1
|
Tchelougou D, Malaquin N, Cardin GB, Desmul J, Turcotte S, Rodier F. Defining melanoma combination therapies that provide senolytic sensitivity in human melanoma cells. Front Cell Dev Biol 2024; 12:1368711. [PMID: 38946802 PMCID: PMC11211604 DOI: 10.3389/fcell.2024.1368711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Malignant Melanoma that resists immunotherapy remains the deadliest form of skin cancer owing to poor clinically lasting responses. Alternative like genotoxic or targeted chemotherapy trigger various cancer cell fates after treatment including cell death and senescence. Senescent cells can be eliminated using senolytic drugs and we hypothesize that the targeted elimination of therapy-induced senescent melanoma cells could complement both conventional and immunotherapies. We utilized a panel of cells representing diverse mutational background relevant to melanoma and found that they developed distinct senescent phenotypes in response to treatment. A genotoxic combination therapy of carboplatin-paclitaxel or irradiation triggered a mixed response of cell death and senescence, irrespective of BRAF mutation profiles. DNA damage-induced senescent melanoma cells exhibited morphological changes, residual DNA damage, and increased senescence-associated secretory phenotype (SASP). In contrast, dual targeted inhibition of Braf and Mek triggered a different mixed cell fate response including senescent-like and persister cells. While persister cells could reproliferate, senescent-like cells were stably arrested, but without detectable DNA damage and senescence-associated secretory phenotype. To assess the sensitivity to senolytics we employed a novel real-time imaging-based death assay and observed that Bcl2/Bcl-XL inhibitors and piperlongumine were effective in promoting death of carboplatin-paclitaxel and irradiation-induced senescent melanoma cells, while the mixed persister cells and senescent-like cells resulting from Braf-Mek inhibition remained unresponsive. Interestingly, a direct synergy between Bcl2/Bcl-XL inhibitors and Braf-Mek inhibitors was observed when used out of the context of senescence. Overall, we highlight diverse hallmarks of melanoma senescent states and provide evidence of context-dependent senotherapeutics that could reduce treatment resistance while also discussing the limitations of this strategy in human melanoma cells.
Collapse
Affiliation(s)
- Daméhan Tchelougou
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Nicolas Malaquin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Guillaume B. Cardin
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Jordan Desmul
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Simon Turcotte
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de chirurgie, Université de Montréal, Montreal, QC, Canada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal, Montreal, QC, Canada
- Département de Radiologie, Radio-oncologie et médicine nucléaire, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
2
|
Zhong FM, Yao FY, Liu J, Zhang HB, Zhang J, Zhang N, Lin J, Li SQ, Li MY, Jiang JY, Cheng Y, Xu S, Wen W, Yang YL, Zhang XR, Cheng XX, Huang B, Wang XZ. Ferroptosis-related molecular patterns reveal immune escape, inflammatory development and lipid metabolism characteristics of the tumor microenvironment in acute myeloid leukemia. Front Oncol 2022; 12:888570. [PMID: 36518303 PMCID: PMC9742468 DOI: 10.3389/fonc.2022.888570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/08/2022] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND An increasing number of studies have revealed the influencing factors of ferroptosis. The influence of immune cell infiltration, inflammation development and lipid metabolism in the tumor microenvironment (TME) on the ferroptosis of tumor cells requires further research and discussion. METHODS We explored the relationship between ferroptosis-related genes and acute myeloid leukemia (AML) from the perspective of large sample analysis and multiomics, used multiple groups to identify and verify ferroptosis-related molecular patterns, and analyzed the sensitivity to ferroptosis and the state of immune escape between different molecular pattern groups. The single-sample gene set enrichment analysis (ssGSEA) algorithm was used to quantify the phenotypes of ferroptosis-related molecular patterns in individual patients. HL-60 and THP-1 cells were treated with ferroptosis inducer RSL3 to verify the therapeutic value of targeted inhibition of GPX4. RESULTS Three ferroptosis-related molecular patterns and progressively worsening phenotypes including immune activation, immune exclusion and immunosuppression were found with the two different sequencing approaches. The FSscore we constructed can quantify the development of ferroptosis-related phenotypes in individual patients. The higher the FSscore is, the worse the patient's prognosis. The FSscore is also highly positively correlated with pathological conditions such as inflammation development, immune escape, lipid metabolism, immunotherapy resistance, and chemotherapy resistance and is negatively correlated with tumor mutation burden. Moreover, RSL3 can induce ferroptosis of AML cells by reducing the protein level of GPX4. CONCLUSIONS This study revealed the characteristics of immunity, inflammation, and lipid metabolism in the TME of different AML patients and differences in the sensitivity of tumor cells to ferroptosis. The FSscore can be used as a biomarker to provide a reference for the clinical evaluation of the pathological characteristics of AML patients and the design of personalized treatment plans. And GPX4 is a potential target for AML treatment.
Collapse
Affiliation(s)
- Fang-Min Zhong
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Fang-Yi Yao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hai-Bin Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Nan Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jin Lin
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shu-Qi Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mei-Yong Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun-Yao Jiang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ying Cheng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Shuai Xu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Wen Wen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yu-Lin Yang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Xue-Ru Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Xue-Xin Cheng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiao-Zhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Pimozide and Imipramine Blue Exploit Mitochondrial Vulnerabilities and Reactive Oxygen Species to Cooperatively Target High Risk Acute Myeloid Leukemia. Antioxidants (Basel) 2021; 10:antiox10060956. [PMID: 34203664 PMCID: PMC8232307 DOI: 10.3390/antiox10060956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a high relapse rate. Cytokine receptor targeted therapies are therapeutically attractive but are subject to resistance-conferring mutations. Likewise, targeting downstream signaling pathways has been difficult. Recent success in the development of synergistic combinations has provided new hope for refractory AML patients. While generally not efficacious as monotherapy, BH3 mimetics are very effective in combination with chemotherapy agents. With this in mind, we further explored novel BH3 mimetic drug combinations and showed that pimozide cooperates with mTOR inhibitors and BH3 mimetics in AML cells. The three-drug combination was able to reach cells that were not as responsive to single or double drug combinations. In Flt3-internal tandem duplication (ITD)-positive cells, we previously showed pimozide to be highly effective when combined with imipramine blue (IB). Here, we show that Flt3-ITD+ cells are sensitive to an IB-induced dynamin 1-like (Drp1)-p38-ROS pathway. Pimozide contributes important calcium channel blocker activity converging with IB on mitochondrial oxidative metabolism. Overall, these data support the concept that antioxidants are a double-edged sword. Rationally designed combination therapies have significant promise for further pre-clinical development and may ultimately lead to improved responses.
Collapse
|
4
|
Abstract
Introduction: Management of acute myeloid leukemia (AML) continues to be a therapeutic challenge despite significant recent advancements. Dysregulation of several components of apoptotic pathways has been identified as potential driver in AML. Areas covered: Overexpression of anti-apoptotic proteins, B-cell lymphoma 2 (BCL2), BCL-XL, and myeloid cell leukemia-1 (MCL1), has been associated with worse outcome in AML. Dysfunction of p53 pathway (often through mouse double minute 2 homolog (MDM2)) and high expression of inhibitor of apoptosis proteins (IAP) constitute other disruptions of apoptotic machinery. Significant antileukemic activity of BCL2 inhibitors (particularly venetoclax) in preclinical models has translated into improved objective response and overall survival in combination with hypomethylating agents in AML. Addition of MCL1, BCL-XL, or MDM2 inhibitors could potentially overcome resistance to BCL2 inhibition. Authors conducted a thorough review of available literature on therapeutic options targeting apoptosis in AML, using PubMed, MEDLINE, meeting abstracts, and ClinicalTrials.gov. Expert opinion: While venetoclax remains the core component of targeting apoptosis, ongoing clinical trials should help find ideal combination regimens in different AML subgroups. Future research should focus on overcoming resistance to BCL2 inhibition, optimal management of adverse events, and development of biomarkers to identify patients most likely to benefit from apoptosis-targeted therapies.
Collapse
Affiliation(s)
- Somedeb Ball
- Department of Hematology and Oncology, H. Lee Moffitt Cancer Center and Research Institute , Tampa, FL, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| |
Collapse
|
5
|
Xiang BLS, Kwok-Wai L, Soo-Beng AK, Mohana-Kumaran N. Single Agent and Synergistic Activity of Maritoclax with ABT-263 in Nasopharyngeal Carcinoma (NPC) Cell Lines. Trop Life Sci Res 2020; 31:1-13. [PMID: 33214852 PMCID: PMC7652248 DOI: 10.21315/tlsr2020.31.3.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The BCL-2 anti-apoptotic proteins are over-expressed in many cancers and hence are attractive therapeutic targets. In this study, we tested the sensitivity of two Nasopharyngeal Carcinoma (NPC) cell lines HK1 and C666-1 to Maritoclax, which is reported to repress anti-apoptotic protein MCL-1 and BH3 mimetic ABT-263, which selectively inhibits anti-apoptotic proteins BCL-2, BCL-XL and BCL-w. We investigated the sensitisation of the NPC cell lines to these drugs using the SYBR Green I assay and 3D NPC spheroids. We report that Maritoclax repressed anti-apoptotic proteins MCL-1, BCL-2, and BCL-XL in a dose- and time-dependent manner and displayed a single agent activity in inhibiting cell proliferation of the NPC cell lines. Moreover, combination of Maritoclax and ABT-263 exhibited synergistic antiproliferative effect in the HK1 cells. Similar results were obtained in the 3D spheroids generated from the HK1 cells. More notably, 3D HK1 spheroids either treated with single agent Maritoclax or combination with ABT-263, over 10 days, did not develop resistance to the treatment rapidly. Collectively, the findings illustrate that Maritoclax as a single agent or combination with BH3 mimetics could be potentially useful as treatment strategies for the management of NPC.
Collapse
Affiliation(s)
| | - Lo Kwok-Wai
- Department of Anatomical and Cellular Pathology and State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Central Ave, Hong Kong
| | - Alan Khoo Soo-Beng
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Nethia Mohana-Kumaran
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
| |
Collapse
|
6
|
Lewis M, Prouzet‐Mauléon V, Lichou F, Richard E, Iggo R, Turcq B, Mahon F. A genome-scale CRISPR knock-out screen in chronic myeloid leukemia identifies novel drug resistance mechanisms along with intrinsic apoptosis and MAPK signaling. Cancer Med 2020; 9:6739-6751. [PMID: 38831555 PMCID: PMC7520295 DOI: 10.1002/cam4.3231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Understanding resistance mechanisms in cancer is of utmost importance for the discovery of novel "druggable" targets. Efficient genetic screening, now even more possible with CRISPR-Cas9 gene-editing technology, next-generation sequencing and bioinformatics, is an important tool for deciphering novel cellular processes, such as resistance to treatment in cancer. Imatinib specifically eliminates chronic myeloid leukemia (CML) cells by targeting and blocking the kinase activity of BCR-ABL1; however, resistance to treatment exists. In order to discover BCR-ABL1 independent mechanisms of imatinib resistance, we utilized the genome-scale CRISPR knock-out library to screen for imatinib-sensitizing genes in vitro on K562 cells. We revealed genes that seem essential for imatinib-induced cell death, such as proapoptotic genes (BIM, BAX) or MAPK inhibitor SPRED2. Specifically, reestablishing apoptosis in BIM knock-out (KO) cells with BH3 mimetics, or inhibiting MAPK signaling in SPRED2 KO cells with MEK inhibitors restores sensitivity to imatinib. In this work, we discovered previously identified pathways and novel pathways that modulate response to imatinib in CML cell lines, such as the implication of the Mediator complex, mRNA processing and protein ubiquitinylation. Targeting these specific genetic lesions with combinational therapy can overcome resistance phenotypes and paves the road for the use of precision oncology.
Collapse
Affiliation(s)
- Matthieu Lewis
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - Valérie Prouzet‐Mauléon
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - Florence Lichou
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - Elodie Richard
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - Richard Iggo
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - Béatrice Turcq
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - François‐Xavier Mahon
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| |
Collapse
|
7
|
Decaudin D, Frisch Dit Leitz E, Nemati F, Tarin M, Naguez A, Zerara M, Marande B, Vivet-Noguer R, Halilovic E, Fabre C, Jochemsen A, Roman-Roman S, Alsafadi S. Preclinical evaluation of drug combinations identifies co-inhibition of Bcl-2/XL/W and MDM2 as a potential therapy in uveal melanoma. Eur J Cancer 2020; 126:93-103. [PMID: 31927215 DOI: 10.1016/j.ejca.2019.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Uveal melanoma (UM) is a rare and malignant intraocular tumour with a dismal prognosis. Despite a good control of the primary tumour by radiation or surgery, up to 50% of patients subsequently develop metastasis for which no efficient treatment is yet available. METHODOLOGY To identify therapeutic opportunities, we performed an in vitro screen of 30 combinations of different inhibitors of pathways that are dysregulated in UM. Effects of drug combinations on viability, cell cycle and apoptosis were assessed in eight UM cell lines. The best synergistic combinations were further evaluated in six UM patient-derived xenografts (PDXs). RESULTS We demonstrated that the Bcl-2/XL/W inhibitor (ABT263) sensitised the UM cell lines to other inhibitors, mainly to mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinase (MEK) and murine double minute 2 (MDM2) inhibitors. mTOR (RAD001) and MEK1/2 (trametinib) inhibitors were efficient as single agents, but their combinations with ABT263 displayed no synergism in UM PDXs. In contrast, the combination of ABT263 with MDM2 inhibitor (HDM201) showed a trend for a synergistic effect. CONCLUSION We showed that inhibition of Bcl-2/XL/W sensitised the UM cell lines to other treatments encouraging investigation of the underlying mechanisms. Furthermore, our findings highlighted Bcl-2/XL/W and MDM2 co-inhibition as a promising strategy in UM.
Collapse
Affiliation(s)
- Didier Decaudin
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France; Department of Medical Oncology, Institut Curie, Paris, France
| | - Estelle Frisch Dit Leitz
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Fariba Nemati
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Malcy Tarin
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Adnan Naguez
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Mohamed Zerara
- Laboratory of Preclinical Investigation, Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Benjamin Marande
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Raquel Vivet-Noguer
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Ensar Halilovic
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Claire Fabre
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Aart Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sergio Roman-Roman
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Samar Alsafadi
- Uveal Melanoma Translational Group, Department of Translational Research, Institut Curie, PSL Research University, Paris, France.
| |
Collapse
|
8
|
Targeting Apoptotic Pathways in Acute Myeloid Leukaemia. Cancers (Basel) 2019; 11:cancers11111660. [PMID: 31717784 PMCID: PMC6895902 DOI: 10.3390/cancers11111660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Acute Myeloid Leukaemia is a devastating disease that continues to have a poor outcome for the majority of patients. In recent years, however, a number of drugs have received FDA approval, following on from successful clinical trial results. This parallels the characterization of the molecular landscape of Acute Myeloid Leukaemia (AML) over the last decade, which has led to the development of drugs targeting newly identified recurring mutations. In addition, basic biological research into the pathobiology of AML has identified aberrant programmed cell death pathways in AML. Following on from successful outcomes in lymphoid malignancies, drugs targeting the B Cell Lymphoma 2 (BCL-2) family of anti-apoptotic proteins have been explored in AML. In this review, we will outline the preclinical and clinical work to date supporting the role of drugs targeting BCL-2, with Venetoclax being the most advanced to date. We will also highlight rationale combinations using Venetoclax, ongoing clinical trials and biomarkers of response identified from the early phase clinical trials performed.
Collapse
|
9
|
Smith AM, Zhang CRC, Cristino AS, Grady JP, Fink JL, Moore AS. PTEN deletion drives acute myeloid leukemia resistance to MEK inhibitors. Oncotarget 2019; 10:5755-5767. [PMID: 31645898 PMCID: PMC6791388 DOI: 10.18632/oncotarget.27206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Kinases such as MEK are attractive targets for novel therapy in cancer, including acute myeloid leukaemia (AML). Acquired and inherent resistance to kinase inhibitors, however, is becoming an increasingly important challenge for the clinical success of such therapeutics, and often arises from mutations in the drug-binding domain of the target kinase. To identify possible causes of resistance to MEK inhibition, we generated a model of resistance by long-term treatment of AML cells with AZD6244 (selumetinib). Remarkably, resistance to MEK inhibition was due to acquired PTEN haploinsufficiency, rather than mutation of MEK. Resistance via this mechanism was confirmed using CRISPR/Cas9 technology targeting exon 5 of PTEN. While PTEN loss has been previously implicated in resistance to a number of other therapeutic agents, this is the first time that it has been shown directly and in AML.
Collapse
Affiliation(s)
- Amanda M Smith
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia.,Current address: Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| | - Christine R C Zhang
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia.,Current address: Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| | - Alexandre S Cristino
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia.,Current address: Griffith Institute for Drug Discovery, Brisbane Innovation Park, Nathan, Australia
| | - John P Grady
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia.,Current address: Garvan Institute of Medical Research, Darlinghurst, Australia
| | - J Lynn Fink
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
| | - Andrew S Moore
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia.,Oncology Services Group, Queensland Children's Hospital, South Brisbane, Australia.,Child Health Research Centre, The University of Queensland, South Brisbane, Australia.,Current address: Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| |
Collapse
|
10
|
Han L, Zhang Q, Dail M, Shi C, Cavazos A, Ruvolo VR, Zhao Y, Kim E, Rahmani M, Mak DH, Jin SS, Chen J, Phillips DC, Koller PB, Jacamo R, Burks JK, DiNardo C, Daver N, Jabbour E, Wang J, Kantarjian HM, Andreeff M, Grant S, Leverson JD, Sampath D, Konopleva M. Concomitant targeting of BCL2 with venetoclax and MAPK signaling with cobimetinib in acute myeloid leukemia models. Haematologica 2019; 105:697-707. [PMID: 31123034 PMCID: PMC7049339 DOI: 10.3324/haematol.2018.205534] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of acute myeloid leukemia (AML) involves serial acquisition of mutations controlling several cellular processes, requiring combination therapies affecting key downstream survival nodes in order to treat the disease effectively. The BCL2 selective inhibitor venetoclax has potent anti-leukemia efficacy; however, resistance can occur due to its inability to inhibit MCL1, which is stabilized by the MAPK pathway. In this study, we aimed to determine the anti-leukemia efficacy of concomitant targeting of the BCL2 and MAPK pathways by venetoclax and the MEK1/2 inhibitor cobimetinib, respectively. The combination demonstrated synergy in seven of 11 AML cell lines, including those resistant to single agents, and showed growth-inhibitory activity in over 60% of primary samples from patients with diverse genetic alterations. The combination markedly impaired leukemia progenitor functions, while maintaining normal progenitors. Mass cytometry data revealed that BCL2 protein is enriched in leukemia stem/progenitor cells, primarily in venetoclax-sensitive samples, and that cobimetinib suppressed cytokine-induced pERK and pS6 signaling pathways. Through proteomic profiling studies, we identified several pathways inhibited downstream of MAPK that contribute to the synergy of the combination. In OCI-AML3 cells, the combination downregulated MCL1 protein levels and disrupted both BCL2:BIM and MCL1:BIM complexes, releasing BIM to induce cell death. RNA sequencing identified several enriched pathways, including MYC, mTORC1, and p53 in cells sensitive to the drug combination. In vivo, the venetoclax-cobimetinib combination reduced leukemia burden in xenograft models using genetically engineered OCI-AML3 and MOLM13 cells. Our data thus provide a rationale for combinatorial blockade of MEK and BCL2 pathways in AML.
Collapse
Affiliation(s)
- Lina Han
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Hematology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qi Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Monique Dail
- Department of Oncology Biomarkers, Genentech, South San Francisco, CA, USA
| | - Ce Shi
- Department of Hematology, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Antonio Cavazos
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivian R Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Zhao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugene Kim
- Department of Oncology Biomarkers, Genentech, South San Francisco, CA, USA
| | - Mohamed Rahmani
- College of Medicine, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.,Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Duncan H Mak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jun Chen
- AbbVie Inc., North Chicago, IL, USA
| | | | - Paul Bottecelli Koller
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rodrigo Jacamo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Deepak Sampath
- Department of Translational Oncology, Genentech, South San Francisco, CA, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Lian BSX, Yek AEH, Shuvas H, Abdul Rahman SF, Muniandy K, Mohana-Kumaran N. Synergistic anti-proliferative effects of combination of ABT-263 and MCL-1 selective inhibitor A-1210477 on cervical cancer cell lines. BMC Res Notes 2018; 11:197. [PMID: 29580266 PMCID: PMC5870236 DOI: 10.1186/s13104-018-3302-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE There are number of studies which report that BCL-2 anti-apoptotic proteins (e.g. BCL-2, BCL-XL, and MCL-1) are highly expressed in cervical cancer tissues compared to the normal cervical epithelia. Despite these reports, targeting these proteins for cervical cancer treatment has not been explored extensively. BH3-mimetics that inhibit specific BCL-2 anti-apoptotic proteins may hold encouraging treatment outcomes for cervical cancer management. Hence, the aim of this pilot study is to investigate the sensitivity of cervical cancer cell lines to combination of two BH3-mimetics namely ABT-263 which selectively inhibits BCL-2, BCL-XL and BCL-w and A-1210477, a selective MCL-1 inhibitor. RESULTS We report that combination of A-1210477 and ABT-263 exhibited synergistic effects on all cervical cancer cell lines tested. Drug sensitization studies revealed that A-1210477 sensitised the cervical cancer cell lines SiHa and CaSki to ABT-263 by 11- and fivefold, respectively. Sensitization also occurred in the opposite direction whereby ABT-263 sensitised SiHa and CaSki to A-1210477 by eightfold. This report shows that combination of ABT-263 and A-1210477 could be a potential treatment strategy for cervical cancer. Extensive drug mechanistic studies and drug sensitivity studies in physiological models are necessary to unleash the prospect of this combination for cervical cancer therapy.
Collapse
Affiliation(s)
| | - Angeline En Hui Yek
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Gelugor, Penang Malaysia
| | - Hemalata Shuvas
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Gelugor, Penang Malaysia
| | | | - Kalaivani Muniandy
- Institute for Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Gelugor, Penang Malaysia
| | - Nethia Mohana-Kumaran
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Gelugor, Penang Malaysia
| |
Collapse
|
12
|
Srinivas NR. Pharmacology of Pimasertib, A Selective MEK1/2 Inhibitor. Eur J Drug Metab Pharmacokinet 2018; 43:373-382. [PMID: 29488172 DOI: 10.1007/s13318-018-0466-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pimasertib belongs to the growing family of mitogen activated protein kinase (MEK1/2) inhibitors undergoing clinical development for various cancer indications. Since the MEK inhibition in several cell signalling transduction cascades within tumours was considered therapeutically beneficial, number of clinical investigations of pimasertib have been reported. Despite being orally bioavailable in cancer patients, pimasertib undergoes faster clearance with a short elimination half-life. In addition, due to occurrence of toxicity, the development of pimasertib appears to be stalled. Case studies are provided on the possible utilization of pimasertib in combination therapies with other approved drugs. Based on the review, it appeared that there was the need to identify the optimal dose and the dosing regimen of pimasertib to provide a balance between safety and efficacy when combined with approved therapies.
Collapse
|
13
|
Leverson JD, Sampath D, Souers AJ, Rosenberg SH, Fairbrother WJ, Amiot M, Konopleva M, Letai A. Found in Translation: How Preclinical Research Is Guiding the Clinical Development of the BCL2-Selective Inhibitor Venetoclax. Cancer Discov 2017; 7:1376-1393. [PMID: 29146569 PMCID: PMC5728441 DOI: 10.1158/2159-8290.cd-17-0797] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022]
Abstract
Since the discovery of apoptosis as a form of programmed cell death, targeting the apoptosis pathway to induce cancer cell death has been a high-priority goal for cancer therapy. After decades of effort, drug-discovery scientists have succeeded in generating small-molecule inhibitors of antiapoptotic BCL2 family proteins. Innovative medicinal chemistry and structure-based drug design, coupled with a strong fundamental understanding of BCL2 biology, were essential to the development of BH3 mimetics such as the BCL2-selective inhibitor venetoclax. We review a number of preclinical studies that have deepened our understanding of BCL2 biology and facilitated the clinical development of venetoclax.Significance: Basic research into the pathways governing programmed cell death have paved the way for the discovery of apoptosis-inducing agents such as venetoclax, a BCL2-selective inhibitor that was recently approved by the FDA and the European Medicines Agency. Preclinical studies aimed at identifying BCL2-dependent tumor types have translated well into the clinic thus far and will likely continue to inform the clinical development of venetoclax and other BCL2 family inhibitors. Cancer Discov; 7(12); 1376-93. ©2017 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | - Martine Amiot
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Marina Konopleva
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
14
|
Tsubaki M, Takeda T, Tomonari Y, Mashimo K, Koumoto YI, Hoshida S, Itoh T, Imano M, Satou T, Sakaguchi K, Nishida S. The MIP-1α autocrine loop contributes to decreased sensitivity to anticancer drugs. J Cell Physiol 2017; 233:4258-4271. [PMID: 29057477 DOI: 10.1002/jcp.26245] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 10/18/2017] [Indexed: 01/04/2023]
Abstract
Several autocrine soluble factors, including macrophage inflammatory protein-1α (MIP-1α), tumor necrosis factor-α, and hepatocyte growth factor, promote cell survival and growth in multiple myeloma (MM) cells. We hypothesized that inhibition of the MIP-1α autocrine loop may enhance the cytotoxic effect of anticancer drugs in MM cell lines. In the present study, an MIP-1α neutralizing antibody suppressed cell proliferation and enhanced the cytotoxic effect of melphalan or bortezomib on MM cells. In addition, melphalan resistance cells (RPMI8226/L-PAM and HS-sultan/L-PAM cells) secreted MIP-1α and neutralizing antibody of MIP-1α partially overcame melphalan resistance. Moreover, combination treatment with MIP-1α neutralizing antibody and melphalan or bortezomib inhibited extracellular signal regulated kinase 1/2 (ERK1/2), Akt, and mammalian target of rapamycin (mTOR) activation, Bcl-2, Bcl-xL, and Survivin expression, and upregulated the expression of Bim and cleaved Poly (ADP-ribose) polymerase (PARP). Treatment of IM9 cells with MIP-1α siRNA suppressed the activation of ERK1/2, Akt, and mTOR, and enhanced the cytotoxic effect of melphalan and bortezomib. These results indicate that MIP-1α neutralizing antibodies or MIP-1α siRNA enhance the cytotoxic effect of melphalan and bortezomib by suppressing the chemokine receptor/ERK and chemokine receptor/Akt/mTOR pathways. The inhibition of MIP-1α may thus provide a new therapeutic approach to control tumor progression and bone destruction in patients with MM.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Faculty of Pharmacy, Division of Pharmacotherapy, Kindai University, Kowakae, Higashi-Osaka, Japan
| | - Tomoya Takeda
- Faculty of Pharmacy, Division of Pharmacotherapy, Kindai University, Kowakae, Higashi-Osaka, Japan
| | - Yoshika Tomonari
- Faculty of Pharmacy, Division of Pharmacotherapy, Kindai University, Kowakae, Higashi-Osaka, Japan
| | - Kenji Mashimo
- Faculty of Pharmacy, Division of Pharmacotherapy, Kindai University, Kowakae, Higashi-Osaka, Japan.,Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Japan
| | - Yu-Ichi Koumoto
- Faculty of Pharmacy, Division of Pharmacotherapy, Kindai University, Kowakae, Higashi-Osaka, Japan
| | - Sachi Hoshida
- Faculty of Pharmacy, Division of Pharmacotherapy, Kindai University, Kowakae, Higashi-Osaka, Japan
| | - Tatsuki Itoh
- Faculty of Agriculture, Department of Food Science and Nutrition, Kindai University, Nara, Nara, Japan
| | - Motohiro Imano
- Faculty of Medicine, Department of Surgery, Kindai University, Osakasayama, Osaka, Japan
| | - Takao Satou
- Faculty of Medicine, Department of Pathology, Kindai University, Osakasayama, Osaka, Japan
| | - Katsuhiko Sakaguchi
- Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Japan
| | - Shozo Nishida
- Faculty of Pharmacy, Division of Pharmacotherapy, Kindai University, Kowakae, Higashi-Osaka, Japan
| |
Collapse
|
15
|
The BET-Bromodomain Inhibitor JQ1 synergized ABT-263 against colorectal cancer cells through suppressing c-Myc-induced miR-1271-5p expression. Biomed Pharmacother 2017; 95:1574-1579. [PMID: 28950657 DOI: 10.1016/j.biopha.2017.09.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer (CRC) cells undergo apoptosis in the presence of the small-molecule inhibitor ABT-263 by up-regulating antiapoptotic Bcl-2 family members. However, the resistance to ABT-263 gradually developed in most solid tumors due to its low affinity to Mcl-1. Here, we found the BET-Bromodomain inhibitor JQ1, when combined with ABT-263, synergistically reduced Mcl-1 protein level, induced apoptosis, and decreased cell viability in the CRC HCT-15, HT-29 and SW620 cells. The subsequent mechanism study revealed that a pathway of c-Myc/miR-1271-5p/Noxa/Mcl-1 underlies the synergistic effect of such combination treatment. We discovered that miR-1271-5p, the key mediator for the synergistic effect, is transcriptionally activated by c-Myc, and binds to the 3'-UTR of noxa to inhibit its protein production. The combination treatment of JQ1 and ABT-263 inhibited c-Myc protein level and also c-Myc-driven expression of miR-1271-5p, subsequently increased the protein level of Noxa, and finally promotes the degradation of Mcl-1. Our findings provide an alternative strategy to resolve the resistance during treatment of CRC by JQ1, and also discovered a novel miR-1271-5p-dependent regulatory mechanism for gene expression of noxa.
Collapse
|
16
|
Inducing Apoptosis and Decreasing Cell Proliferation in Human Acute Promyelocytic Leukemia Through Regulation Expression of CASP3 by Let-7a-5p Blockage. Indian J Hematol Blood Transfus 2017; 34:70-77. [PMID: 29398802 DOI: 10.1007/s12288-017-0809-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/25/2017] [Indexed: 10/19/2022] Open
Abstract
MicroRNAs (miRNAs) are short and single strand non-coding RNAs that involved in post-transcriptional regulation of gene expression. Dysregulation of miRNA expression is important event in the many of malignant diseases. Up-regulation of Let-7a-5p expression in acute myeloid leukemia in human in previous studies was reported. In this study blockage of Let-7a-5p in human acute promyelocytic leukemia cell line (HL60) was done by using locked nucleic acid (LNA) method and subsequently expression of Let-7a-5p, cell proliferation, apoptosis, necrosis, and CASP3 expression was measured. At three time points 24, 48 and 72 h after LNA anti- Let-7a-5p transfection, assessment of Let-7a-5p expression by qRT real-time PCR was completed. The MTT assay and annexin/PI staining have been performed. Also, CASP3 expression at different time points after LNA anti-Let-7a-5p transfection in HL60 cell line was measured. The results at three-time points after LNA transfection were represented that Let-7a-5p expression was lower in the LNA-anti-Let-7a group compared to the control groups. The cell viability significantly was different between LNA-anti-Let-7a group and control groups. Increasing apoptotic ratio was associated with Let-7a-5p blockage in the LNA-anti-Let-7a group compared with control groups. Also, the necrotic ratio was higher in the LNA-anti-Let-7a group rather than the other groups. Western blotting revealed that CASP3 expression associated with Let-7a-5p inhibition. Our results displayed that blockage of Let-7a-5p can reduced cell viability mainly due to the induction of apoptosis and CASP3 up-regulation in HL60 cells. These results can be useful in translational medicine for research of antisense therapy in leukemia.
Collapse
|
17
|
Brumatti G, Lalaoui N, Wei AH, Silke J. 'Did He Who Made the Lamb Make Thee?' New Developments in Treating the 'Fearful Symmetry' of Acute Myeloid Leukemia. Trends Mol Med 2017; 23:264-281. [PMID: 28196625 DOI: 10.1016/j.molmed.2017.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
Abstract
Malignant cells must circumvent endogenous cell death pathways to survive and develop into cancers. Acquired cell death resistance also sets up malignant cells to survive anticancer therapies. Acute Myeloid Leukemia (AML) is an aggressive blood cancer characterized by high relapse rate and resistance to cytotoxic therapies. Recent collaborative profiling projects have led to a greater understanding of the 'fearful symmetry' of the genomic landscape of AML, and point to the development of novel potential therapies that can overcome factors linked to chemoresistance. We review here the most recent research in the genetics of AML and how these discoveries have led, or might lead, to therapies that specifically activate cell death pathways to substantially challenge this 'fearful' disease.
Collapse
Affiliation(s)
- Gabriela Brumatti
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Andrew H Wei
- Alfred Hospital and Monash University, Melbourne, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
18
|
Pétigny-Lechartier C, Duboc C, Jebahi A, Louis MH, Abeilard E, Denoyelle C, Gauduchon P, Poulain L, Villedieu M. The mTORC1/2 Inhibitor AZD8055 Strengthens the Efficiency of the MEK Inhibitor Trametinib to Reduce the Mcl-1/[Bim and Puma] ratio and to Sensitize Ovarian Carcinoma Cells to ABT-737. Mol Cancer Ther 2016; 16:102-115. [DOI: 10.1158/1535-7163.mct-16-0342] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/24/2016] [Accepted: 11/06/2016] [Indexed: 11/16/2022]
|
19
|
Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes. Molecules 2016; 21:molecules21091135. [PMID: 27618887 PMCID: PMC6272973 DOI: 10.3390/molecules21091135] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 02/03/2023] Open
Abstract
Arctigenin (ARC) has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC). In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT) through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2) and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.
Collapse
|