally and positively charged surfaces, and hydrophilic membrane), we demonstrate comparable tumor uptake of QDs delivered by the passive and the active routes (mainly by Ly-6Chi monocytes). Our findings suggest that entrapping QDs in nanosized liposomal formulations, prepared by a new facile method, imparts superior structural and optical stability and a suitable biodistribution profile leading to increased tumor uptake of fluorescently stable QDs.
Collapse
|
11
|
Agbaria S, Haim A, Fares F, Zubidat AE. Epigenetic modification in 4T1 mouse breast cancer model by artificial light at night and melatonin - the role of DNA-methyltransferase. Chronobiol Int 2019; 36:629-643. [PMID: 30746962 DOI: 10.1080/07420528.2019.1574265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Currently, one of the most disputed hypotheses regarding breast cancer (BC) development is exposure to short wavelength artificial light at night (ALAN) as multiple studies suggest a possible link between them. This link is suggested to be mediated by nocturnal melatonin suppression that plays an integral role in circadian regulations including cell division. The objective of the research was to evaluate effects of 1 × 30 min/midnight ALAN (134 µ Wcm-2, 460 nm) with or without nocturnal melatonin supplement on tumor development and epigenetic responses in 4T1 tumor-bearing BALB/c mice. Mice were monitored for body mass (Wb) and tumor volume for 3 weeks and thereafter urine samples were collected at regular intervals for determining daily rhythms of 6-sulfatoxymelatonin (6-SMT). Finally, mice were sacrificed and the tumor, lungs, liver, and spleen were excised for analyzing the total activity of DNA methyltransferases (DNMT) and global DNA methylation (GDM) levels. Mice exposed to ALAN significantly reduced 6-SMT levels and increased Wb, tumor volume, and lung metastasis compared with controls. These effects were diminished by melatonin. The DNMT activity and GDM levels showed tissue-specific response. The enzymatic activity and GDM levels were lower in tumor and liver and higher in spleen and lungs under ALAN compared with controls. Our results suggest that ALAN disrupts the melatonin rhythm and potentially leading to increased BC burden by affecting DNMT activity and GDM levels. These data may also be applicable to early detection and management of BC by monitoring melatonin and GDM levels as early biomarker of ALAN circadian disruption.
Collapse
Affiliation(s)
- Sahar Agbaria
- a Department of Human Biology , University of Haifa , Haifa , Israel
| | - Abraham Haim
- b The Israeli Center for Interdisciplinary Research in Chronobiology , University of Haifa , Haifa , Israel
| | - Fuad Fares
- a Department of Human Biology , University of Haifa , Haifa , Israel.,c Department of Molecular Genetics , Carmel Medical Center , Haifa , Israel
| | - Abed E Zubidat
- b The Israeli Center for Interdisciplinary Research in Chronobiology , University of Haifa , Haifa , Israel
| |
Collapse
|
12
|
The LNT model for cancer induction is not supported by radiobiological data. Chem Biol Interact 2019; 301:34-53. [PMID: 30763552 DOI: 10.1016/j.cbi.2019.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
The hallmarks of cancer have been the focus of much research and have influenced the development of risk models for radiation-induced cancer. However, natural defenses against cancer, which constitute the hallmarks of cancer prevention, have largely been neglected in developing cancer risk models. These natural defenses are enhanced by low doses and dose rates of ionizing radiation, which has aided in the continuation of human life over many generations. Our natural defenses operate at the molecular, cellular, tissue, and whole-body levels and include epigenetically regulated (epiregulated) DNA damage repair and antioxidant production, selective p53-independent apoptosis of aberrant cells (e.g. neoplastically transformed and tumor cells), suppression of cancer-promoting inflammation, and anticancer immunity (both innate and adaptive components). This publication reviews the scientific bases for the indicated cancer-preventing natural defenses and evaluates their implication for assessing cancer risk after exposure to low radiation doses and dose rates. Based on the extensive radiobiological evidence reviewed, it is concluded that the linear-no-threshold (LNT) model (which ignores natural defenses against cancer), as it relates to cancer risk from ionizing radiation, is highly implausible. Plausible models include dose-threshold and hormetic models. More research is needed to establish when a given model (threshold, hormetic, or other) applies to a given low-dose-radiation exposure scenario.
Collapse
|
13
|
Beheshti A, McDonald JT, Miller J, Grabham P, Costes SV. GeneLab Database Analyses Suggest Long-Term Impact of Space Radiation on the Cardiovascular System by the Activation of FYN Through Reactive Oxygen Species. Int J Mol Sci 2019; 20:ijms20030661. [PMID: 30717456 PMCID: PMC6387434 DOI: 10.3390/ijms20030661] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Space radiation has recently been considered a risk factor for astronauts’ cardiac health. As an example, for the case of how to query and identify datasets within NASA’s GeneLab database and demonstrate the database utility, we used an unbiased systems biology method for identifying key genes/drivers for the contribution of space radiation on the cardiovascular system. This knowledge can contribute to designing appropriate experiments targeting these specific pathways. Microarray data from cardiomyocytes of male C57BL/6 mice followed-up for 28 days after exposure to 900 mGy of 1 GeV proton or 150 mGy of 1 GeV/n 56Fe were compared to human endothelial cells (HUVECs) cultured for 7 days on the International Space Station (ISS). We observed common molecular pathways between simulated space radiation and HUVECs flown on the ISS. The analysis suggests FYN is the central driver/hub for the cardiovascular response to space radiation: the known oxidative stress induced immediately following radiation would only be transient and would upregulate FYN, which in turn would reduce reactive oxygen species (ROS) levels, protecting the cardiovascular system. The transcriptomic signature of exposure to protons was also much closer to the spaceflight signature than 56Fe’s signature. To our knowledge, this is the first time GeneLab datasets were utilized to provide potential biological indications that the majority of ions on the ISS are protons, clearly illustrating the power of omics analysis. More generally, this work also demonstrates how to combine animal radiation studies done on the ground and spaceflight studies to evaluate human risk in space.
Collapse
Affiliation(s)
- Afshin Beheshti
- WYLE Labs, NASA Ames Research Center, Moffett Field CA 94035, USA.
| | - J Tyson McDonald
- Department of Physics, Hampton University, Hampton, VA 23668 USA.
| | - Jack Miller
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Peter Grabham
- Center for Radiological Research, Columbia University, New York, NY 10032, USA.
| | - Sylvain V Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA.
| |
Collapse
|
14
|
Ramkumar DB, Ramkumar N, Miller BJ, Henderson ER. Risk factors for detectable metastatic disease at presentation in Ewing sarcoma - An analysis of the SEER registry. Cancer Epidemiol 2018; 57:134-139. [PMID: 30412903 DOI: 10.1016/j.canep.2018.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/06/2018] [Accepted: 10/24/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND Ewing family of tumors (EFT) represents the second-most common primary bone malignancy in children and adolescents. Approximately 25% of patients have radiographically detectable metastatic disease at presentation and experience poorer five-year survival, yet risk factors for metastatic disease at presentation are poorly characterized. We sought to study patient characteristics associated with metastatic disease upon presentation for patients with EFT. METHODS We identified EFT cases in the Surveillance, Epidemiology, and End Results Program (SEER) registry from 2004 to 2012. Using univariate analyses and multivariable logistic regression, we explored the relationship between demographic and clinical factors and the presence of detectable metastatic disease at presentation. RESULTS Among 870 EFT cases, 35% (n = 304) presented with detectable metastatic disease. These patients were commonly older (>24 years: 28% vs 19%, p = 0.002) and had a primary tumor site in the axial skeleton (56% vs 44%, p < 0.001). After adjusting for all covariates, compared to patients <11 years, those >24 years old faced a two-fold increase in the odds of metastatic disease (OR = 1.99, 95% CI: 1.17-3.38). Axial (OR = 2.31, 95% CI: 1.58-3.37) and "other" (OR = 2.35, 95% CI: 1.15-4.81) tumor locations had more than twice the likelihood of presenting with metastatic disease, compared to extremity tumor sites. Increasing tumor size conferred up to a three-fold increase in odds of metastatic disease (pTrend <0.001). CONCLUSIONS Advanced age, axial tumor location, and increasing tumor size are associated with increased odds of detectable metastatic disease upon presentation with EFT. Although these characteristics are not modifiable, they provide objective factors that may inform patient counseling of metastatic risk.
Collapse
Affiliation(s)
- Dipak B Ramkumar
- Department of Orthopaedic Surgery, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, United States.
| | - Niveditta Ramkumar
- The Dartmouth Institute of Health Policy and Clinical Practice, Williamson Translational Research Building Level 5, One Medical Center Drive, Lebanon, NH 03756, United States.
| | - Benjamin J Miller
- Department of Orthopedics and Rehabilitation, 200 Hawkins Drive, Iowa City, IA, 52242, United States.
| | - Eric R Henderson
- Department of Orthopaedic Surgery, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, United States.
| |
Collapse
|
15
|
Bianchi-Frias D, Damodarasamy M, Hernandez SA, Gil da Costa RM, Vakar-Lopez F, Coleman IM, Reed MJ, Nelson PS. The Aged Microenvironment Influences the Tumorigenic Potential of Malignant Prostate Epithelial Cells. Mol Cancer Res 2018; 17:321-331. [PMID: 30224545 DOI: 10.1158/1541-7786.mcr-18-0522] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/27/2018] [Accepted: 09/04/2018] [Indexed: 11/16/2022]
Abstract
The incidence of prostate cancer is directly linked to age, but age-associated changes that facilitate prostate cancer development and progression are poorly understood. This study investigated age-related changes in the prostate microenvironment for their influence on prostate cancer behavior. Prostate cancer cells implanted orthotopically into the prostate demonstrated accelerated tumor growth in aged compared with young mice. Metastatic lesions following intravenous injection were also more numerous in aged mice. Tumors from young and aged mice showed no significant differences concerning their proliferation index, apoptosis, or angiogenesis. However, analysis of tumor-infiltrating immune cells by IHC and RNA sequencing (RNA-seq) revealed elevated numbers of macrophages in prostates from aged mice, which are quickly polarized towards a phenotype resembling protumorigenic tumor-associated macrophages upon tumor cell engraftment. Older patients with prostate cancer (>60 years old) in The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) dataset displayed higher expression of macrophage markers (CD163 and VSIG4) which associated with higher rates of biochemical relapse. Remodeling of the collagenous extracellular matrix (ECM) was associated with prostate cancer growth and invasion in the aged microenvironment. Moreover, the collagen matrix extracted from aged mice enhanced the invasiveness and proliferation of prostate cancer cells in vitro. Together, these results demonstrate that the aged prostatic microenvironment can regulate the growth and metastasis of malignant prostate cells, highlighting the role of resident macrophages and their polarization towards a protumorigenic phenotype, along with remodeling of the ECM. IMPLICATIONS: These findings demonstrate the importance of age-associated tumor microenvironment alterations in regulating key aspects of prostate cancer progression.
Collapse
Affiliation(s)
- Daniella Bianchi-Frias
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Susana A Hernandez
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Rui M Gil da Costa
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Funda Vakar-Lopez
- Department of Pathology, University of Washington, Seattle, Washington
| | - Ilsa M Coleman
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - May J Reed
- Department of Medicine, University of Washington, Seattle, Washington
| | - Peter S Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington. .,Department of Medicine, University of Washington, Seattle, Washington.,Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
16
|
A microRNA signature and TGF-β1 response were identified as the key master regulators for spaceflight response. PLoS One 2018; 13:e0199621. [PMID: 30044882 PMCID: PMC6059388 DOI: 10.1371/journal.pone.0199621] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022] Open
Abstract
Translating fundamental biological discoveries from NASA Space Biology program into health risk from space flights has been an ongoing challenge. We propose to use NASA GeneLab database to gain new knowledge on potential systemic responses to space. Unbiased systems biology analysis of transcriptomic data from seven different rodent datasets reveals for the first time the existence of potential “master regulators” coordinating a systemic response to microgravity and/or space radiation with TGF-β1 being the most common regulator. We hypothesized the space environment leads to the release of biomolecules circulating inside the blood stream. Through datamining we identified 13 candidate microRNAs (miRNA) which are common in all studies and directly interact with TGF-β1 that can be potential circulating factors impacting space biology. This study exemplifies the utility of the GeneLab data repository to aid in the process of performing novel hypothesis–based research.
Collapse
|
17
|
Lu Y, Tan CTY, Nyunt MSZ, Mok EWH, Camous X, Kared H, Fulop T, Feng L, Ng TP, Larbi A. Inflammatory and immune markers associated with physical frailty syndrome: findings from Singapore longitudinal aging studies. Oncotarget 2018; 7:28783-95. [PMID: 27119508 PMCID: PMC5045356 DOI: 10.18632/oncotarget.8939] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/10/2016] [Indexed: 12/31/2022] Open
Abstract
Chronic systematic inflammation and reduced immune system fitness are considered potential contributing factors to the development of age-related frailty, but the underlying mechanisms are poorly defined. This exploratory study aimed to identify frailty-related inflammatory markers and immunological phenotypes in a cohort of community-dwelling adults aged ≥ 55 years. Frailty was assessed using two models, a Frailty Index and a categorical phenotype, and correlated with levels of circulating immune biomarkers and markers of senescence in immune cell subsets. We identified eight serological biomarkers that were associated with frailty, including sgp130, IL-2Rα, I-309, MCP-1, BCA-1, RANTES, leptin, and IL-6R. Frailty Index was inversely predicted by the frequency of CD3+, CD45RA+, and central memory CD4 cells, and positively predicted by the loss of CD28 expression, especially in CD8+ T cells, while frailty status was predicted by the frequency of terminal effector CD8+ T cells. In γ/δ T cells, frailty was negatively associated with CD27, and positively associated with IFNγ+TNFα- secretion by γ/δ2+ cells and IFNγ-TNFα+ secretion by γ/δ2- cells. Increased numbers of exhausted and CD38+ B cells, as well as CD14+CD16+ inflammatory monocytes, were also identified as frailty-associated phenotypes. This pilot study supports an association between inflammation, cellular immunity, and the process of frailty. These findings have significance for the early identification of frailty using circulating biomarkers prior to clinical manifestations of severe functional decline in the elderly.
Collapse
Affiliation(s)
- Yanxia Lu
- Department of Clinical Psychology and Psychiatry/School of Public Health, Zhejiang University College of Medicine, Hangzhou, China
| | - Crystal Tze Ying Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ma Shwe Zin Nyunt
- Gerontology Research Programme, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Esther Wing Hei Mok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Xavier Camous
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Hassen Kared
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Tamas Fulop
- Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Liang Feng
- Graduate Medical School, Duke-National University of Singapore, Singapore
| | - Tze Pin Ng
- Gerontology Research Programme, Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore.,Geriatrics Division, Department of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
18
|
Beheshti A, Vanderburg C, McDonald JT, Ramkumar C, Kadungure T, Zhang H, Gartenhaus RB, Evens AM. A Circulating microRNA Signature Predicts Age-Based Development of Lymphoma. PLoS One 2017; 12:e0170521. [PMID: 28107482 PMCID: PMC5249061 DOI: 10.1371/journal.pone.0170521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
Extensive epidemiological data have demonstrated an exponential rise in the incidence of non-Hodgkin lymphoma (NHL) that is associated with increasing age. The molecular etiology of this remains largely unknown, which impacts the effectiveness of treatment for patients. We proposed that age-dependent circulating microRNA (miRNA) signatures in the host influence diffuse large B cell lymphoma (DLBCL) development. Our objective was to examine tumor development in an age-based DLBCL system using an inventive systems biology approach. We harnessed a novel murine model of spontaneous DLBCL initiation (Smurf2-deficient) at two age groups: 3 and 15 months old. All Smurf2-deficient mice develop visible DLBCL tumor starting at 15 months of age. Total miRNA was isolated from serum, bone marrow and spleen and were collected for all age groups for Smurf2-deficient mice and age-matched wild-type C57BL/6 mice. Using systems biology techniques, we identified a list of 10 circulating miRNAs being regulated in both the spleen and bone marrow that were present in DLBCL forming mice starting at 3 months of age that were not present in the control mice. Furthermore, this miRNA signature was found to occur circulating in the blood and it strongly impacted JUN and MYC oncogenic signaling. In addition, quantification of the miRNA signature was performed via Droplet Digital PCR technology. It was discovered that a key miRNA signature circulates throughout a host prior to the formation of a tumor starting at 3 months old, which becomes further modulated by age and yielded calculation of a ‘carcinogenic risk score’. This novel age-based circulating miRNA signature may potentially be leveraged as a DLBCL risk profile at a young age to predict future lymphoma development or disease progression as well as for potential innovative miRNA-based targeted therapeutic strategies in lymphoma.
Collapse
Affiliation(s)
- Afshin Beheshti
- Division of Hematology/Oncology, Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Charles Vanderburg
- Harvard NeuroDiscovery Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - J. Tyson McDonald
- Cancer Research Center, Hampton University, Hampton, Virginia, United States of America
| | - Charusheila Ramkumar
- Department of Cell Biology and Development, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tatenda Kadungure
- Department of Cell Biology and Development, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hong Zhang
- Department of Cell Biology and Development, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ronald B. Gartenhaus
- Marlene & Stewart Greenebaum Cancer Center, Department of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| | - Andrew M. Evens
- Division of Hematology/Oncology, Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Sridharan DM, Asaithamby A, Blattnig SR, Costes SV, Doetsch PW, Dynan WS, Hahnfeldt P, Hlatky L, Kidane Y, Kronenberg A, Naidu MD, Peterson LE, Plante I, Ponomarev AL, Saha J, Snijders AM, Srinivasan K, Tang J, Werner E, Pluth JM. Evaluating biomarkers to model cancer risk post cosmic ray exposure. LIFE SCIENCES IN SPACE RESEARCH 2016; 9:19-47. [PMID: 27345199 PMCID: PMC5613937 DOI: 10.1016/j.lssr.2016.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Robust predictive models are essential to manage the risk of radiation-induced carcinogenesis. Chronic exposure to cosmic rays in the context of the complex deep space environment may place astronauts at high cancer risk. To estimate this risk, it is critical to understand how radiation-induced cellular stress impacts cell fate decisions and how this in turn alters the risk of carcinogenesis. Exposure to the heavy ion component of cosmic rays triggers a multitude of cellular changes, depending on the rate of exposure, the type of damage incurred and individual susceptibility. Heterogeneity in dose, dose rate, radiation quality, energy and particle flux contribute to the complexity of risk assessment. To unravel the impact of each of these factors, it is critical to identify sensitive biomarkers that can serve as inputs for robust modeling of individual risk of cancer or other long-term health consequences of exposure. Limitations in sensitivity of biomarkers to dose and dose rate, and the complexity of longitudinal monitoring, are some of the factors that increase uncertainties in the output from risk prediction models. Here, we critically evaluate candidate early and late biomarkers of radiation exposure and discuss their usefulness in predicting cell fate decisions. Some of the biomarkers we have reviewed include complex clustered DNA damage, persistent DNA repair foci, reactive oxygen species, chromosome aberrations and inflammation. Other biomarkers discussed, often assayed for at longer points post exposure, include mutations, chromosome aberrations, reactive oxygen species and telomere length changes. We discuss the relationship of biomarkers to different potential cell fates, including proliferation, apoptosis, senescence, and loss of stemness, which can propagate genomic instability and alter tissue composition and the underlying mRNA signatures that contribute to cell fate decisions. Our goal is to highlight factors that are important in choosing biomarkers and to evaluate the potential for biomarkers to inform models of post exposure cancer risk. Because cellular stress response pathways to space radiation and environmental carcinogens share common nodes, biomarker-driven risk models may be broadly applicable for estimating risks for other carcinogens.
Collapse
Affiliation(s)
| | | | - Steve R Blattnig
- Langley Research Center, Langley Research Center (LaRC), VA, United States
| | - Sylvain V Costes
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | | | | | - Lynn Hlatky
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Yared Kidane
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Mamta D Naidu
- CCSB-Tufts School of Medicine, Boston, MA, United States
| | - Leif E Peterson
- Houston Methodist Research Institute, Houston, TX, United States
| | - Ianik Plante
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Artem L Ponomarev
- Wyle Science, Technology & Engineering Group, Houston, TX, United States
| | - Janapriya Saha
- UT Southwestern Medical Center, Dallas, TX, United States
| | | | | | - Jonathan Tang
- Exogen Biotechnology, Inc., Berkeley, CA, United States
| | | | - Janice M Pluth
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| |
Collapse
|