1
|
Karunakara SH, Eswaran S, Mallya S, Suresh PS, Chakrabarty S, Kabekkodu SP. Analysis of miR-497/195 cluster identifies new therapeutic targets in cervical cancer. BMC Res Notes 2024; 17:217. [PMID: 39095857 PMCID: PMC11297691 DOI: 10.1186/s13104-024-06876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE miR-497/195, located at 17p13.1, is a highly conserved miRNA cluster whose abnormal expression is a key regulator of carcinogenesis. We performed a comprehensive analysis of the miR-497/195 cluster to determine its prognostic utility and role in cervical cancer (CC) using publicly available datasets. RESULTS In silico analysis and validation revealed that this cluster is downregulated in CC. A total of 60 target genes of miR-497/195 cluster were identified as differentially expressed between normal and CC samples. ShinyGO, STRING, CytoHubba, Timer 2.0, HPA, and HCMBD were used for functional enrichment, PPIN network construction, hub gene identification, immune infiltration correlation, histopathological expression, and determination of the metastatic potential of miR-497/195 cluster and their target genes. PPIN analysis identified CCNE1, CCNE2, ANLN, RACGAP1, KIF23, CHEK1, CDC25A, E2F7, CDK1, and CEP55 as the top 10 hub genes (HGs). Furthermore, the upregulation of RECK, ATD5, and BCL2, downregulation of OSBPL3, RCAN3, and HIST1H3H effected overall survival of CC patients. We identified 6 targets (TFAP2A, CLSPN, RASEF, HIST1H3H, AKT3, and ITPR1) of miR-497/195 cluster to influence metastasis. In addition, 8 druggable genes and 38 potential drugs were also identified. Our study identified miR-497/195 cluster target genes and pathways that could be used for prognostic and therapeutic applications in CC.
Collapse
Affiliation(s)
- Shreyas Hulusemane Karunakara
- Department of Molecular Biology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, 570005, India
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmanaban S Suresh
- School of Biotechnology, National Institute of Technology, Calicut, Kerala, 673601, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Deng S, Yuan P, Sun J. The role of NF-κB in carcinogenesis of cervical cancer: opportunities and challenges. Mol Biol Rep 2024; 51:538. [PMID: 38642209 DOI: 10.1007/s11033-024-09447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/13/2024] [Indexed: 04/22/2024]
Abstract
The nuclear factor-κB (NF-κB) family, consisting of several transcription factors, has been implicated in the regulation of cell proliferation and invasion, as well as inflammatory reactions and tumor development. Cervical cancer (CC) results from long-term interactions of multiple factors, among which persistent high-risk human papillomavirus (hrHPV) infection is necessary. During different stages from early to late after HPV infection, the activity of NF-κB varies and plays various roles in carcinogenesis and progress of CC. As the center of the cell signaling transduction network, NF-κB can be activated through classical and non-classical pathways, and regulate the expression of downstream target genes involved in regulating the tumor microenvironment and acquiring hallmark traits of CC cells. Targeting NF-κB may help treat CC and overcome the resistance to radiation and chemotherapy. Even though NF-κB inhibitors have not been applied in clinical treatment as yet, due to limitations such as dose-restrictive toxicity and poor tumor-specificity, it is still considered to have significant therapeutic potential and application prospects. In this review, we focus on the role of NF-κB in the process of CC occurrence and hallmark capabilities acquisition. Finally, we summarize relevant NF-κB-targeted treatments, providing ideas for the prevention and treatment of CC.
Collapse
Affiliation(s)
- Song Deng
- The Second Clinical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, China
| | - Jun Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, China.
| |
Collapse
|
3
|
Li QS, Zheng PS. ESRRB Inhibits the TGFβ Signaling Pathway to Drive Cell Proliferation in Cervical Cancer. Cancer Res 2023; 83:3095-3114. [PMID: 37350664 PMCID: PMC10502452 DOI: 10.1158/0008-5472.can-23-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/10/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023]
Abstract
Estrogen-related receptor β (ESRRB) is a member of the orphan nuclear receptor family and mediates stem cell self-renewal and early embryonic development. Previous studies have also reported that ESRRB plays a role in the development and progression of breast cancer and prostate cancer. In this study, we observed that ESRRB was highly expressed in cervical cancer and was associated with disease progression. Knocking out ESRRB using CRISPR/Cas9 gene editing in cervical cancer cells induced cell-cycle arrest at the transition from the G0-G1 phase to the S phase, resulting in inhibition of cell proliferation in vitro and reduced tumor growth in vivo. Conversely, ectopic expression of ESRRB significantly promoted the proliferation of cervical cancer cells. ESRRB activated transcription of SMAD7, a TGFβ pathway inhibitor, which blocked phosphorylation and nuclear translocation of SMAD2/3 to the nucleus, thereby downregulating CDKN1A and upregulating CCNA2 and MYC. In turn, MYC transactivated ESRRB and upregulated SMAD7, thus forming a positive feedback loop with ESRRB. Together, these findings identify the tumor-promoting function of ESRRB in cervical cancer and reveal a mechanism by which ESRRB stimulates cell proliferation to promote cancer progression. SIGNIFICANCE The ESRRB/SMAD7/MYC-positive feedback loop inhibits TGFβ signaling to activate cell-cycle progression and promote proliferation in cervical cancer, thereby driving tumor growth.
Collapse
Affiliation(s)
- Qin-Shu Li
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
- Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
4
|
Human Papillomavirus 16 E6 and E7 Oncoproteins Alter the Abundance of Proteins Associated with DNA Damage Response, Immune Signaling and Epidermal Differentiation. Viruses 2022; 14:v14081764. [PMID: 36016386 PMCID: PMC9415472 DOI: 10.3390/v14081764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The high-risk human papillomaviruses are oncogenic viruses associated with almost all cases of cervical carcinomas, and increasing numbers of anal, and oral cancers. Two oncogenic HPV proteins, E6 and E7, are capable of immortalizing keratinocytes and are required for HPV associated cell transformation. Currently, the influence of these oncoproteins on the global regulation of the host proteome is not well defined. Liquid chromatography coupled with quantitative tandem mass spectrometry using isobaric-tagged peptides was used to investigate the effects of the HPV16 oncoproteins E6 and E7 on protein levels in human neonatal keratinocytes (HEKn). Pathway and gene ontology enrichment analyses revealed that the cells expressing the HPV oncoproteins have elevated levels of proteins related to interferon response, inflammation and DNA damage response, while the proteins related to cell organization and epithelial development are downregulated. This study identifies dysregulated pathways and potential biomarkers associated with HPV oncoproteins in primary keratinocytes which may have therapeutic implications. Most notably, DNA damage response pathways, DNA replication, and interferon signaling pathways were affected in cells transduced with HPV16 E6 and E7 lentiviruses. Moreover, proteins associated with cell organization and differentiation were significantly downregulated in keratinocytes expressing HPV16 E6 + E7. High-risk HPV E6 and E7 oncoproteins are necessary for the HPV-associated transformation of keratinocytes. However their influence on the global dysregulation of keratinocyte proteome is not well documented. Here shotgun proteomics using TMT-labeling detected over 2500 significantly dysregulated proteins associated with E6 and E7 expression. Networks of proteins related to interferon response, inflammation and DNA damage repair pathways were altered.
Collapse
|
5
|
Wu B, Xi S. Bioinformatics analysis of differentially expressed genes and pathways in the development of cervical cancer. BMC Cancer 2021; 21:733. [PMID: 34174849 PMCID: PMC8236200 DOI: 10.1186/s12885-021-08412-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background This study aimed to explore and identify key genes and signaling pathways that contribute to the progression of cervical cancer to improve prognosis. Methods Three gene expression profiles (GSE63514, GSE64217 and GSE138080) were screened and downloaded from the Gene Expression Omnibus database (GEO). Differentially expressed genes (DEGs) were screened using the GEO2R and Venn diagram tools. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Gene set enrichment analysis (GSEA) was performed to analyze the three gene expression profiles. Moreover, a protein–protein interaction (PPI) network of the DEGs was constructed, and functional enrichment analysis was performed. On this basis, hub genes from critical PPI subnetworks were explored with Cytoscape software. The expression of these genes in tumors was verified, and survival analysis of potential prognostic genes from critical subnetworks was conducted. Functional annotation, multiple gene comparison and dimensionality reduction in candidate genes indicated the clinical significance of potential targets. Results A total of 476 DEGs were screened: 253 upregulated genes and 223 downregulated genes. DEGs were enriched in 22 biological processes, 16 cellular components and 9 molecular functions in precancerous lesions and cervical cancer. DEGs were mainly enriched in 10 KEGG pathways. Through intersection analysis and data mining, 3 key KEGG pathways and related core genes were revealed by GSEA. Moreover, a PPI network of 476 DEGs was constructed, hub genes from 12 critical subnetworks were explored, and a total of 14 potential molecular targets were obtained. Conclusions These findings promote the understanding of the molecular mechanism of and clinically related molecular targets for cervical cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08412-4.
Collapse
Affiliation(s)
- Baojie Wu
- Shanghai Zerun Biotechnology Co., Ltd., Pilot Department, Building 9, 1690 Zhangheng Road Pudong, Shanghai, 201203, China.
| | - Shuyi Xi
- Shanghai Zerun Biotechnology Co., Ltd., Pilot Department, Building 9, 1690 Zhangheng Road Pudong, Shanghai, 201203, China
| |
Collapse
|
6
|
Bispo S, Farias TDJ, de Araujo-Souza PS, Cintra R, Dos Santos HG, Jorge NAN, Castro MAA, Wajnberg G, Scherer NDM, Genta MLND, Carvalho JP, Villa LL, Sichero L, Passetti F. Dysregulation of Transcription Factor Networks Unveils Different Pathways in Human Papillomavirus 16-Positive Squamous Cell Carcinoma and Adenocarcinoma of the Uterine Cervix. Front Oncol 2021; 11:626187. [PMID: 34094909 PMCID: PMC8170088 DOI: 10.3389/fonc.2021.626187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Squamous cell carcinoma (SCC) and adenocarcinoma (ADC) are the most common histological types of cervical cancer (CC). The worse prognosis of ADC cases highlights the need for better molecular characterization regarding differences between these CC types. RNA-Seq analysis of seven SCC and three ADC human papillomavirus 16-positive samples and the comparison with public data from non-tumoral human papillomavirus-negative cervical tissue samples revealed pathways exclusive to each histological type, such as the epithelial maintenance in SCC and the maturity-onset diabetes of the young (MODY) pathway in ADC. The transcriptional regulatory network analysis of cervical SCC samples unveiled a set of six transcription factor (TF) genes with the potential to positively regulate long non-coding RNA genes DSG1-AS1, CALML3-AS1, IGFL2-AS1, and TINCR. Additional analysis revealed a set of MODY TFs regulated in the sequence predicted to be repressed by miR-96-5p or miR-28-3p in ADC. These microRNAs were previously described to target LINC02381, which was predicted to be positively regulated by two MODY TFs upregulated in cervical ADC. Therefore, we hypothesize LINC02381 might act by decreasing the levels of miR-96-5p and miR-28-3p, promoting the MODY activation in cervical ADC. The novel TF networks here described should be explored for the development of more efficient diagnostic tools.
Collapse
Affiliation(s)
- Saloe Bispo
- Instituto Carlos Chagas, FIOCRUZ, Curitiba, Brazil
| | | | - Patricia Savio de Araujo-Souza
- Department of Immunobiology, Biology Institute, Universidade Federal Fluminense (UFF), Niterói, Brazil.,Laboratory of Immunogenetics and Histocompatibility, Department of Genetics, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ricardo Cintra
- Department of Biochemistry, Instituto de Quimica, Universidade de São Paulo, São Paulo, Brazil
| | | | - Natasha Andressa Nogueira Jorge
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | | | - Gabriel Wajnberg
- Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Nicole de Miranda Scherer
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Maria Luiza Nogueira Dias Genta
- Discipline of Gynecology, Department of Obstetrics and Gynecology, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jesus Paula Carvalho
- Discipline of Gynecology, Department of Obstetrics and Gynecology, Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luisa Lina Villa
- Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Center for Translational Research in Oncology, Instituto do Cancer do Estado de São Paulo ICESP, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo FMUSP HC, São Paulo, Brazil
| | - Laura Sichero
- Center for Translational Research in Oncology, Instituto do Cancer do Estado de São Paulo ICESP, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo FMUSP HC, São Paulo, Brazil
| | - Fabio Passetti
- Instituto Carlos Chagas, FIOCRUZ, Curitiba, Brazil.,Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Ying X, Che X, Wang J, Zou G, Yu Q, Zhang X. CDK1 serves as a novel therapeutic target for endometrioid endometrial cancer. J Cancer 2021; 12:2206-2215. [PMID: 33758599 PMCID: PMC7974891 DOI: 10.7150/jca.51139] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Endometrial cancer (EC) is one of the most common and prevalent gynecologic malignancies worldwide. The aim of this study was to identify a novel therapeutic target for endometrioid endometrial cancer. Materials and Methods: Bioinformatic analysis was performed and CDK1 was screen out as one of the hub genes in the pathogenesis of EC. Immunohistochemistry was used to verify the expression of CDK1 in endometrial cancer tissue. Cell viability and colony formation were used to study the effects of CDK1 on the proliferation and colony formation of endometrial cancer cells in vitro. Apoptosis and cell cycle assays were used to elucidate the mechanism of CDK1 affecting cell proliferation. Tumor xenograft transplantation assay was performed to show the effects of CDK1 on the growth of endometrial cancer cells in vivo. Results: CDK1 was over expressed in endometrioid endometrial cancer, and accumulation of cytoplasmic CDK1 was associated with histological grade of EC. CDK1 promoted endometrial cancer cell growth and colony formation in vitro. The inhibition of CDK1 activity induced cell apoptosis and caused G2/M phase arrest of cell cycle in endometrial cancer cells. The inhibition of CDK1 activity also inhibited endometrial cancer growth in xenograft models. Conclusion: CDK1 was involved in the pathogenesis of endometrioid endometrial cancer and provided a novel therapeutic target for endometrioid endometrial cancer.
Collapse
Affiliation(s)
- Xue Ying
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| | - Xuan Che
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006.,Jiaxing University Affiliated Women and Children Hospital, Jiaxing, Zhejiang, P.R. China, 314000
| | - Jianzhang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| | - Gen Zou
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| | - Qin Yu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| | - Xinmei Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| |
Collapse
|
8
|
Targeting the PD-1 Axis with Pembrolizumab for Recurrent or Metastatic Cancer of the Uterine Cervix: A Brief Update. Int J Mol Sci 2021; 22:ijms22041807. [PMID: 33670397 PMCID: PMC7917788 DOI: 10.3390/ijms22041807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Even though cervical cancer is partly preventable, it still poses a great public health problem throughout the world. Current therapies have vastly improved the clinical outcomes of cervical cancer patients, but progress in new systemic treatment modalities has been slow in the last years. Especially for patients with advanced disease this is discouraging, as their prognosis remains very poor. The pathogen-induced nature, the considerable mutational load, the involvement of genes regulating the immune response, and the high grade of immune infiltration, suggest that immunotherapy might be a promising strategy to treat cervical cancer. In this literature review, we focus on the use of PD-1 blocking therapy in cervical cancer, pembrolizumab in particular, as it is the only approved immunotherapy for this disease. We discuss why it has great clinical potential, how it opens doors for personalized treatment in cervical cancer, and which trials are aiming to expand its clinical use.
Collapse
|
9
|
The Non-Bone-Related Role of RANK/RANKL Signaling in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1277:53-62. [PMID: 33119864 DOI: 10.1007/978-3-030-50224-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
RANK ligand (RANKL) is a member of the tumor necrosis factor alpha superfamily of cytokines. It is the only known ligand binding to a membrane receptor named receptor activator of nuclear factor-kappa B (RANK), thereby triggering recruitment of TNF receptor-associated factor (TRAF) adaptor proteins and activation of downstream pathways. RANK/RANKL signaling is controlled by a decoy receptor, osteoprotegerin (OPG), but also has additional more complex levels of regulation. It is crucial for the differentiation of bone-resorbing osteoclasts and is deregulated in disease processes such as osteoporosis and cancer bone metastasis. Cells expressing RANK and RANKL are commonly found in the tumor environment. In many tumor types, the RANK/RANKL pathway is overexpressed, and this is in most cases correlated with poor prognosis. RANK signaling plays an important role in the innate and adaptive immune response, generates regulatory T (Treg) cells, and increases the production of cytokines. It is also involved in chemo resistance in vitro. Recent evidence suggests that RANKL blockade improves the efficacy of anti-CTLA-4 antibodies against solid tumors and experimental metastasis. Therefore, there is increasing interest to use RANKL inhibition as an immunomodulatory strategy in an attempt to make immune-resistant tumor responsive to immune therapy.
Collapse
|
10
|
Wu X, Peng L, Zhang Y, Chen S, Lei Q, Li G, Zhang C. Identification of Key Genes and Pathways in Cervical Cancer by Bioinformatics Analysis. Int J Med Sci 2019; 16:800-812. [PMID: 31337953 PMCID: PMC6643108 DOI: 10.7150/ijms.34172] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is a common malignant tumour of the female reproductive system that seriously threatens the health of women. The aims of this study were to identify key genes and pathways and to illuminate new molecular mechanisms underlying cervical cancer. Altogether, 1829 DEGs were identified, including 794 significantly down-regulated DEGs and 1035 significantly up-regulated DEGs. GO analysis suggested that the up-regulated DEGs were mainly enriched in mitotic cell cycle processes, including DNA replication, organelle fission, chromosome segregation and cell cycle phase transition, and that the down-regulated DEGs were primarily enriched in development and differentiation processes, such as tissue development, epidermis development, skin development, keratinocyte differentiation, epidermal cell differentiation and epithelial cell differentiation. KEGG pathway analysis showed that the DEGs were significantly enriched in cell cycle, DNA replication, the p53 signalling pathway, pathways in cancer and oocyte meiosis. The top 9 hub genes with a high degree of connectivity (over 72 in the PPI network) were down-regulated TSPO, CCND1, and FOS and up-regulated CDK1, TOP2A, CCNB1, PCNA, BIRC5 and MAD2L1. Module analysis indicated that the top 3 modules were significantly enriched in mitotic cell cycle, DNA replication and regulation of cell cycle (P < 0.01). The heat map based on TCGA database preliminarily demonstrated the expression change of the key genes in cervical cancer. GSEA results were basically coincident with the front enrichment analysis results. By comprehensive analysis, we confirmed that cell cycle was a key biological process and a critical driver in cervical cancer. In conclusion, this study identified DEGs and screened the key genes and pathways closely related to cervical cancer by bioinformatics analysis, simultaneously deepening our understanding of the molecular mechanisms underlying the occurrence and progression of cervical cancer. These results might hold promise for finding potential therapeutic targets of cervical cancer.
Collapse
Affiliation(s)
- Xuan Wu
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Cancer Research Institute, Central South University, Changsha, P.R. China
| | - Li Peng
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yaqin Zhang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Cancer Research Institute, Central South University, Changsha, P.R. China
| | - Shilian Chen
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Cancer Research Institute, Central South University, Changsha, P.R. China
| | - Qian Lei
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Cancer Research Institute, Central South University, Changsha, P.R. China
| | - Guancheng Li
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Cancer Research Institute, Central South University, Changsha, P.R. China
| | - Chaoyang Zhang
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, P.R. China
- Division of Functional Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
van Dam PA, Verhoeven Y, Jacobs J, Wouters A, Tjalma W, Lardon F, Van den Wyngaert T, Dewulf J, Smits E, Colpaert C, Prenen H, Peeters M, Lammens M, Trinh XB. RANK-RANKL Signaling in Cancer of the Uterine Cervix: A Review. Int J Mol Sci 2019; 20:E2183. [PMID: 31052546 PMCID: PMC6540175 DOI: 10.3390/ijms20092183] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
RANK ligand (RANKL) is a member of the tumor necrosis factor alpha superfamily of cytokines. It is the only known ligand binding to a membrane receptor named receptor activator of nuclear factor-kappa B (RANK), thereby triggering recruitment of tumor necrosis factor (TNF) receptor associated factor (TRAF) adaptor proteins and activation of downstream pathways. RANK/RANKL signaling is controlled by a decoy receptor called osteoprotegerin (OPG), but also has additional more complex levels of regulation. The existing literature on RANK/RANKL signaling in cervical cancer was reviewed, particularly focusing on the effects on the microenvironment. RANKL and RANK are frequently co-expressed in cervical cancer cells lines and in carcinoma of the uterine cervix. RANKL and OPG expression strongly increases during cervical cancer progression. RANKL is directly secreted by cervical cancer cells, which may be a mechanism they use to create an immune suppressive environment. RANKL induces expression of multiple activating cytokines by dendritic cells. High RANK mRNA levels and high immunohistochemical OPG expression are significantly correlated with high clinical stage, tumor grade, presence of lymph node metastases, and poor overall survival. Inhibition of RANKL signaling has a direct effect on tumor cell proliferation and behavior, but also alters the microenvironment. Abundant circumstantial evidence suggests that RANKL inhibition may (partially) reverse an immunosuppressive status. The use of denosumab, a monoclonal antibody directed to RANKL, as an immunomodulatory strategy is an attractive concept which should be further explored in combination with immune therapy in patients with cervical cancer.
Collapse
Affiliation(s)
- Peter A van Dam
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Yannick Verhoeven
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Julie Jacobs
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - An Wouters
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Wiebren Tjalma
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Tim Van den Wyngaert
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, B2650 Edegem, Belgium.
| | - Jonatan Dewulf
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, B2650 Edegem, Belgium.
| | - Evelien Smits
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Cécile Colpaert
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Department of Histopathology, Antwerp University Hospital, B2650 Edegem, Belgium.
- Department of Histopathology, Gasthuiszusters Antwerpen (GZA) Hospitals, B2610 Wilrijk, Belgium.
| | - Hans Prenen
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Marc Peeters
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| | - Martin Lammens
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Department of Histopathology, Antwerp University Hospital, B2650 Edegem, Belgium.
| | - Xuan Bich Trinh
- Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, B2650 Edegem, Belgium.
- Center for Oncological Research (CORE), University of Antwerp, B2610 Wilrijk, Belgium.
| |
Collapse
|
12
|
Kori M, Gov E, Arga KY. Novel Genomic Biomarker Candidates for Cervical Cancer As Identified by Differential Co-Expression Network Analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:261-273. [PMID: 31038390 DOI: 10.1089/omi.2019.0025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cervical cancer is the second most common malignancy and the third reason for mortality among women in developing countries. Although infection by the oncogenic human papilloma viruses is a major cause, genomic contributors are still largely unknown. Network analyses, compared with candidate gene studies, offer greater promise to map the interactions among genomic loci contributing to cervical cancer risk. We report here a differential co-expression network analysis in five gene expression datasets (GSE7803, GSE9750, GSE39001, GSE52903, and GSE63514, from the Gene Expression Omnibus) in patients with cervical cancer and healthy controls. Kaplan-Meier Survival and principle component analyses were employed to evaluate prognostic and diagnostic performances of biomarker candidates, respectively. As a result, seven distinct co-expressed gene modules were identified. Among these, five modules (with sizes of 9-45 genes) presented high prognostic and diagnostic capabilities with hazard ratios of 2.28-11.3, and diagnostic odds ratios of 85.2-548.8. Moreover, these modules were associated with several key biological processes such as cell cycle regulation, keratinization, neutrophil degranulation, and the phospholipase D signaling pathway. In addition, transcription factors ETS1 and GATA2 were noted as common regulatory elements. These genomic biomarker candidates identified by differential co-expression network analysis offer new prospects for translational cancer research, not to mention personalized medicine to forecast cervical cancer susceptibility and prognosis. Looking into the future, we also suggest that the search for a molecular basis of common complex diseases should be complemented by differential co-expression analyses to obtain a systems-level understanding of disease phenotype variability.
Collapse
Affiliation(s)
- Medi Kori
- 1 Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Esra Gov
- 2 Department of Bioengineering, Faculty of Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Kazım Yalçın Arga
- 1 Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| |
Collapse
|
13
|
van Dam PA, Verhoeven Y, Trinh XB, Wouters A, Lardon F, Prenen H, Smits E, Baldewijns M, Lammens M. RANK/RANKL signaling inhibition may improve the effectiveness of checkpoint blockade in cancer treatment. Crit Rev Oncol Hematol 2018; 133:85-91. [PMID: 30661662 DOI: 10.1016/j.critrevonc.2018.10.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/12/2018] [Accepted: 10/28/2018] [Indexed: 12/22/2022] Open
Abstract
Binding between the receptor activator of nuclear factor-kB (RANK) and its ligand (RANKL) triggers recruitment of TNF receptor associated factor (TRAF) adaptor proteins and activation of downstream pathways. RANK/RANKL signaling is controlled by a decoy receptor called osteoprotegerin (OPG) which interacts with RANKL. Additional networks regulating RANK/RANKL signaling are active in a context specific manner. RANK/RANKL signaling is essential for the differentiation of bone-resorbing osteoclasts, and is deregulated in pathological processes such as postmenopausal osteoporosis or cancer induced bone destruction. Cells expressing RANK and RANKL are commonly found in the tumor microenvironment. The RANKL/RANK pathway is often overexpressed in tumors of the breast, prostate, endometrium, cervix, stomach, oesophagus and bladder, thyroid and correlated with poor prognosis. RANK signaling plays an important role in the innate and adaptive immune response as it generates regulatory T (Treg) cells and increases production of cytokines. RANK expression induces chemoresistance in vitro through the activation of multiple signal transduction pathways. RANKL blockade improves the efficacy of anti-CTLA-4 monoclonal antibodies against solid tumors and experimental metastases. As RANK inhibition enhances the immune response there is an increasing interest in combining it with immune therapy in an attempt to sensitize immune resistant tumors to immune therapies. Several studies are ongoing to assess this concept. The role of RANK/RANKL inhibition should be further pursued as an immunomodulatory strategy in combination with other treatment modalities.
Collapse
Affiliation(s)
- Peter A van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, B2650, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium.
| | - Yannick Verhoeven
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, B2650, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium
| | - Xuan B Trinh
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, B2650, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium
| | - Hans Prenen
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, B2650, Belgium; Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium; Fase 1 Unit of Experimental Oncology, Antwerp University, Edegem, B2650, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, B2610, Belgium
| | - Marcella Baldewijns
- Department of Histopathology, Antwerp University Hospital, Edegem, B2650, Belgium
| | - Martin Lammens
- Department of Histopathology, Antwerp University Hospital, Edegem, B2650, Belgium
| |
Collapse
|
14
|
Tang X, Xu Y, Lu L, Jiao Y, Liu J, Wang L, Zhao H. Identification of key candidate genes and small molecule drugs in cervical cancer by bioinformatics strategy. Cancer Manag Res 2018; 10:3533-3549. [PMID: 30271202 PMCID: PMC6145638 DOI: 10.2147/cmar.s171661] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Cervical cancer (CC) is one of the most common malignant tumors among women. The present study aimed at integrating two expression profile datasets to identify critical genes and potential drugs in CC. Materials and methods Expression profiles, GSE7803 and GSE9750, were integrated using bioinformatics methods, including differentially expressed genes analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and protein–protein interaction (PPI) network construction. Subsequently, survival analysis was performed among the key genes using Gene Expression Profiling Interactive Analysis websites. Connectivity Map (CMap) was used to query potential drugs for CC. Results A total of 145 upregulated genes and 135 downregulated genes in CC were identified. The functional changes of these differentially expressed genes related to CC were mainly associated with cell cycle, DNA replication, p53 signaling pathway, and oocyte meiosis. A PPI network was identified by STRING with 220 nodes and 2,111 edges. Thirteen key genes were identified as the intersecting genes of the enrichment pathways and the top 20 nodes in PPI network. Survival analysis revealed that high mRNA expression of MCM2, PCNA, and RFC4 was significantly associated with longer overall survival, and the survival was significantly better in the low-expression RRM2 group. Moreover, CMap predicted nine small molecules as possible adjuvant drugs to treat CC. Conclusion Our study found key dysregulated genes involved in CC and potential drugs to combat it, which might provide insights into CC pathogenesis and might shed light on potential CC treatments.
Collapse
Affiliation(s)
- Xin Tang
- School of Rehabilitation, Kunming Medical University, Kunming, China
| | - Yicong Xu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Lin Lu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Yang Jiao
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Jianjun Liu
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Linlin Wang
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| | - Hongbo Zhao
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China, .,Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming, China,
| |
Collapse
|
15
|
van Dam PA, Rolfo C, Ruiz R, Pauwels P, Van Berckelaer C, Trinh XB, Ferri Gandia J, Bogers JP, Van Laere S. Potential new biomarkers for squamous carcinoma of the uterine cervix. ESMO Open 2018; 3:e000352. [PMID: 30018810 PMCID: PMC6045706 DOI: 10.1136/esmoopen-2018-000352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/11/2018] [Accepted: 05/11/2018] [Indexed: 12/26/2022] Open
Abstract
Aim An in silico pathway analysis was performed in an attempt to identify new biomarkers for cervical carcinoma. Methods Three publicly available Affymetrix gene expression data sets (GSE5787, GSE7803, GSE9750) were retrieved, vouching for a total 9 cervical cancer cell lines, 39 normal cervical samples, 7 CIN3 samples and 111 cervical cancer samples. An Agilent data set (GSE7410; 5 normal cervical samples, 35 samples from invasive cervical cancer) was selected as a validation set. Predication analysis of microarrays was performed in the Affymetrix sets to identify cervical cancer biomarkers. We compared the lists of differentially expressed genes between normal and CIN3 samples on the one hand (n=1923) and between CIN3 and invasive cancer samples on the other hand (n=628). Results Seven probe sets were identified that were significantly overexpressed (at least 2 fold increase expression level, and false discovery rate <5%) in both CIN3 samples respective to normal samples and in cancer samples respective to CIN3 samples. From these, five probes sets could be validated in the Agilent data set (P<0.001) comparing the normal with the invasive cancer samples, corresponding to the genes DTL, HMGB3, KIF2C, NEK2 and RFC4. These genes were additionally overexpressed in cervical cancer cell lines respective to the cancer samples. The literature on these markers was reviewed. Conclusion Novel biomarkers in combination with primary human papilloma virus (HPV) testing may allow complete cervical screening by objective, non-morphological molecular methods, which may be particularly important in developing countries.
Collapse
Affiliation(s)
- Peter A van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospita, Edegem, Belgium.,Centre of Oncologic Research (CORE) Antwerp University, Edegem, Belgium
| | - Christian Rolfo
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospita, Edegem, Belgium.,Centre of Oncologic Research (CORE) Antwerp University, Edegem, Belgium.,Fase 1 Unit for Experimental Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Rossana Ruiz
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplásicas (INEN), Lima, Peru
| | - Patrick Pauwels
- Centre of Oncologic Research (CORE) Antwerp University, Edegem, Belgium.,Department of Histopathology, Antwerp University Hospital, Edegem, Belgium
| | | | - Xuan Bich Trinh
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospita, Edegem, Belgium.,Centre of Oncologic Research (CORE) Antwerp University, Edegem, Belgium
| | - Jose Ferri Gandia
- Fase 1 Unit for Experimental Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Johannes P Bogers
- AMBIOR Laboratory of Cell Biology and Histology, Antwerp University, Antwerp, Belgium
| | - Steven Van Laere
- Centre of Oncologic Research (CORE) Antwerp University, Edegem, Belgium
| |
Collapse
|
16
|
Chu SH, Loucks EB, Kelsey KT, Gilman SE, Agha G, Eaton CB, Buka SL, Huang YT. Sex-specific epigenetic mediators between early life social disadvantage and adulthood BMI. Epigenomics 2018; 10:707-722. [PMID: 29888956 DOI: 10.2217/epi-2017-0146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM The objective of this study was to identify potential epigenetic mediating pathways linking early life social disadvantage (ELSD) to adulthood BMI. METHODS Sex-specific epigenome-wide two-stage mediation analyses were conducted in blood and adipose tissue, and mediation estimates were obtained using cross-product mediation analysis. Pathway analyses were conducted using GREAT software (Bejerano Lab, CA, USA). RESULTS Candidate mediation CpG sites were identified in adipose tissue, but not blood, and were sex-specific. Significant mediation sites in females included CpG loci in genes: PKHG1, BCAR3, ADAM5P, PIEZO1, FGFRL1, FASN and DPP9, among others. Pathway analyses revealed evidence of enrichment for processes associated with TFG-β signaling and immunologic signatures. In males, significant mediation loci included sites in MAP3K5 and RPTOR, which have previously been associated with adipogenesis, inflammation and insulin resistance. CONCLUSION Our findings provide supportive evidence for the mediating role of epigenetic mechanisms in the effect of early life social disadvantage on adulthood BMI.
Collapse
Affiliation(s)
- Su H Chu
- Department of Epidemiology, Brown School of Public Health, Providence, RI, 02912, USA.,Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, 02115, USA
| | - Eric B Loucks
- Department of Epidemiology, Brown School of Public Health, Providence, RI, 02912, USA
| | - Karl T Kelsey
- Department of Epidemiology, Brown School of Public Health, Providence, RI, 02912, USA.,Department of Pathology & Laboratory Medicine, Brown University Warren Alpert Medical School, Providence, RI, 02912, USA
| | - Stephen E Gilman
- Health Behavior Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health & Human Development, Bethesda, MD, 20892, USA.,Department of Social & Behavioral Sciences, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA.,Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA.,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Golareh Agha
- Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Charles B Eaton
- Department of Epidemiology, Brown School of Public Health, Providence, RI, 02912, USA.,Department of Family Medicine, Brown University Warren Alpert Medical School, Providence, RI, 02912, USA
| | - Stephen L Buka
- Department of Epidemiology, Brown School of Public Health, Providence, RI, 02912, USA
| | - Yen-Tsung Huang
- Department of Epidemiology, Brown School of Public Health, Providence, RI, 02912, USA.,Department of Biostatistics, Brown School of Public Health, Providence, RI, 02912, USA.,Institute of Statistical Science, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
17
|
Yang PM, Chou CJ, Tseng SH, Hung CF. Bioinformatics and in vitro experimental analyses identify the selective therapeutic potential of interferon gamma and apigenin against cervical squamous cell carcinoma and adenocarcinoma. Oncotarget 2018; 8:46145-46162. [PMID: 28526810 PMCID: PMC5542256 DOI: 10.18632/oncotarget.17574] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
The clinical management and treatment of cervical cancer, one of the most commonly diagnosed cancers and a leading cause of cancer-related female death, remains a huge challenge for researchers and health professionals. Cervical cancer can be categorized into two major subtypes: common squamous cell carcinoma (SCC) and adenocarcinoma (AC). Although it is a relatively rare histological subtype of cervical cancer, there has been a steady increase in the incidences of AC. Therefore, new strategies to treat cervical cancer are urgently needed. In this study, the potential uses of IFNγ-based therapy for cervical cancer were evaluated using bioinformatics approaches. Gene expression profiling identified that cell cycle dysregulation was a major hallmark of cervical cancer including SCC and AC subtypes, and was associated with poor clinical outcomes for cervical cancer patients. In silico and in vitro experimental analyses demonstrated that IFNγ treatment could reverse the cervical cancer hallmark and induce cell cycle arrest and apoptosis. Furthermore, we demonstrated that apigenin could enhance the anticancer activity of IFNγ in a HeLa cervical AC cell line by targeting cyclin-dependent kinase 1. Taken together, the present study suggests the selective therapeutic potential of IFNγ alone or in combination with apigenin for managing cervical SCC and AC.
Collapse
Affiliation(s)
- Pei-Ming Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chia-Jung Chou
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ssu-Hsueh Tseng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States.,Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| |
Collapse
|
18
|
Long NP, Jung KH, Yoon SJ, Anh NH, Nghi TD, Kang YP, Yan HH, Min JE, Hong SS, Kwon SW. Systematic assessment of cervical cancer initiation and progression uncovers genetic panels for deep learning-based early diagnosis and proposes novel diagnostic and prognostic biomarkers. Oncotarget 2017; 8:109436-109456. [PMID: 29312619 PMCID: PMC5752532 DOI: 10.18632/oncotarget.22689] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022] Open
Abstract
Although many outstanding achievements in the management of cervical cancer (CxCa) have obtained, it still imposes a major burden which has prompted scientists to discover and validate new CxCa biomarkers to improve the diagnostic and prognostic assessment of CxCa. In this study, eight different gene expression data sets containing 202 cancer, 115 cervical intraepithelial neoplasia (CIN), and 105 normal samples were utilized for an integrative systems biology assessment in a multi-stage carcinogenesis manner. Deep learning-based diagnostic models were established based on the genetic panels of intrinsic genes of cervical carcinogenesis as well as on the unbiased variable selection approach. Survival analysis was also conducted to explore the potential biomarker candidates for prognostic assessment. Our results showed that cell cycle, RNA transport, mRNA surveillance, and one carbon pool by folate were the key regulatory mechanisms involved in the initiation, progression, and metastasis of CxCa. Various genetic panels combined with machine learning algorithms successfully differentiated CxCa from CIN and normalcy in cross-study normalized data sets. In particular, the 168-gene deep learning model for the differentiation of cancer from normalcy achieved an externally validated accuracy of 97.96% (99.01% sensitivity and 95.65% specificity). Survival analysis revealed that ZNF281 and EPHB6 were the two most promising prognostic genetic markers for CxCa among others. Our findings open new opportunities to enhance current understanding of the characteristics of CxCa pathobiology. In addition, the combination of transcriptomics-based signatures and deep learning classification may become an important approach to improve CxCa diagnosis and management in clinical practice.
Collapse
Affiliation(s)
| | - Kyung Hee Jung
- Department of Drug Development, College of Medicine, Inha University, Incheon 22212, Korea
| | - Sang Jun Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Nguyen Hoang Anh
- School of Medicine, Vietnam National University, Ho Chi Minh 70000, Vietnam
| | - Tran Diem Nghi
- School of Medicine, Vietnam National University, Ho Chi Minh 70000, Vietnam
| | - Yun Pyo Kang
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Hong Hua Yan
- Department of Drug Development, College of Medicine, Inha University, Incheon 22212, Korea
| | - Jung Eun Min
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Soon-Sun Hong
- Department of Drug Development, College of Medicine, Inha University, Incheon 22212, Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
19
|
Tilborghs S, Corthouts J, Verhoeven Y, Arias D, Rolfo C, Trinh XB, van Dam PA. The role of Nuclear Factor-kappa B signaling in human cervical cancer. Crit Rev Oncol Hematol 2017; 120:141-150. [PMID: 29198328 DOI: 10.1016/j.critrevonc.2017.11.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/01/2017] [Indexed: 12/27/2022] Open
Abstract
Background The Nuclear Factor kappaB (NF-kB) family consists of transcription factors that play a complex and essential role in the regulation of immune responses and inflammation. NF-kB has recently generated considerable interest as it has been implicated in human cancer initiation, progression and resistance to treatment. In the present comprehensive review the different aspects of NF-kB signaling in the carcinogenesis of cancer of the uterine cervix are discussed. NF-kB functions as part of a network, which determines the pattern of its effects on the expression of several other genes (such as crosstalks with reactive oxygen species, p53, STAT3 and miRNAS) and thus its function. Activation of NF-kB triggered by a HPV infection is playing an important role in the innate and adaptive immune response of the host. The virus induces down regulation of NF-kB to liquidate the inhibitory activity for its replication triggered by the immune system leading a status of persistant HPV infection. During the progression to high grade intraepithelial neoplasia and cervical cancer NF-KB becomes constitutionally activated again. Mutations in NF-kB genes are rare in solid tumors but mutations of upstream signaling molecules such as RAS, EGFR, PGF, HER2 have been implicated in elevated NF-kB signaling. NF-kB can stimulate transcription of proliferation regulating genes (eg. cyclin D1 and c-myc), genes involved in metastasis, VEGF dependent angiogenesis and cell immortality by telomerase. NF-kB activation can also induce the expression of activation-induced cytodine deaminase (AID) and the APOBEC proteins, providing a mechanistic link between the NF-kB pathway and mutagenic characteristic of cervical cancer. Inhibition of NF-kB has the potential to be used to reverse resistance to radiotherapy and systemic anti-cancer medication, but currently no clinicaly active NF-kB targeting strategies are available.
Collapse
Affiliation(s)
- Sam Tilborghs
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Jerome Corthouts
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Yannick Verhoeven
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - David Arias
- Phase I - Early Clinical Trials Unit & Center for Oncological Research (CORE), Antwerp University, Belgium
| | - Christian Rolfo
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Phase I - Early Clinical Trials Unit & Center for Oncological Research (CORE), Antwerp University, Belgium
| | - Xuan Bich Trinh
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Gynecologic Oncology Unit, Antwerp University Hospital & Centre of Oncologic Research (CORE), Antwerp University, Belgium
| | - Peter A van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Gynecologic Oncology Unit, Antwerp University Hospital & Centre of Oncologic Research (CORE), Antwerp University, Belgium.
| |
Collapse
|
20
|
Loucks EB, Huang YT, Agha G, Chu S, Eaton CB, Gilman SE, Buka SL, Kelsey KT. Epigenetic Mediators Between Childhood Socioeconomic Disadvantage and Mid-Life Body Mass Index: The New England Family Study. Psychosom Med 2017; 78:1053-1065. [PMID: 27768648 PMCID: PMC7380568 DOI: 10.1097/psy.0000000000000411] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Childhood socioeconomic disadvantage is associated with adulthood obesity risk; however, epigenetic mechanisms are poorly understood. This work's objective was to evaluate whether associations of childhood socioeconomic disadvantage with adulthood body mass index (BMI) are mediated by DNA methylation. METHODS Participants were 141 men and women from the New England Family Study, prospectively followed prenatally through a mean age of 47 years. Epigenomewide DNA methylation was evaluated in peripheral blood and adipose tissue obtained at adulthood, using the Infinium HumanMethylation450K BeadChip. Childhood socioeconomic status (SES) at age 7 years was assessed directly from parents' reports. Offspring adiposity was directly assessed using BMI at a mean age of 47 years. Associations of SES, DNA methylation, and BMI were estimated using least square estimators. Statistical mediation analyses were performed using joint significance test and bootstrapping. RESULTS Of CpG sites significant at the 25% false discovery rate level in epigenomewide methylation BMI analyses, 91 sites in men and 71 sites in women were additionally significant for SES-methylation associations (p < .001) in adipose tissue. Many involved genes biologically relevant for development of obesity, including fatty acid synthase, transmembrane protein 88, signal transducer and activator of transcription 3, and neuritin 1. There was no evidence of epigenetic mediation in peripheral blood leukocytes. CONCLUSIONS DNA methylation at specific genes may be mediators of associations between childhood socioeconomic disadvantage and mid-life BMI in adipose tissue. Findings motivate continued efforts to study if and how childhood socioeconomic disadvantage is biologically embedded at the level of the epigenome in regions etiologically relevant for adiposity.
Collapse
Affiliation(s)
- Eric B. Loucks
- Brown University School of Public Health, Department of Epidemiology, Providence, RI, USA
| | - Yen-Tsung Huang
- Brown University School of Public Health, Department of Epidemiology, Providence, RI, USA
| | - Golareh Agha
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Boston, MA, USA
| | - Su Chu
- Brown University School of Public Health, Department of Epidemiology, Providence, RI, USA
| | - Charles B. Eaton
- Brown University School of Public Health, Department of Epidemiology, Providence, RI, USA
- Brown University Warren Alpert Medical School, Department of Family Medicine, Providence, RI, USA
| | - Stephen E. Gilman
- Health Behavior Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, MD, USA
- Department of Social & Behavioral Sciences and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Stephen L. Buka
- Brown University School of Public Health, Department of Epidemiology, Providence, RI, USA
| | - Karl T. Kelsey
- Brown University School of Public Health, Department of Epidemiology, Providence, RI, USA
| |
Collapse
|
21
|
Cheng J, Lu X, Wang J, Zhang H, Duan P, Li C. Interactome analysis of gene expression profiles of cervical cancer reveals dysregulated mitotic gene clusters. Am J Transl Res 2017; 9:3048-3059. [PMID: 28670392 PMCID: PMC5489904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Cervical cancer is the second most common malignancy in women worldwide. HPV infections are the leading cause of cervical cancer. Although progress has been made in understanding cervical cancer, knowledge of oncogenic gene clusters that participate in squamous-cell mitosis is still lacking. We performed a computational analysis with qRT-PCR validation of gene expression profiles of cervical cancer tissues. Genes involved in muscle contraction and development were downregulated in cervical cancer tissues, suggesting decreased muscle function in cervical cancer. Among the genes that were upregulated in cervical cancer tissues, several groups of genes were found to interact with each other and synergistically participate in multiple stages of mitosis including DNA replication, cell cycle progression, and cell division. An analysis of gene regulatory networks showed that replicative helicase proteins (MCM2, MCM4, MCM5, MCM6, and MCM10) and DNA polymerases (PLOA1/E2/E3/Q) have enhanced DNA replication in cervical cancer. A group of kinases, cyclins, and transcriptional factors were found to promote cell cycle transitions from G1 phase to S phase and from G2 phase to M phase. Those proteins included CDK1, CCNA2, CCNB2, and TFDP2. Moreover, a set of motor proteins (KIF11, KIF14 and KIF4A) and their partner PRC1 were found to mediate cytokinesis during cervical cancer progression. Those findings present a better understanding of the mechanism of mitosis in cervical cancer from an interactomic perspective and provide potential targets for anticancer therapies.
Collapse
Affiliation(s)
- Jing Cheng
- Reproductive Health Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang, China
| | - Xiaosheng Lu
- Reproductive Health Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang, China
| | - Jianguang Wang
- Department of Biochemistry, School of Basic Sciences, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Huina Zhang
- Reproductive Health Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang, China
| | - Ping Duan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou 325027, Zhejiang, China
| | - Chunyang Li
- Department of Biochemistry, School of Basic Sciences, Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| |
Collapse
|