1
|
Zhu H, Hou P, Chu F, Li X, Zhang W, Sun X, Liu Y, Zhao G, Gao Y, He DC, Wang H, He H. PBLD promotes IRF3 mediated the type I interferon (IFN-I) response and apoptosis to inhibit viral replication. Cell Death Dis 2024; 15:727. [PMID: 39362857 PMCID: PMC11450232 DOI: 10.1038/s41419-024-07083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Recent studies have implicated the phenazine biosynthesis-like domain-containing protein (PBLD) in the negative regulation of the development and progression of various cancers. However, its function in viral infection remains unknown. In this study, we found that PBLD plays important roles in multiple virus infections including BPIV3, SeV, VSV, and HSV-1. Our study revealed that PBLD enhances the expression of type I interferon (IFN-I) and ISGs through interferon regulatory factor 3 (IRF3). Further study indicated that PBLD promotes transcriptional phosphorylation of IRF3 (S385/386), thereby facilitating virus-induced IFN-I production. Interestingly, PBLD mediates virus-triggered mitochondrial apoptosis through its dependence on IRF3 (K313/315). Mechanistically, PBLD facilitated virus-induced apoptosis by recruiting the Puma protein to the mitochondria via IRF3. Additionally, we performed mutational analyses of IRF3, showing that its loss of either transcriptional or apoptotic function markedly increased viral replication. Moreover, macrophages with PBLD deficiency during viral infection exhibited decreased the IFN-I and ISGs expression, exacerbating viral infection. Importantly, mice deficient in PBLD exhibited increased viral replication and susceptibility to SeV infection, leading to decreased survival. Notably, Cedrelone, a chemical activator of PBLD, has the ability to reduce SeV replication. Collectively, we first discovered the new function of PBLD in viral infection, broadening our understanding of potential therapeutic targets and offering new insights for antiviral drug development.
Collapse
Affiliation(s)
- Hongchao Zhu
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Peili Hou
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Fengyun Chu
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xingyu Li
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Wenjia Zhang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xiaonan Sun
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Yu Liu
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Guimin Zhao
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Daniel Chang He
- The College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China.
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China.
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
2
|
Chen Y, Liang J, Chen S, Lin N, Xu S, Miao J, Zhang J, Chen C, Yuan X, Xie Z, Zhu E, Cai M, Wei X, Hou S, Tang H. Discovery of vitexin as a novel VDR agonist that mitigates the transition from chronic intestinal inflammation to colorectal cancer. Mol Cancer 2024; 23:196. [PMID: 39272040 PMCID: PMC11395219 DOI: 10.1186/s12943-024-02108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Colitis-associated colorectal cancer (CAC) frequently develops in patients with inflammatory bowel disease (IBD) who have been exposed to a prolonged state of chronic inflammation. The investigation of pharmacological agents and their mechanisms to prevent precancerous lesions and inhibit their progression remains a significant focus and challenge in CAC research. Previous studies have demonstrated that vitexin effectively mitigates CAC, however, its precise mechanism of action warrants further exploration. This study reveals that the absence of the Vitamin D receptor (VDR) accelerates the progression from chronic colitis to colorectal cancer. Our findings indicate that vitexin can specifically target the VDR protein, facilitating its translocation into the cell nucleus to exert transcriptional activity. Additionally, through a co-culture model of macrophages and cancer cells, we observed that vitexin promotes the polarization of macrophages towards the M1 phenotype, a process that is dependent on VDR. Furthermore, ChIP-seq analysis revealed that vitexin regulates the transcriptional activation of phenazine biosynthesis-like domain protein (PBLD) via VDR. ChIP assays and dual luciferase reporter assays were employed to identify the functional PBLD regulatory region, confirming that the VDR/PBLD pathway is critical for vitexin-mediated regulation of macrophage polarization. Finally, in a mouse model with myeloid VDR gene knockout, we found that the protective effects of vitexin were abolished in mid-stage CAC. In summary, our study establishes that vitexin targets VDR and modulates macrophage polarization through the VDR/PBLD pathway, thereby alleviating the transition from chronic colitis to colorectal cancer.
Collapse
Affiliation(s)
- Yonger Chen
- School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, Guangzhou Medical University; The Affiliated Panyu Central Hospital of Guangzhou Medical University; Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jian Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shuxian Chen
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China
| | - Shuoxi Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jindian Miao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jing Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Chen Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xin Yuan
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhuoya Xie
- State Key Laboratory of Oncology in South China Guangdong Provincial Clinical Research, Center for Cancer Sun Yat-Sen University Cancer Center Guangzhou, Guangzhou, 510060, China
| | - Enlin Zhu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Mingsheng Cai
- School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, Guangzhou Medical University; The Affiliated Panyu Central Hospital of Guangzhou Medical University; Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Xiaoli Wei
- State Key Laboratory of Oncology in South China Guangdong Provincial Clinical Research, Center for Cancer Sun Yat-Sen University Cancer Center Guangzhou, Guangzhou, 510060, China.
| | - Shaozhen Hou
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China Guangdong Provincial Clinical Research, Center for Cancer Sun Yat-Sen University Cancer Center Guangzhou, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Wang S, He Y, Wang J, Luo E. Re-exploration of immunotherapy targeting EMT of hepatocellular carcinoma: Starting from the NF-κB pathway. Biomed Pharmacother 2024; 174:116566. [PMID: 38631143 DOI: 10.1016/j.biopha.2024.116566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancies worldwide, and its high morbidity and mortality have brought a heavy burden to the global public health system. Due to the concealment of its onset, the limitation of treatment, the acquisition of multi-drug resistance and radiation resistance, the treatment of HCC cannot achieve satisfactory results. Epithelial mesenchymal transformation (EMT) is a key process that induces progression, distant metastasis, and therapeutic resistance to a variety of malignant tumors, including HCC. Therefore, targeting EMT has become a promising tumor immunotherapy method for HCC. The NF-κB pathway is a key regulatory pathway for EMT. Targeting this pathway has shown potential to inhibit HCC infiltration, invasion, distant metastasis, and therapeutic resistance. At present, there are still some controversies about this pathway and new ideas of combined therapy, which need to be further explored. This article reviews the progress of immunotherapy in improving EMT development in HCC cells by exploring the mechanism of regulating EMT.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China
| | - Yan He
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Jun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China
| | - En Luo
- Department of Hepatobiliary and Pancreatic Surgery, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
4
|
Kang Y. Landscape of NcRNAs involved in drug resistance of breast cancer. Clin Transl Oncol 2023; 25:1869-1892. [PMID: 37067729 PMCID: PMC10250522 DOI: 10.1007/s12094-023-03189-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/02/2022] [Indexed: 04/18/2023]
Abstract
Breast cancer (BC) leads to the most amounts of deaths among women. Chemo-, endocrine-, and targeted therapies are the mainstay drug treatments for BC in the clinic. However, drug resistance is a major obstacle for BC patients, and it leads to poor prognosis. Accumulating evidences suggested that noncoding RNAs (ncRNAs) are intricately linked to a wide range of pathological processes, including drug resistance. Till date, the correlation between drug resistance and ncRNAs is not completely understood in BC. Herein, we comprehensively summarized a dysregulated ncRNAs landscape that promotes or inhibits drug resistance in chemo-, endocrine-, and targeted BC therapies. Our review will pave way for the effective management of drug resistance by targeting oncogenic ncRNAs, which, in turn will promote drug sensitivity of BC in the future.
Collapse
Affiliation(s)
- Yujuan Kang
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| |
Collapse
|
5
|
Tsunedomi R, Yoshimura K, Kimura Y, Nishiyama M, Fujiwara N, Matsukuma S, Kanekiyo S, Matsui H, Shindo Y, Watanabe Y, Tokumitsu Y, Yoshida S, Iida M, Suzuki N, Takeda S, Ioka T, Hazama S, Nagano H. Elevated expression of RAB3B plays important roles in chemoresistance and metastatic potential of hepatoma cells. BMC Cancer 2022; 22:260. [PMID: 35277124 PMCID: PMC8917729 DOI: 10.1186/s12885-022-09370-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Cancer stem cells (CSCs) are thought to play important roles in carcinogenesis, recurrence, metastasis, and therapy-resistance. We have successfully induced cancer stem-like sphere cells (CSLCs) which possess enhanced chemoresistance and metastatic potential. To enable the development of targeted therapy against CSLCs, we identified a gene responsible for this phenotype in CSLC.
Methods
Human hepatoma cell line SK-HEP-1 was used for CSLC induction with a unique sphere inducing medium, and HuH-7 cells were used as non-sphere forming cells in the same condition. RNA-sequencing was performed followed by validation with quantitative RT-PCR and western blotting. Knockdown experiments were done by using CRISPR-Cas9 genome-editing, and the rescue experiments were performed using the expressing plasmid vector. Chemoresistance and liver metastasis of the cells, was studied following the splenic injection of cells to severely immune deficient mice and evaluated using the MTS assay. Quantification of exosomes in the medium was done using ELISA.
Results
RAB3B was identified as an up-regulated gene in both CSLCs and prognostically poor hepatocellular carcinoma (HCC) by RNA-sequencing. RAB3B-KD cells showed altered CSLC phenotypes such as sphere formation, chemoresistance, and metastatic potentials, and those were rescued by RAB3B complementation. Increased exosome secretion was observed in CSLCs, and it was not observed in the RAB3B-KD cells. In addition, the RAB3B expression correlated with the expression of ABCG2, APOE, LEPR, LXN, and TSPAN13.
Conclusion
The up regulation of RAB3B may play an important role in the chemoresistance and metastatic potential of CSLCs.
Collapse
|
6
|
PBLD inhibits angiogenesis via impeding VEGF/VEGFR2-mediated microenvironmental cross-talk between HCC cells and endothelial cells. Oncogene 2022; 41:1851-1865. [PMID: 35140333 PMCID: PMC8956508 DOI: 10.1038/s41388-022-02197-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 01/02/2022] [Accepted: 01/18/2022] [Indexed: 01/08/2023]
Abstract
Sustained anti-angiogenesis therapy increases the level of tumor hypoxia, leading to increased expression of HIF-1a, thereby contributing to the resistance to anti-angiogenesis therapy in hepatocellular carcinoma (HCC). Here, we report that phenazine biosynthesis-like domain-containing protein (PBLD) inhibits hypoxia-induced angiogenesis via ERK/HIF-1a/VEGF axis in HCC cells. Bioinformatic analysis of the TCGA database and clinical samples validation also identify a negative correlation between PBLD and angiogenesis-related genes expression including HIF-1a. Apart from the downregulation of HIF-1a/VEGF expression in HCC cells, PBLD also blocks VEGF receptor 2 (VEGFR2) on endothelial cells via HCC-derived exosomal miR-940. PBLD also activates TCF4 transcriptional promotion effects on miR-940 by directly interacting with it. Together, PBLD exerts an inhibitory effect on angiogenesis not only via blocking the VEGFR2 expression in endothelial cells, but also through downregulating HIF-1a-induced VEGF expression and secretion in HCC cells. These explorations may provide a theoretical basis for exploring new targets and strategies to overcome resistance to anti-angiogenesis therapy.
Collapse
|
7
|
PARP inhibitors and radiation potentiate liver cell death in vitro. Do hepatocellular carcinomas have an achilles' heel? Clin Res Hepatol Gastroenterol 2021; 45:101553. [PMID: 33183998 DOI: 10.1016/j.clinre.2020.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/10/2020] [Accepted: 09/30/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND A promising avenue for cancer treatment is exacerbating the deregulation of the DNA repair machinery that would normally protect the genome. To address the applicability of poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) combined with radiotherapy for the treatment of hepatocellular carcinoma (HCC) two approaches were used: firstly, the in vitro sensitivity to the PARPi Veliparib and Talazoparib +/- radiation exposure was determined in liver cell lines and the impact of the HBV X protein (HBx) that deregulates cellular DNA damage repair via SMC5/6 degradation was investigated. Secondly, PARP expression profiles and DNA damage levels using the surrogate marker gammaH2AX were assessed in a panel of control liver vs HCC tissues. METHODS Cell cytotoxicity was measured by clonogenic survival or relative cell growth and the DNA damage response using immunological-based techniques in Hep3B, PLC/PRF/5, HepG2- and HepaRG-derived models. Transcriptome changes due to HBx expression vs SMC6 loss were assessed by RNA sequencing in HepaRG-derived models. PARP and PARG transcripts (qPCR) and PARP1, H2AX and gammaH2AX protein levels (RPPA) were compared in control liver vs HBV-, HCV-, alcohol- and non-alcoholic steatohepatitis-associated HCC (tumor/peritumor) tissues. RESULTS PARPi cytotoxicity was significantly enhanced when combined with X-rays (2Gy) with Talazoparib having a greater impact than Veliparib in most in vitro models. HBx expression significantly lowered survival, probably driven by SMC5/6 loss based on the transcriptome analysis and higher DNA damage levels. PARP1 and PARP2 transcript levels were significantly higher in tumor than peritumor and control tissues. The HBV/HCV/alcohol-associated tumor tissues studied had reduced H2AX but higher gammaH2AX protein levels compared to peritumor and control tissues providing evidence of increased DNA damage during liver disease progression. CONCLUSIONS These proof-of-concept experiments support PARPi alone or combined with radiotherapy for HCC treatment, particularly for HBV-associated tumors, that warrant further investigation.
Collapse
|
8
|
Epithelial PBLD attenuates intestinal inflammatory response and improves intestinal barrier function by inhibiting NF-κB signaling. Cell Death Dis 2021; 12:563. [PMID: 34059646 PMCID: PMC8166876 DOI: 10.1038/s41419-021-03843-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Intestinal barrier function defects and dysregulation of intestinal immune responses are two key contributory factors in the pathogenesis of ulcerative colitis (UC). Phenazine biosynthesis-like domain-containing protein (PBLD) was recently identified as a tumor suppressor in gastric cancer, hepatocellular carcinoma, and breast cancer; however, its role in UC remains unclear. Therefore, we analyzed colonic tissue samples from patients with UC and constructed specific intestinal epithelial PBLD-deficient (PBLDIEC-/-) mice to investigate the role of this protein in UC pathogenesis. We found that epithelial PBLD was decreased in patients with UC and was correlated with levels of tight junction (TJ) and inflammatory proteins. PBLDIEC-/- mice were more susceptible to dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid-induced colitis compared with wild-type (WT) mice. In DSS-induced colitis, PBLDIEC-/- mice had impaired intestinal barrier function and greater immune cell infiltration in colonic tissue than WT mice. Furthermore, TJ proteins were markedly reduced in PBLDIEC-/- mice compared with WT mice with colitis. Nuclear factor (NF)-κB activation was markedly elevated and resulted in higher expression levels of downstream effectors (C-C motif chemokine ligand 20, interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF]-α) in colonic epithelial cells isolated from PBLDIEC-/- mice than WT mice with colitis. PBLD overexpression in intestinal epithelial cells (IECs) consistently inhibited TNF-α/interferon-γ-induced intestinal barrier disruption and TNF-α-induced inflammatory responses via the suppression of NF-κB. In addition, IKK inhibition (IKK-16) rescued excessive inflammatory responses induced by TNF-α in PBLD knockdown FHC cells. Co-immunoprecipitation assays showed that PBLD may interact with IKKα and IKKβ, thus inhibiting NF-κB signaling, decreasing inflammatory mediator production, attenuating colonic inflammation, and improving intestinal barrier function. Modulating PBLD expression may provide a novel approach for treatment in patients with UC.
Collapse
|
9
|
Kuhara K, Kitagawa T, Baron B, Tokuda K, Sakamoto K, Nagano H, Nakamura K, Kobayashi M, Nagayasu H, Kuramitsu Y. Proteomic Analysis of Hepatocellular Carcinoma Tissues With Encapsulation Shows Up-regulation of Leucine Aminopeptidase 3 and Phosphoenolpyruvate Carboxykinase 2. Cancer Genomics Proteomics 2021; 18:307-316. [PMID: 33893083 DOI: 10.21873/cgp.20261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Cancer is the most fatal disease worldwide whose most lethal characteristics are invasion and metastasis. Hepatocellular carcinoma (HCC) is one of the most fatal cancers worldwide. HCC often shows encapsulation, which is related to better prognosis. In this study, proteomic analysis of HCC tissues with and without encapsulation was performed, in order to elucidate the factors which play important roles in encapsulation. MATERIALS AND METHODS Five HCC tissues surrounded by a capsule and five HCC tissues which broke the capsule were obtained from patients diagnosed with HCC who underwent surgical liver resection. Protein samples from these tissues were separated by two-dimensional gel electrophoresis (2-DE), and the protein spots whose expression was different between encapsulated and non-encapsulated HCC tissues were identified through gel imaging analysis software. The selected protein spots were analyzed and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Two-DE analysis showed 14 spots whose expression was different between encapsulated and non-encapsulated HCC tissues. Of these, 9 were up-regulated and 5 were down-regulated in HCC tissues without encapsulation. The validation by Western blot confirmed that leucine aminopeptidase 3 (LAP3) and phosphoenolpyruvate carboxykinase mitochondrial (PCK2) were up-regulated significantly in HCC tissues with a capsule, compared to HCC tissues that broke the capsule. CONCLUSION These findings suggest that LAP3 and PCK2 could be factors responsible for the maintenance of encapsulation in HCC tissues.
Collapse
Affiliation(s)
- Keisuke Kuhara
- Advanced Research Promotion Centre, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan.,Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Takao Kitagawa
- Advanced Research Promotion Centre, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Kazuhiro Tokuda
- Graduate School of Health and Welfare, Yamaguchi Prefectural University, Yamaguchi, Japan
| | - Kazuhiko Sakamoto
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kazuyuki Nakamura
- Centre of Clinical Laboratories in Tokuyama Medical Association Hospital, Shunan, Japan
| | - Masanobu Kobayashi
- Advanced Research Promotion Centre, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Hiroki Nagayasu
- Division of Oral and Maxillofacial Surgery, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Yasuhiro Kuramitsu
- Advanced Research Promotion Centre, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Japan;
| |
Collapse
|
10
|
Lyu L, Zhang S, Deng Y, Wang M, Deng X, Yang S, Wu Y, Dai Z. Regulatory mechanisms, functions, and clinical significance of CircRNAs in triple-negative breast cancer. J Hematol Oncol 2021; 14:41. [PMID: 33676555 PMCID: PMC7937293 DOI: 10.1186/s13045-021-01052-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
Circular RNAs (circRNAs) are a new class of endogenous regulatory RNAs characterized by covalently closed cyclic structure lacking poly-adenylated tails, and are capable of regulating gene expression at transcription or post-transcription levels. Recently, plentiful circRNAs have been discovered in breast cancer and some circRNAs expression profiles are specifically involved in the triple-negative breast cancer (TNBC). TNBC is a type of malignant tumor defined by the lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. Considering its clinical characteristics of high invasion, metastasis, poor prognosis, and lack of effective response to conventional chemotherapies or targeted therapies, it could be a promosing option to discover specific circRNAs as new targets for TNBC treatment. Meanwhile, accumulating evidence has demonstrated that circRNAs are dysregulated in TNBC tissues and are correlated with clinicopathological features and prognosis of TNBC patients. Furthermore, looking for circRNAs with high specificity and sensitivity will provide a new opportunity for the early diagnosis, clinical treatment, and prognosis monitoring of TNBC. Herein, we reviewed the biogenesis, regulatory mechanisms, and biological functions of circRNAs in TNBC and summarized the relationship between circRNAs expression and the clinicopathology, diagnosis, and prognosis of patients with TNBC.
Collapse
Affiliation(s)
- Lijuan Lyu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shizhen Zhang
- The Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yujiao Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyue Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Si Yang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Wu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China. .,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
11
|
Sarkar D, Diermeier SD. Circular RNAs: Potential Applications as Therapeutic Targets and Biomarkers in Breast Cancer. Noncoding RNA 2021; 7:2. [PMID: 33466455 PMCID: PMC7838774 DOI: 10.3390/ncrna7010002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs that form a covalently closed loop. A number of functions and mechanisms of action for circRNAs have been reported, including as miRNA sponge, exerting transcriptional and translational regulation, interacting with proteins, and coding for peptides. CircRNA dysregulation has also been implicated in many cancers, such as breast cancer. Their relatively high stability and presence in bodily fluids makes cancer-associated circRNAs promising candidates as a new biomarker. In this review, we summarize the research undertaken on circRNAs associated with breast cancer, discuss circRNAs as biomarkers, and present circRNA-based therapeutic approaches.
Collapse
Affiliation(s)
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
12
|
Xu T, Wang M, Jiang L, Ma L, Wan L, Chen Q, Wei C, Wang Z. CircRNAs in anticancer drug resistance: recent advances and future potential. Mol Cancer 2020; 19:127. [PMID: 32799866 PMCID: PMC7429705 DOI: 10.1186/s12943-020-01240-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
CircRNAs are a novel class of RNA molecules with a unique closed continuous loop structure. CircRNAs are abundant in eukaryotic cells, have unique stability and tissue specificity, and can play a biological regulatory role at various levels, such as transcriptional and posttranscriptional levels. Numerous studies have indicated that circRNAs serve a crucial purpose in cancer biology. CircRNAs regulate tumor behavioral phenotypes such as proliferation and migration through various molecular mechanisms, such as miRNA sponging, transcriptional regulation, and protein interaction. Recently, several reports have demonstrated that they are also deeply involved in resistance to anticancer drugs, from traditional chemotherapeutic drugs to targeted and immunotherapeutic drugs. This review is the first to summarize the latest research on circRNAs in anticancer drug resistance based on drug classification and to discuss their potential clinical applications.
Collapse
Affiliation(s)
- Tianwei Xu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Mengwei Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Lihua Jiang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Li Wan
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu, China
| | - Qinnan Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China
| | - Chenchen Wei
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Jiangjiayuan road 121#, Nanjing, 210011, Jiangsu, P.R. China.
| |
Collapse
|
13
|
Wang Q, Zhu Y, Zuo G, Chen X, Cheng J, Zhang S. LINC00858 promotes retinoblastoma cell proliferation, migration and invasion by inhibiting miR-3182. Exp Ther Med 2019; 19:999-1005. [PMID: 32010262 PMCID: PMC6966175 DOI: 10.3892/etm.2019.8294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/02/2019] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to determine the role of long intergenic non-protein coding RNA 858 (LINC00858) in retinoblastoma (RB) and investigate the underlying molecular mechanisms. RB tissues and paracancerous tissues of 27 RB cases were obtained. RB cell lines (SO-RB50, Y79, HXO-RB44 and WERI-Rb1) and a normal retinal epithelial cell line (ARPE-19) were cultured for in vitro experiments. Batches of SO-RB50 and Y79 cells were assigned to groups transfected with small interfering RNA targeting LINC00858 (si-LINC00858 group), microRNA (miR)-3182 mimics or inhibitor, or the respective controls. A Cell Counting Kit-8 and Transwell assays were performed to assess the effect of the transfections on the proliferation, migration and invasion of SO-RB50 and Y79 cells. A luciferase reporter assay was performed using SO-RB50 cells to demonstrate the direct binding of LINC00858 and miR-3182. Reverse transcription-quantitative PCR was employed to detect LINC00858 and miR-3182 expression. Pearson correlation analysis was used to assess the correlation between the expression of LINC00858 and miR-3182. The results indicated that RB tissues and cells exhibited aberrantly elevated LINC00858 expression (P<0.05). Compared with those in the control-transfected group, SO-RB50 and Y79 cells of the si-LINC00858 group had a lower cell proliferation, as well as a lower number of migrated and invaded cells (all P<0.05). miR-3182 was proven to be a target gene of LINC00858, to be abnormally downregulated in RB tissues and cells (P<0.05) and to be negatively correlated with LINC00858 expression. Compared with those in the si-LINC00858 + inhibitor-negative control group, SO-RB50 and Y79 cells of the si-LINC00858 + miR-3182 inhibitor group exhibited a significantly higher relative proliferation, migration and invasion (all P<0.05). In conclusion, LINC00858 promoted RB cell proliferation, migration and invasion, at least partially by inhibiting miR-3182.
Collapse
Affiliation(s)
- Qi Wang
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Yanni Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Guojin Zuo
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Xiaoming Chen
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Jinkui Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Shu Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
14
|
Wu J, Niu Q, Yuan J, Xu X, Cao L. Novel compound cedrelone inhibits hepatocellular carcinoma progression via PBLD and Ras/Rap1. Exp Ther Med 2019; 18:4209-4220. [PMID: 31777531 PMCID: PMC6862430 DOI: 10.3892/etm.2019.8080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 07/12/2019] [Indexed: 12/20/2022] Open
Abstract
Although it is known that Phenazine biosynthesis-like domain-containing protein (PBLD) expression is downregulated in hepatocellular carcinoma (HCC), its biological function is unclear. Additionally, no agents capable of upregulating PBLD exist. In the current study, the relationship between PBLD and HCC was analyzed using clinicopathological specimens. A HCC cell model, microarray analysis and an animal model were used to verify the therapeutic effect of cedrelone on HCC. The present study demonstrated that PBLD inhibited HCC progression. Furthermore, the present study revealed that cedrelone possessed treated-HCC capabilities via targeted PBLD overexpression. The epithelial-mesenchymal transition phenotype and growth rate were inhibited and the apoptosis ratio was promoted by cedrelone following PBLD overexpression. The Ras and Ras-proximate-1 signaling pathways were also determined to be regulated by cedrelone via PBLD activation in HCC. PBLD may therefore be an independent predictor of HCC progression and a novel target for HCC treatment. Additionally, the PBLD activator, cedrelone, may be a potential drug for HCC treatment in the future.
Collapse
Affiliation(s)
- Jiansong Wu
- Department of Infectious Diseases, General Hospital of the People's Liberation Army Rocket Force, Beijing 100088, P.R. China
| | - Qiang Niu
- Department of Infectious Diseases, General Hospital of the People's Liberation Army Rocket Force, Beijing 100088, P.R. China
| | - Jie Yuan
- Department of Infectious Diseases, General Hospital of the People's Liberation Army Rocket Force, Beijing 100088, P.R. China
| | - Xiaodan Xu
- Department of Infectious Diseases, General Hospital of the People's Liberation Army Rocket Force, Beijing 100088, P.R. China
| | - Liuxia Cao
- Department of Infectious Diseases, General Hospital of the People's Liberation Army Rocket Force, Beijing 100088, P.R. China
| |
Collapse
|
15
|
circKDM4C suppresses tumor progression and attenuates doxorubicin resistance by regulating miR-548p/PBLD axis in breast cancer. Oncogene 2019; 38:6850-6866. [PMID: 31406252 DOI: 10.1038/s41388-019-0926-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 07/07/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Increasing evidence has indicated that circular RNAs (circRNAs) play a critical role in cancer development. However, only a small number of circRNAs have been experimentally validated and functionally annotated. In this study, using a high-throughput microarray assay, we identified a novel circRNA, circKDM4C, which was downregulated in breast cancer tissues with metastasis. Furthermore, we analyzed a cohort of breast cancer patients and found that circKDM4C expression was decreased in breast cancer tissues, and lower circKDM4C expression was associated with poor prognosis and metastasis in breast cancer. Functionally, we demonstrated that circKDM4C significantly repressed breast cancer proliferation, metastasis, and doxorubicin resistance in vitro and in vivo. Mechanistically, using a dual-luciferase activity assay and AGO2 RNA immunoprecipitation, circKDM4C was identified as a miR-548p sponge. We also found that PBLD was a direct target of miR-548p, which functioned as a tumor suppressor in breast cancer. Moreover, miR-548p overexpression was able to reverse the circKDM4C-induced attenuation of malignant phenotypes and elevated expression of PBLD in breast cancer cells. Taken together, our data indicate that circKDM4C might have considerable potential as a prognostic biomarker in breast cancer, and support the notion that therapeutic targeting of circKDM4C/miR-548p/PBLD axis may be a promising treatment approach for breast cancer patients.
Collapse
|
16
|
Yang H, Xu M, Chi X, Yan Q, Wang Y, Xu W, Zhuang K, Li A, Liu S. Higher PKD3 expression in hepatocellular carcinoma (HCC) tissues predicts poorer prognosis for HCC patients. Clin Res Hepatol Gastroenterol 2017; 41:554-563. [PMID: 28363424 DOI: 10.1016/j.clinre.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/24/2017] [Accepted: 02/08/2017] [Indexed: 02/04/2023]
Abstract
AIM Protein kinase D (PKD) acts as a key mediator in several cancer development signaling pathways. The aim of this study was to investigate the clinical significance and prognostic value of PKD3 expression in hepatocellular carcinoma (HCC) patients after hepatectomy. METHODS PKD3 mRNA and protein expression levels in tumor and matched non-tumoral (NT) tissues, HCC cell lines were evaluated by quantitative PCR (qRT-PCR), western blotting and immunohistochemical staining (IHC). Additionally, PKD3 mRNA expression in HCC tissues correlated with clinicopathological characteristics and survival. RESULTS PKD3 mRNA and protein expression was elevated in HCC tissues and HCC cell lines. Our data also showed that in HCC patients after resection, a high-expression of PKD3 mRNA and protein significantly correlated with multiple tumor nodules (P=0.009, P=0.020, respectively), poor tumor differentiation (P=0.001, P=0.004, respectively), high serum AFP level (P=0.005, P=0.002, respectively), vascular invasion (P=0.006, P=0.009, respectively) and advanced AJCC stage (P=0.001, P=0.022, respectively). A Kaplan-Meier analysis indicated that an elevated PKD3 mRNA expression correlated with shorter overall survival (OS) (P<0.001) and disease-free survival (DFS) (P=0.008). Moreover, multivariate analysis showed that a high-expression of PKD3 was an independent prognostic factor for three-year overall survival rate. CONCLUSIONS Our findings suggest that abnormal PKD3 expression might contribute to HCC progression. Furthermore, high PKD3 expression predicts a poor prognosis in HCC patients after hepatectomy.
Collapse
Affiliation(s)
- Haiyun Yang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Gastroenterology, Guangdong No. 2 Provincial People(')s Hospital, Guangzhou 510317, China
| | - Ming Xu
- Department of Gastroenterology, Guangdong No. 2 Provincial People(')s Hospital, Guangzhou 510317, China
| | - Xiufang Chi
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, Guangdong 510010, China
| | - Qun Yan
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yadong Wang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wen Xu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kangmin Zhuang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Aimin Li
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Side Liu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
17
|
Quan W, Yao Y, Xianhua C, Xiaodong P, Qi H, Dong W, Youcai D, Xiaohui L, Jun Y, Jihong Z. Competing endogenous RNA screening based on long noncoding RNA-messenger RNA co-expression profile in Hepatitis B virus-associated hepatocarcinogenesis. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30158-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Shimizu D, Inokawa Y, Sonohara F, Inaoka K, Nomoto S. Search for useful biomarkers in hepatocellular carcinoma, tumor factors and background liver factors. Oncol Rep 2017; 37:2527-2542. [DOI: 10.3892/or.2017.5541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
|
19
|
Caira S, Iannelli A, Sciarrillo R, Picariello G, Renzone G, Scaloni A, Addeo P. Differential representation of liver proteins in obese human subjects suggests novel biomarkers and promising targets for drug development in obesity. J Enzyme Inhib Med Chem 2017; 32:672-682. [PMID: 28274171 PMCID: PMC6009959 DOI: 10.1080/14756366.2017.1292262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The proteome of liver biopsies from human obese (O) subjects has been compared to those of nonobese (NO) subjects using two-dimensional gel electrophoresis (2-DE). Differentially represented proteins were identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS)-based peptide mass fingerprinting (PMF) and nanoflow-liquid chromatography coupled to electrospray-tandem mass spectrometry (nLC-ESI-MS/MS). Overall, 61 gene products common to all of the liver biopsies were identified within 65 spots, among which 25 ones were differently represented between O and NO subjects. In particular, over-representation of short-chain acyl-CoA dehydrogenase, Δ(3,5)-Δ(2,4)dienoyl-CoA isomerase, acetyl-CoA acetyltransferase, glyoxylate reductase/hydroxypyruvate reductase, fructose-biphosphate aldolase B, peroxiredoxin I, protein DJ-1, catalase, α- and β-hemoglobin subunits, 3-mercaptopyruvate S-transferase, calreticulin, aminoacylase 1, phenazine biosynthesis-like domain-containing protein and a form of fatty acid-binding protein, together with downrepresentation of glutamate dehydrogenase, glutathione S-transferase A1, S-adenosylmethionine synthase 1A and a form of apolipoprotein A-I, was associated with the obesity condition. Some of these metabolic enzymes and antioxidant proteins have already been identified as putative diagnostic markers of liver dysfunction in animal models of steatosis or obesity, suggesting additional investigations on their role in these syndromes. Their differential representation in human liver was suggestive of their consideration as obesity human biomarkers and for the development of novel antiobesity drugs.
Collapse
Affiliation(s)
- Simonetta Caira
- a Proteomics and Mass Spectrometry Laboratory , ISPAAM, National Research Council , Naples , Italy
| | - Antonio Iannelli
- b Département de Chirurgie Digestive , Centre Hospitalier Universitarie de Nice , Nice , France
| | - Rosaria Sciarrillo
- c Dipartimento di Scienze e Tecnologie , Università degli Studi del Sannio , Benevento , Italy
| | | | - Giovanni Renzone
- a Proteomics and Mass Spectrometry Laboratory , ISPAAM, National Research Council , Naples , Italy
| | - Andrea Scaloni
- a Proteomics and Mass Spectrometry Laboratory , ISPAAM, National Research Council , Naples , Italy
| | - Pietro Addeo
- e Service de Chirurgie Hépatique, Pancréatique, Biliaire et Transplantation, Pôle des Pathologies Digestives, Hépatiques et de la Transplantation, Hôpital de Hautepierre , Université de Strasbourg, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| |
Collapse
|