1
|
Xu Y, Yu C, Zhang H, Wang T, Liu Y, Wu L, Zhong S, Hong Z. Downregulation of Brf1 Induces Liver Failure and Inhibits Hepatocellular Carcinoma Progression by Promoting Apoptosis. J Cancer 2024; 15:5577-5593. [PMID: 39308682 PMCID: PMC11414613 DOI: 10.7150/jca.97277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/29/2024] [Indexed: 09/25/2024] Open
Abstract
The occurrence and development of hepatocellular carcinoma (HCC) are closely related to abnormal apoptosis. Brf1 is highly expressed in HCC and has clinical prognostic value. Here, attenuation of Brf1-induced apoptosis was found, and the related mechanism was explored. In the study, general bioinformatics data for Brf1 were obtained from The Human Protein Atlas (HPA). Analyses of the clinical prognostic value of Brf1 in HCC were performed with the Xiantao Academic web server using R software. The basic data were obtained from the GTEx database and TCGA database. Brf1 conditional knockout mice were obtained by repeated mating of C57BL/6 Brf1LoxP/LoxP and C57BL/6 NS5A-alb-Cre-ERT2 mice and verified by genotyping. Liver function measurements, hematoxylin and eosin staining (HE), and immunohistochemistry (IHC) were performed to explore the cause of mouse death after Brf1 knockout. The Brf1 knockdown HCC cell model was generated using lentiviral vector-based shRNA transduction. Cell proliferation assays, plate colony formation assays, anchorage-independent colony formation assays and mouse subcutaneous tumor models were used to evaluate the progression of HCC. Western blot (WB) analysis, flow cytometry, and TUNEL assays were used to detect apoptosis. DNA sequencing, transcriptomics, and proteomics analyses were carried out to explore the antiapoptotic mechanism of Brf1. We found that Brf1 was highly expressed in HCC and had clinical prognostic value. Brf1 knockout led to liver failure and hepatocyte apoptosis in mice. Downregulation of Brf1 slowed HCC cell proliferation, colony growth, and mouse subcutaneous tumor growth and increased the sensitivity of HCC cells to apoptosis induced by chemotherapy drugs. The expression of Brf1 was positively related to that of the apoptosis gene Bcl-2. The sequencing, transcriptomics and proteomics analyses consistently showed that energy metabolism played an important role in Brf1 function, that protein-protein interaction was the primary mode, and that organelles such as mitochondria were the main sites. In Conclusions, downregulation of Brf1 inhibits HCC development by inducing apoptosis. Energy metabolism plays an important role in Brf1 function. These results provide a scientific basis for combating HCC.
Collapse
Affiliation(s)
- Yaping Xu
- Key laboratory of functional and clinical translational medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian Province,China
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Hongbin Zhang
- Endoscopy Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Tao Wang
- Department of General Surgery, Xinglin District of the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361022, Fujian Province, China
| | - Yujian Liu
- Department of Hepato-Biliary-Pancreatic and Vascular Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Lupeng Wu
- Department of Hepato-Biliary-Pancreatic and Vascular Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Shuping Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zaifa Hong
- Department of Hepato-Biliary-Pancreatic and Vascular Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| |
Collapse
|
2
|
Kim S, Kim N, Kang HM, Jang HJ, Lee AC, Na KJ. Canine Somatic Mutations from Whole-Exome Sequencing of B-Cell Lymphomas in Six Canine Breeds-A Preliminary Study. Animals (Basel) 2023; 13:2846. [PMID: 37760246 PMCID: PMC10525272 DOI: 10.3390/ani13182846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Canine lymphoma (CL) is one of the most common malignant tumors in dogs. The cause of CL remains unclear. Genetic mutations that have been suggested as possible causes of CL are not fully understood. Whole-exome sequencing (WES) is a time- and cost-effective method for detecting genetic variants targeting only the protein-coding regions (exons) that are part of the entire genome region. A total of eight patients with B-cell lymphomas were recruited, and WES analysis was performed on whole blood and lymph node aspirate samples from each patient. A total of 17 somatic variants (GOLIM4, ITM2B, STN1, UNC79, PLEKHG4, BRF1, ENSCAFG00845007156, SEMA6B, DSC1, TNFAIP1, MYLK3, WAPL, ADORA2B, LOXHD1, GP6, AZIN1, and NCSTN) with moderate to high impact were identified by WES analysis. Through a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of 17 genes with somatic mutations, a total of 16 pathways were identified. Overall, the somatic mutations identified in this study suggest novel candidate mutations for CL, and further studies are needed to confirm the role of these mutations.
Collapse
Affiliation(s)
- Sungryong Kim
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (H.-M.K.)
| | - Namphil Kim
- Biophotonics and Nano Engineering Laboratory, Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hyo-Min Kang
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (H.-M.K.)
| | - Hye-Jin Jang
- Department of Biomedical Laboratory Science, Daegu Health College, Daegu 41453, Republic of Korea;
| | | | - Ki-Jeong Na
- Laboratory of Veterinary Laboratory Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (S.K.); (H.-M.K.)
| |
Collapse
|
3
|
Bhandari N, Acharya D, Chatterjee A, Mandve L, Kumar P, Pratap S, Malakar P, Shukla SK. Pan-cancer integrated bioinformatic analysis of RNA polymerase subunits reveal RNA Pol I member CD3EAP regulates cell growth by modulating autophagy. Cell Cycle 2023; 22:1986-2002. [PMID: 37795959 PMCID: PMC10761113 DOI: 10.1080/15384101.2023.2265676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Transcription is a crucial stage in gene expression. An integrated study of 34 RNA polymerase subunits (RNAPS) in the six most frequent cancer types identified several genetic and epigenetic modification. We discovered nine mutant RNAPS with a mutation frequency of more than 1% in at least one tumor type. POLR2K and POLR2H were found to be amplified and overexpressed, whereas POLR3D was deleted and downregulated. Multiple RNAPS were also observed to be regulated by variations in promoter methylation. 5-Aza-2-deoxycytidine mediated re-expression in cell lines verified methylation-driven inhibition of POLR2F and POLR2L expression in BRCA and NSCLC, respectively. Next, we showed that CD3EAP, a Pol I subunit, was overexpressed in all cancer types and was associated with worst survival in breast, liver, lung, and prostate cancers. The knockdown studies showed that CD3EAP is required for cell proliferation and induces autophagy but not apoptosis. Furthermore, autophagy inhibition rescued the cell proliferation in CD3EAP knockdown cells. CD3EAP expression correlated with S and G2 phase cell cycle regulators, and CD3EAP knockdown inhibited the expression of S and G2 CDK/cyclins. We also identified POLR2D, an RNA pol II subunit, as a commonly overexpressed and prognostic gene in multiple cancers. POLR2D knockdown also decreased cell proliferation. POLR2D is related to the transcription of just a subset of RNA POL II transcribe genes, indicating a distinct role. Taken together, we have shown the genetic and epigenetic regulation of RNAPS genes in most common tumors. We have also demonstrated the cancer-specific function of CD3EAP and POLR2D genes.
Collapse
Affiliation(s)
- Nikita Bhandari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| | - Disha Acharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| | - Annesha Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| | - Lakshana Mandve
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| | - Pranjal Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| | - Shreesh Pratap
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Sudhanshu K. Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, India
| |
Collapse
|
4
|
Wang J, Chen Q, Wang X, Zhao S, Deng H, Guo B, Zhang C, Song X, Deng W, Zhang T, Ni H. TFIIB-related factor 1 is a nucleolar protein that promotes RNA polymerase I-directed transcription and tumour cell growth. Hum Mol Genet 2023; 32:104-121. [PMID: 35925837 DOI: 10.1093/hmg/ddac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eukaryotic RNA polymerase I (Pol I) products play fundamental roles in ribosomal assembly, protein synthesis, metabolism and cell growth. Abnormal expression of both Pol I transcription-related factors and Pol I products causes a range of diseases, including ribosomopathies and cancers. However, the factors and mechanisms governing Pol I-dependent transcription remain to be elucidated. Here, we report that transcription factor IIB-related factor 1 (BRF1), a subunit of transcription factor IIIB required for RNA polymerase III (Pol III)-mediated transcription, is a nucleolar protein and modulates Pol I-mediated transcription. We showed that BRF1 can be localized to the nucleolus in several human cell types. BRF1 expression correlates positively with Pol I product levels and tumour cell growth in vitro and in vivo. Pol III transcription inhibition assays confirmed that BRF1 modulates Pol I-directed transcription in an independent manner rather than through a Pol III product-to-45S pre-rRNA feedback mode. Mechanistically, BRF1 binds to the Pol I transcription machinery components and can be recruited to the rDNA promoter along with them. Additionally, alteration of BRF1 expression affects the recruitment of Pol I transcription machinery components to the rDNA promoter and the expression of TBP and TAF1A. These findings indicate that BRF1 modulates Pol I-directed transcription by controlling the expression of selective factor 1 subunits. In summary, we identified a novel role of BRF1 in Pol I-directed transcription, suggesting that BRF1 can independently regulate both Pol I- and Pol III-mediated transcription and act as a key coordinator of Pol I and Pol III.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China.,School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qiyue Chen
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xin Wang
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, UK
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Baoqiang Guo
- School of Healthcare Science, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Tongcun Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hongwei Ni
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
5
|
Wang J, Tan Y, Jia QY, Tang FQ. Transcriptional factor III A promotes colorectal cancer progression by upregulating cystatin A. World J Gastrointest Oncol 2022; 14:1918-1932. [PMID: 36310710 PMCID: PMC9611429 DOI: 10.4251/wjgo.v14.i10.1918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/23/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Advanced colorectal cancer (CRC) generally has poor outcomes and high mortality rates. Clarifying the molecular mechanisms underlying CRC progression is necessary to develop new diagnostic and therapeutic strategies to improve CRC outcome and decrease mortality. Transcriptional factor III A (GTF3A), an RNA polymerase III transcriptional factor, is a critical driver of tumorgenesis and aggravates CRC cell growth.
AIM To confirm whether GTF3A promotes CRC progression by regulating the expression of cystatin A (Csta) gene and investigate whether GTF3A can serve as a prognostic biomarker and therapeutic target for patients with CRC.
METHODS Human tissue microarrays containing 90 pairs of CRC tissues and adjacent non-tumor tissues, and human tissue microarrays containing 20 pairs of CRC tissues, adjacent non-tumor tissues, and metastatic tissues were examined for GTF3A expression using immunohistochemistry. The survival rates of patients were analyzed. Short hairpin GTF3As and CSTAs were designed and packaged into the virus to block the expression of Gtf3a and Csta genes, respectively. In vivo tumor growth assays were performed to confirm whether GTF3A promotes CRC cell proliferation in vivo. Electrophoretic mobility shift assay and fluorescence in situ hybridization assay were used to detect the interaction of GTF3A with Csta, whereas luciferase activity assay was used to evaluate the expression of the Gtf3a and Csta genes. RNA-Sequencing (RNA-Seq) and data analyses were used to screen for target genes of GTF3A.
RESULTS The expression of GTF3A was higher in CRC tissues and lymph node metastatic tissues than in the adjacent normal tissues. GTF3A was associated with CRC prognosis, and knockdown of the Gtf3a gene impaired CRC cell proliferation, invasion, and motility in vitro and in vivo. Moreover, RNA-Seq analysis revealed that GTF3A might upregulate the expression of Csta, whereas the luciferase activity assay showed that GTF3A bound to the promoter of Csta gene and increased Csta transcription. Furthermore, CSTA regulated the expression of epithelial-mesenchymal transition (EMT) markers.
CONCLUSION GTF3A increases CSTA expression by binding to the Csta promoter, and increased CSTA level promotes CRC progression by regulating the EMT. Inhibition of GTF3A prevents CRC progression. Therefore, GTF3A is a potential novel therapeutic target and biomarker for CRC.
Collapse
Affiliation(s)
- Jing Wang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yuan Tan
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Qun-Ying Jia
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Fa-Qin Tang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
6
|
Malcolm JR, Leese NK, Lamond-Warner PI, Brackenbury WJ, White RJ. Widespread association of ERα with RMRP and tRNA genes in MCF-7 cells and breast cancers. Gene X 2022; 821:146280. [PMID: 35143945 PMCID: PMC8942118 DOI: 10.1016/j.gene.2022.146280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Estrogen receptor (ER) interacts with hundreds of tRNA genes (tDNAs) in MCF-7 cells. Hundreds of tDNAs are also targeted in primary breast tumours and metastases. Canonical estrogen response element is not found near top tDNA targets of ER. ER also targets non-coding breast cancer driver gene RMRP. ER also targets RN7SL1 gene that promotes breast cancer progression.
tRNA gene transcription by RNA polymerase III (Pol III) is a tightly regulated process, but dysregulated Pol III transcription is widely observed in cancers. Approximately 75% of all breast cancers are positive for expression of Estrogen Receptor alpha (ERα), which acts as a key driver of disease. MCF-7 cells rapidly upregulate tRNA gene transcription in response to estrogen and ChIP-PCR demonstrated ERα enrichment at tRNALeu and 5S rRNA genes in this breast cancer cell line. While these data implicate the ERα as a Pol III transcriptional regulator, how widespread this regulation is across the 631 tRNA genes has yet to be revealed. Through analyses of ERα ChIP-seq datasets, we show that ERα interacts with hundreds of tRNA genes, not only in MCF-7 cells, but also in primary human breast tumours and distant metastases. The extent of ERα association with tRNA genes varies between breast cancer cell lines and does not correlate with levels of ERα binding to its canonical target gene GREB1. Amongst other Pol III-transcribed genes, ERα is consistently enriched at the long non-coding RNA gene RMRP, a positive regulator of cell cycle progression that is subject to focal amplification in tumours. Another Pol III template targeted by ERα is the RN7SL1 gene, which is strongly implicated in breast cancer pathology by inducing inflammatory responses in tumours. Our data indicate that Pol III-transcribed non-coding genes should be added to the list of ERα targets in breast cancer.
Collapse
Affiliation(s)
- Jodie R Malcolm
- Department of Biology, The University of York, Heslington Road, YO10 5DD, United Kingdom
| | - Natasha K Leese
- Department of Biology, The University of York, Heslington Road, YO10 5DD, United Kingdom
| | | | - William J Brackenbury
- Department of Biology, The University of York, Heslington Road, YO10 5DD, United Kingdom
| | - Robert J White
- Department of Biology, The University of York, Heslington Road, YO10 5DD, United Kingdom.
| |
Collapse
|
7
|
Nsengimana B, Khan FA, Ngowi EE, Zhou X, Jin Y, Jia Y, Wei W, Ji S. Processing body (P-body) and its mediators in cancer. Mol Cell Biochem 2022; 477:1217-1238. [PMID: 35089528 DOI: 10.1007/s11010-022-04359-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022]
Abstract
In recent years, processing bodies (P-bodies) formed by liquid-liquid phase separation, have attracted growing scientific attention due to their involvement in numerous cellular activities, including the regulation of mRNAs decay or storage. These cytoplasmic dynamic membraneless granules contain mRNA storage and decay components such as deadenylase and decapping factors. In addition, different mRNA metabolic regulators, including m6A readers and gene-mediated miRNA-silencing, are also associated with such P-bodies. Cancerous cells may profit from these mRNA decay shredders by up-regulating the expression level of oncogenes and down-regulating tumor suppressor genes. The main challenges of cancer treatment are drug resistance, metastasis, and cancer relapse likely associated with cancer stem cells, heterogeneity, and plasticity features of different tumors. The mRNA metabolic regulators based on P-bodies play a great role in cancer development and progression. The dysregulation of P-bodies mediators affects mRNA metabolism. However, less is known about the relationship between P-bodies mediators and cancerous behavior. The current review summarizes the recent studies on P-bodies mediators, their contribution to tumor development, and their potential in the clinical setting, particularly highlighting the P-bodies as potential drug-carriers such as exosomes to anticancer in the future.
Collapse
Affiliation(s)
- Bernard Nsengimana
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Faiz Ali Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Ebenezeri Erasto Ngowi
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Xuefeng Zhou
- Department of Oncology, Dongtai Affiliated Hospital of Nantong University, Dongtai, 224200, Jiangsu, People's Republic of China
| | - Yu Jin
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Yuting Jia
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Wenqiang Wei
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China.
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China.
| |
Collapse
|
8
|
Zhang C, Zhao H, Song X, Wang J, Zhao S, Deng H, He L, Zhou X, Yin X, Zhang K, Zhang Y, Wu Z, Chen Q, Du J, Yu D, Zhang S, Deng W. Transcription factor GATA4 drives RNA polymerase III-directed transcription and transformed cell proliferation through a filamin A/GATA4/SP1 pathway. J Biol Chem 2022; 298:101581. [PMID: 35038452 PMCID: PMC8857480 DOI: 10.1016/j.jbc.2022.101581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022] Open
Abstract
RNA polymerase III (pol III) products play fundamental roles in a variety of cellular processes, including protein synthesis and cancer cell proliferation. In addition, dysregulation of pol III-directed transcription closely correlates with tumorigenesis. It is therefore of interest to identify novel pathways or factors governing pol III-directed transcription. Here, we show that transcription factor (TF) GATA binding protein 4 (GATA4) expression in SaOS2 cells was stimulated by the silencing of filamin A (FLNA), a repressor of pol III-directed transcription, suggesting that GATA4 is potentially associated with the regulation of pol III-directed transcription. Indeed, we show that GATA4 expression positively correlates with pol III-mediated transcription and tumor cell proliferation. Mechanistically, we found that GATA4 depletion inhibits the occupancies of the pol III transcription machinery factors at the loci of pol III target genes by reducing expression of both TFIIIB subunit TFIIB-related factor 1 and TFIIIC subunit general transcription factor 3C subunit 2 (GTF3C2). GATA4 has been shown to activate specificity factor 1 (Sp1) gene transcription by binding to the Sp1 gene promoter, and Sp1 has been confirmed to activate pol III gene transcription by directly binding to both Brf1 and Gtf3c2 gene promoters. Thus, the findings from this study suggest that GATA4 links FLNA and Sp1 signaling to form an FLNA/GATA4/Sp1 axis to modulate pol III-directed transcription and transformed cell proliferation. Taken together, these results provide novel insights into the regulatory mechanism of pol III-directed transcription.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Houliang Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Wang
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Liu He
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiangyu Zhou
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaomei Yin
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kewei Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yue Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhongyu Wu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Qiyue Chen
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jiannan Du
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Deen Yu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shihua Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Zheng L, Lin Y, Zhong S. ROS Signaling-Mediated Novel Biological Targets: Brf1 and RNA Pol III Genes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5888432. [PMID: 34646425 PMCID: PMC8505076 DOI: 10.1155/2021/5888432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
Biomolecule metabolism produces ROS (reactive oxygen species) under physiological and pathophysiological conditions. Dietary factors (alcohol) and carcinogens (EGF, DEN, and MNNG) also induce the release of ROS. ROS often causes cell stress and tissue injury, eventually resulting in disorders or diseases of the body through different signaling pathways. Normal metabolism of protein is critically important to maintain cellular function and body health. Brf1 (transcript factor II B-related factor 1) and its target genes, RNA Pol III genes (RNA polymerase III-dependent genes), control the process of protein synthesis. Studies have demonstrated that the deregulation of Brf1 and its target genes is tightly linked to cell proliferation, cell transformation, tumor development, and human cancers, while alcohol, EGF, DEN, and MNNG are able to induce the deregulation of these genes through different signaling pathways. Therefore, it is very important to emphasize the roles of these signaling events mediating the processes of Brf1 and RNA Pol III gene transcription. In the present paper, we mainly summarize our studies on signaling events which mediate the deregulation of these genes in the past dozen years. These studies indicate that Brf1 and RNA Pol III genes are novel biological targets of ROS.
Collapse
Affiliation(s)
- Liling Zheng
- First Hospital of Quanzhou Affiliated to Fujian Medical University, China
| | - Yongluan Lin
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuping Zhong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Wu T, Zhang D, Lin M, Yu L, Dai T, Li S, Yu F, Lu L, Zheng L, Zhong S. Exploring the Role and Mechanism of pAMPK α-Mediated Dysregulation of Brf1 and RNA Pol III Genes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5554932. [PMID: 33995823 PMCID: PMC8081602 DOI: 10.1155/2021/5554932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 02/05/2023]
Abstract
TF IIB-related factor 1 (Brf1) is a key transcription factor of RNA polymerase III (Pol III) genes. Our early studies have demonstrated that Brf1 and Pol III genes are epigenetically modulated by histone H3 phosphorylation. Here, we have further investigated the relationship of the abnormal expression of Brf1 with a high level of phosphorylated AMPKα (pAMPKα) and explored the role and molecular mechanism of pAMPKα-mediated dysregulation of Brf1 and Pol III genes in lung cancer. Brf1 is significantly overexpressed in lung cancer cases. The cases with high Brf1 expression display short overall survival times. Elevation of Brf1 expression is accompanied by a high level of pAMPKα. Brf1 and pAMPKα colocalize in nuclei. Further analysis indicates that the carcinogen MNNG induces pAMPKα to upregulate Brf1 expression, resulting in the enhancement of Pol III transcription. In contrast, inhibiting pAMPKα decreases cellular levels of Brf1, resulting in the reduction of Pol III gene transcription to attenuate the rates of cell proliferation and colony formation of lung cancer cells. These outcomes demonstrate that high Brf1 expression reveals a worse prognosis in lung cancer patients. pAMPKα-mediated dysregulation of Brf1 and Pol III genes plays important roles in cell proliferation, colony formation, and tumor development of lung cancer. Brf1 may be a biomarker for establishing the prognosis of lung cancer. It is a new mechanism that pAMPKα mediates dysregulation of Brf1 and Pol III genes to promote lung cancer development.
Collapse
Affiliation(s)
- Teng Wu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Dongkun Zhang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mingen Lin
- The First Affiliated Hospital of Shantou University Medical College, China
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lihong Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ting Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shuai Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fenghai Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lei Lu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Liling Zheng
- First Hospital of Quanzhou Affiliated to Fujian Medical University, China
| | - Shuping Zhong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Abstract
In this review, Yeganeh et al. summarize different human diseases that have been linked to defects in the Pol III transcription apparatus or to Pol III products imbalance and discuss the possible underlying mechanisms. RNA polymerase (Pol) III is responsible for transcription of different noncoding genes in eukaryotic cells, whose RNA products have well-defined functions in translation and other biological processes for some, and functions that remain to be defined for others. For all of them, however, new functions are being described. For example, Pol III products have been reported to regulate certain proteins such as protein kinase R (PKR) by direct association, to constitute the source of very short RNAs with regulatory roles in gene expression, or to control microRNA levels by sequestration. Consistent with these many functions, deregulation of Pol III transcribed genes is associated with a large variety of human disorders. Here we review different human diseases that have been linked to defects in the Pol III transcription apparatus or to Pol III products imbalance and discuss the possible underlying mechanisms.
Collapse
Affiliation(s)
- Meghdad Yeganeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Hong Z, Lin M, Zhang Y, He Z, Zheng L, Zhong S. Role of betaine in inhibiting the induction of RNA Pol III gene transcription and cell growth caused by alcohol. Chem Biol Interact 2020; 325:109129. [PMID: 32418914 PMCID: PMC7323736 DOI: 10.1016/j.cbi.2020.109129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 03/24/2020] [Accepted: 05/06/2020] [Indexed: 02/05/2023]
Abstract
Alcohol has been classified as carcinogenic to humans by the International Agency for Research on Cancer (IARC). Studies have demonstrated that alcohol intake increases the risk of breast cancer, and alcohol also stimulates breast cancer cell growth. Deregulation of Pol III genes is tightly associated with tumour development. Transcription factor II-B (TFIIB)-related factor 1 (Brf1) is a transcription factor that specifically regulates Pol III gene transcription. Our in vivo and in vitro studies have indicated that alcohol enhances the transcription of Pol III genes to cause an alteration of cellular phenotypes, which is closely related with human breast cancer. Betaine is a vegetable alkaloid and has antitumor functions. Most reports about betaine show that the consumption level of betaine is inversely associated with a risk of breast cancer. Although different mechanisms of betaine against tumour have been investigated, nothing has been reported on the effect of betaine on the deregulation of Brf1 and Pol III genes. In this study, we determine the role of betaine in breast cancer cell growth and colony formation and explore its mechanism. Our results indicate that alcohol increases the rates of growth and colony formation of breast cancer cells, whereas betaine is able to significantly inhibit the effects of alcohol on these cell phenotypes. Betaine decreases the induction of Brf1 expression and Pol III gene transcription caused by ethanol to reduce the rates of cell growth and colony formation. Together, these studies provide novel insights into the role of betaine in alcohol-caused breast cancer cell growth and deregulation of Brf1 and Pol III genes. These results suggest that betaine consumption is able to prevent alcohol-associated human cancer development.
Collapse
Affiliation(s)
- Zaifa Hong
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mingen Lin
- The First Hospital of Shantou University Medical College, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yanmei Zhang
- Department of Pharmacology of Shantou University Medical College, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhimin He
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China
| | - Liling Zheng
- First Hospital of Quanzhou Affiliated to Fujian Medical University, China.
| | - Shuping Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Mitogen- and Stress-Activated Protein Kinase 1 Mediates Alcohol-Upregulated Transcription of Brf1 and tRNA Genes to Cause Phenotypic Alteration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2067959. [PMID: 32685086 PMCID: PMC7336232 DOI: 10.1155/2020/2067959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Upregulation of Brf1 (TFIIB-related factor 1) and Pol III gene (RNA polymerase III-dependent gene, such as tRNAs and 5S rRNA) activities is associated with cell transformation and tumor development. Alcohol intake causes liver injury, such as steatosis, inflammation, fibrosis, and cirrhosis, which enhances the risk of HCC development. However, the mechanism of alcohol-promoted HCC remains to be explored. We have designed the complementary research system, which is composed of cell lines, an animal model, human samples, and experiments in vivo and in vitro, to carry out this project by using molecular biological, biochemical, and cellular biological approaches. It is a unique system to explore the mechanism of alcohol-associated HCC. Our results indicate that alcohol upregulates Brf1 and Pol III gene (tRNAs and 5S rRNA) transcription in primary mouse hepatocytes, immortalized mouse hepatocyte-AML-12 cells, and engineered human HepG2-ADH cells. Alcohol activates MSK1 to upregulate expression of Brf1 and Pol III genes, while inhibiting MSK1 reduces transcription of Brf1 and Pol III genes in alcohol-treated cells. The inhibitor of MSK1, SB-747651A, decreases the rates of cell proliferation and colony formation. Alcohol feeding promotes liver tumor development of the mouse. These results, for the first time, show the identification of the alcohol-response promoter fragment of the Pol III gene key transcription factor, Brf1. Our studies demonstrate that Brf1 expression is elevated in HCC tumor tissues of mice and humans. Alcohol increases cellular levels of Brf1, resulting in enhancement of Pol III gene transcription in hepatocytes through MSK1. Our mechanism analysis has demonstrated that alcohol-caused high-response fragment of the Brf1 promoter is at p-382/+109bp. The MSK1 inhibitor SB-747651A is an effective reagent to repress alcohol-induced cell proliferation and colony formation, which is a potential pharmaceutical agent. Developing this inhibitor as a therapeutic approach will benefit alcohol-associated HCC patients.
Collapse
|
14
|
Hong Z, Fang Z, Lei J, Shi G, Zhang Y, He Z, Li B W, Zhong S. The significance of Runx2 mediating alcohol-induced Brf1 expression and RNA Pol III gene transcription. Chem Biol Interact 2020; 323:109057. [PMID: 32198086 PMCID: PMC7261693 DOI: 10.1016/j.cbi.2020.109057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/10/2020] [Indexed: 02/05/2023]
Abstract
Runx2 (Runt-related transcription factor 2) is a key transcription factor which is associated with osteoblast differentiation and expressed in ER+ (estrogen receptor positive) human breast cancer cell lines. Runx2 also participates in mammary gland development. Deregulation of RNA Pol III genes (polymerase III-dependent genes) is tightly linked to tumor development, while Brf1 (TFIIB-related factor 1) specifically regulates these gene transcription. However, nothing is known about the effect of Runx2 on Brf1 expression and Pol III gene transcription. Expression of Runx2, Brf1 and Pol III genes from the samples of human breast cancer and cell culture model were determined by the assays of RT-qPCR, immunoblot, luciferase reporter activity, immunohistochemistry, chromatin immunoprecipitation and Immunofluorescence. High expression of Runx2 is observed in the cases of breast cancer. The patients of high Runx2 expression at early stages display longer survival period, whereas the cases of high Runx2 at advanced stages reveal faster recurrence. The identification of signaling pathway indicates that JNK1 and c-Jun mediate Runx2 transcription. Repression of Runx2 reduces Brf1 expression and Pol III gene transcription. Further analysis indicates that Runx2 is colocalized with Brf1 in nucleus of breast cancer tissue. Both Runx2 and Brf1 synergistically modulate Pol III gene transcription. These studies indicate that Brf1 overexpression is able to be used as an early diagnosis biomarker of breast cancer, while high Runx2 expression indicates long survival period and faster recurrence. Runx2 mediates the deregulation of Brf1 and Pol III genes and its abnormal expression predicts the worse prognosis of breast cancer.
Collapse
Affiliation(s)
- Zaifa Hong
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zeng Fang
- Laboratory of General Surgery and Department of Breast and Thyroid Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junxia Lei
- School of Medicine, South China University of Technology, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, China
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhiming He
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China
| | - Wen Li B
- Laboratory of General Surgery and Department of Breast and Thyroid Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Shuping Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Peng F, Zhou Y, Wang J, Guo B, Wei Y, Deng H, Wu Z, Zhang C, Shi K, Li Y, Wang X, Shore P, Zhao S, Deng W. The transcription factor Sp1 modulates RNA polymerase III gene transcription by controlling BRF1 and GTF3C2 expression in human cells. J Biol Chem 2020; 295:4617-4630. [PMID: 32115405 DOI: 10.1074/jbc.ra119.011555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/16/2020] [Indexed: 01/10/2023] Open
Abstract
Specificity protein 1 (Sp1) is an important transcription factor implicated in numerous cellular processes. However, whether Sp1 is involved in the regulation of RNA polymerase III (Pol III)-directed gene transcription in human cells remains unknown. Here, we first show that filamin A (FLNA) represses Sp1 expression as well as expression of TFIIB-related factor 1 (BRF1) and general transcription factor III C subunit 2 (GTF3C2) in HeLa, 293T, and SaOS2 cell lines stably expressing FLNA-silencing shRNAs. Both BRF1 promoter 4 (BRF1P4) and GTF3C2 promoter 2 (GTF3C2P2) contain putative Sp1-binding sites, suggesting that Sp1 affects Pol III gene transcription by regulating BRF1 and GTF3C2 expression. We demonstrate that Sp1 knockdown inhibits Pol III gene transcription, BRF1 and GTF3C2 expression, and the proliferation of 293T and HeLa cells, whereas Sp1 overexpression enhances these activities. We obtained a comparable result in a cell line in which both FLNA and Sp1 were depleted. These results indicate that Sp1 is involved in the regulation of Pol III gene transcription independently of FLNA expression. Reporter gene assays showed that alteration of Sp1 expression affects BRF1P4 and GTF3C2P2 activation, suggesting that Sp1 modulates Pol III-mediated gene transcription by controlling BRF1 and GTF3C2 gene expression. Further analysis revealed that Sp1 interacts with and thereby promotes the occupancies of TATA box-binding protein, TFIIAα, and p300 at both BRF1P4 and GTF3C2P2. These findings indicate that Sp1 controls Pol III-directed transcription and shed light on how Sp1 regulates cancer cell proliferation.
Collapse
Affiliation(s)
- Feixia Peng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ying Zhou
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Juan Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Baoqiang Guo
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | - Yun Wei
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zihui Wu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Cheng Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Kaituo Shi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuan Li
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xin Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paul Shore
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
16
|
Vorländer MK, Baudin F, Moir RD, Wetzel R, Hagen WJH, Willis IM, Müller CW. Structural basis for RNA polymerase III transcription repression by Maf1. Nat Struct Mol Biol 2020; 27:229-232. [PMID: 32066962 PMCID: PMC7104376 DOI: 10.1038/s41594-020-0383-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/16/2020] [Indexed: 01/10/2023]
Abstract
Maf1 is a conserved inhibitor of RNA polymerase III (Pol III) that influences phenotypes from metabolic efficiency to lifespan. Here, we present a 3.3 Å cryo-EM structure of yeast Maf1 bound to Pol III, establishing that Maf1 sequesters Pol III elements involved in transcription initiation and binds the mobile C34 WH2 domain, sealing off the active site. The Maf1 binding site overlaps with that of TFIIIB in the pre-initiation complex.
Collapse
Affiliation(s)
- Matthias K Vorländer
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Collaboration for Joint PhD Degree between EMBL and Heidelberg University Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Florence Baudin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - René Wetzel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
17
|
Loveridge CJ, Slater S, Campbell KJ, Nam NA, Knight J, Ahmad I, Hedley A, Lilla S, Repiscak P, Patel R, Salji M, Fleming J, Mitchell L, Nixon C, Strathdee D, Neilson M, Ntala C, Bryson S, Zanivan S, Edwards J, Robson CN, Goodyear CS, Blyth K, Leung HY. BRF1 accelerates prostate tumourigenesis and perturbs immune infiltration. Oncogene 2020; 39:1797-1806. [PMID: 31740786 PMCID: PMC7033044 DOI: 10.1038/s41388-019-1106-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 01/10/2023]
Abstract
BRF1 is a rate-limiting factor for RNA Polymerase III-mediated transcription and is elevated in numerous cancers. Here, we report that elevated levels of BRF1 associate with poor prognosis in human prostate cancer. In vitro studies in human prostate cancer cell lines demonstrated that transient overexpression of BRF1 increased cell proliferation whereas the transient downregulation of BRF1 reduced proliferation and mediated cell cycle arrest. Consistent with our clinical observations, BRF1 overexpression in a Pten-deficient mouse (PtenΔ/Δ BRF1Tg) prostate cancer model accelerated prostate carcinogenesis and shortened survival. In PtenΔ/Δ BRF1Tg tumours, immune and inflammatory processes were altered, with reduced tumoral infiltration of neutrophils and CD4 positive T cells, which can be explained by decreased levels of complement factor D (CFD) and C7 components of the complement cascade, an innate immune pathway that influences the adaptive immune response. We tested if the secretome was involved in BRF1-driven tumorigenesis. Unbiased proteomic analysis on BRF1-overexpresing PC3 cells confirmed reduced levels of CFD in the secretome, implicating the complement system in prostate carcinogenesis. We further identify that expression of C7 significantly correlates with expression of CD4 and has the potential to alter clinical outcome in human prostate cancer, where low levels of C7 associate with poorer prognosis.
Collapse
Affiliation(s)
- Carolyn J Loveridge
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Sarah Slater
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Noor A Nam
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - John Knight
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Imran Ahmad
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Ann Hedley
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Sergio Lilla
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | | | - Rachana Patel
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Mark Salji
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Janis Fleming
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | | | - Colin Nixon
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | | | | | - Chara Ntala
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Sheila Bryson
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Sara Zanivan
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Craig N Robson
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Karen Blyth
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Hing Y Leung
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK.
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
18
|
Liko D, Mitchell L, Campbell KJ, Ridgway RA, Jones C, Dudek K, King A, Bryson S, Stevenson D, Blyth K, Strathdee D, Morton JP, Bird TG, Knight JRP, Willis AE, Sansom OJ. Brf1 loss and not overexpression disrupts tissues homeostasis in the intestine, liver and pancreas. Cell Death Differ 2019; 26:2535-2550. [PMID: 30858608 PMCID: PMC6861133 DOI: 10.1038/s41418-019-0316-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/18/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
RNA polymerase III (Pol-III) transcribes tRNAs and other small RNAs essential for protein synthesis and cell growth. Pol-III is deregulated during carcinogenesis; however, its role in vivo has not been studied. To address this issue, we manipulated levels of Brf1, a Pol-III transcription factor that is essential for recruitment of Pol-III holoenzyme at tRNA genes in vivo. Knockout of Brf1 led to embryonic lethality at blastocyst stage. In contrast, heterozygous Brf1 mice were viable, fertile and of a normal size. Conditional deletion of Brf1 in gastrointestinal epithelial tissues, intestine, liver and pancreas, was incompatible with organ homeostasis. Deletion of Brf1 in adult intestine and liver induced apoptosis. However, Brf1 heterozygosity neither had gross effects in these epithelia nor did it modify tumorigenesis in the intestine or pancreas. Overexpression of BRF1 rescued the phenotypes of Brf1 deletion in intestine and liver but was unable to initiate tumorigenesis. Thus, Brf1 and Pol-III activity are absolutely essential for normal homeostasis during development and in adult epithelia. However, Brf1 overexpression or heterozygosity are unable to modify tumorigenesis, suggesting a permissive, but not driving role for Brf1 in the development of epithelial cancers of the pancreas and gut.
Collapse
Affiliation(s)
- Dritan Liko
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Louise Mitchell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Rachel A Ridgway
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Carolyn Jones
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Kate Dudek
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Ayala King
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Sheila Bryson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David Stevenson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Karen Blyth
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Douglas Strathdee
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Jennifer P Morton
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK
| | - Thomas G Bird
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - John R P Knight
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - Anne E Willis
- MRC Toxicology Unit, Hodgkin Building Lancaster Road, Leicester, LE1 9HN, UK
| | - Owen J Sansom
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1BD, UK.
| |
Collapse
|
19
|
Petrie JL, Swan C, Ingram RM, Frame FM, Collins AT, Dumay-Odelot H, Teichmann M, Maitland NJ, White RJ. Effects on prostate cancer cells of targeting RNA polymerase III. Nucleic Acids Res 2019; 47:3937-3956. [PMID: 30820548 PMCID: PMC6486637 DOI: 10.1093/nar/gkz128] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/13/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
RNA polymerase (pol) III occurs in two forms, containing either the POLR3G subunit or the related paralogue POLR3GL. Whereas POLR3GL is ubiquitous, POLR3G is enriched in undifferentiated cells. Depletion of POLR3G selectively triggers proliferative arrest and differentiation of prostate cancer cells, responses not elicited when POLR3GL is depleted. A small molecule pol III inhibitor can cause POLR3G depletion, induce similar differentiation and suppress proliferation and viability of cancer cells. This response involves control of the fate-determining factor NANOG by small RNAs derived from Alu short interspersed nuclear elements. Tumour initiating activity in vivo can be reduced by transient exposure to the pol III inhibitor. Untransformed prostate cells appear less sensitive than cancer cells to pol III depletion or inhibition, raising the possibility of a therapeutic window.
Collapse
Affiliation(s)
- John L Petrie
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Caroline Swan
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Richard M Ingram
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Fiona M Frame
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Anne T Collins
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Hélène Dumay-Odelot
- Université de Bordeaux, ARNA Laboratory, F-33076 Bordeaux, France INSERM, U1212 - CNRS UMR 5320, ARNA Laboratory, F-33000 Bordeaux, France
| | - Martin Teichmann
- Université de Bordeaux, ARNA Laboratory, F-33076 Bordeaux, France INSERM, U1212 - CNRS UMR 5320, ARNA Laboratory, F-33000 Bordeaux, France
| | - Norman J Maitland
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Robert J White
- Department of Biology, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|
20
|
Rafieenia F, Abbaszadegan MR, Poursheikhani A, Razavi SMS, Jebelli A, Molaei F, Aghaee‐Bakhtiari SH. In silico evidence of high frequency of miRNA‐related SNPs in Esophageal Squamous Cell Carcinoma. J Cell Physiol 2019; 235:966-978. [DOI: 10.1002/jcp.29012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Fatemeh Rafieenia
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
- Student Research Committee Mashhad University of Medical Sciences Mashhad Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
- Immunology Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Arash Poursheikhani
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
| | | | - Amir Jebelli
- Stem Cell and Regenerative Medicine Research Department Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch Mashhad Iran
| | - Fatemeh Molaei
- Medical Genetics Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Hamid Aghaee‐Bakhtiari
- Bioinformatics Research Group Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
21
|
Chen S, Yi Y, Xia T, Hong Z, Zhang Y, Shi G, He Z, Zhong S. The influences of red wine in phenotypes of human cancer cells. Gene 2019; 702:194-204. [PMID: 30366081 PMCID: PMC6478559 DOI: 10.1016/j.gene.2018.10.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 02/05/2023]
Abstract
Alcohol intake increases the risk of cancer development. Approximately 3.6% human cancers worldwide derive from chronic alcohol drinking, including oral, liver, breast and other organs. Our studies in vivo and in vitro have demonstrated that diluted ethanol increase RNA Pol III gene transcription and promotes cell proliferation and transformation, as well as tumor formation. However, it is unclear about the effect of red wines on the human cancer cells. In present study, we investigated the roles of red wine in human cancer cell growth, colony formation and RNA Pol III gene transcription. Low concentration (12.5 mM to 25 mM) of ethanol enhances cell proliferation of breast and esophageal cancer lines, whereas its higher concentration (100 mM to 200 mM) slightly decreases the rates. In contrast, red wines significantly repress cell proliferation of different human cancer lines from low dose to high dose. The results reveal that the red wine also inhibits colony formation of human breast cancer and esophageal carcinoma cells. The effects of repression on different human cancer lines are in a dose-dependent manner. Further analysis indicates that ethanol increases RNA Pol III gene transcription, whereas the red wines significantly reduce transcription of the genes. Interestingly, the effects of mature wine (brick red) on cancer cell phenotypes are much stronger than young wine (intense violet). Together, these new findings suggest that red wines may contain some bioactive components, which are able to inhibit human cancer cell growth and colony formation.
Collapse
Affiliation(s)
- Songlin Chen
- Department of Cardiothoracic Surgery, Xiamen University Affiliated Southeast Hospital, China
| | - Yunfeng Yi
- Department of Cardiothoracic Surgery, Xiamen University Affiliated Southeast Hospital, China
| | - Ting Xia
- Department of Cardiothoracic Surgery, Xiamen University Affiliated Southeast Hospital, China
| | - Zaifa Hong
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ganggang Shi
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China
| | - Zhimin He
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China
| | - Shuping Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Huang C, Zhang Y, Zhong S. Alcohol Intake and Abnormal Expression of Brf1 in Breast Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4818106. [PMID: 31781337 PMCID: PMC6874981 DOI: 10.1155/2019/4818106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most common malignant disease of females. Overall, one woman in every nine will get breast cancer at some time in her life. Epidemiological studies have indicated that alcohol consumption has most consistently been associated with breast cancer risk. However, the mechanism of alcohol-associated breast cancer remains to be addressed. Little is known about the effects of alcohol consumption on Brf1 (TFIIIB-related factor 1) expression and RNA Pol III gene (RNA polymerase III-dependent gene) transcription, which are responsible for protein synthesis and tightly linked to cell proliferation, cell transformation, and tumor development. Emerging evidences have indicated that alcohol induces deregulation of Brf1 and Pol III genes to cause the alterations of cell phenotypes and tumor formation. In this paper, we summarize the progresses regarding alcohol-caused increase in the expression of Brf1 and Pol III genes and analysis of its molecular mechanism of breast cancer. As the earlier and accurate diagnosis approach of breast cancer is not available yet, exploring the molecular mechanism and identifying the biomarker of alcohol-associated breast cancer are especially important. Recent studies have demonstrated that Brf1 is overexpressed in most ER+ (estrogen receptor positive) cases of breast cancer and the change in cellular levels of Brf1 reflects the therapeutic efficacy and prognosis of this disease. It suggests that Brf1 may be a potential diagnosis biomarker and a therapeutic target of alcohol-associated breast cancer.
Collapse
Affiliation(s)
- Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Yanmei Zhang
- Department of Pharmacology of Shantou University Medical College, China
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuping Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
23
|
He K, Zhang L, Long X. Quantitative assessment of the association between APC promoter methylation and breast cancer. Oncotarget 2018; 7:37920-37930. [PMID: 27191268 PMCID: PMC5122360 DOI: 10.18632/oncotarget.9354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022] Open
Abstract
Adenomatous polyposis coli (APC) is an important tumor suppressor gene in breast cancer. However, there were inconsistent conclusions in the association between APC promoter methylation and breast cancer. Hence, we conducted a meta-analysis to quantitatively assess the clinicopathological significance and diagnosis role of APC methylation in breast cancer. In total, 3172 samples from 29 studies were performed in this study. The odds ratio (OR) of APC methylation was 5.92 (95% CI = 3.16–11.07) in breast cancer cases compared to controls,. The APC promoter methylation was associated with cancer stage (OR = 0.47, 95% CI = 0.28–0.80, P = 0.006), lymph node metastases (OR = 0.55, 95% CI = 0.36–0.84, P = 0.005) and ER status (OR = 1.34, 95% CI = 1.03–1.73, P = 0.003) in breast cancer. Furthermore, the sensitivity and specificity for all included studies were 0.444 (95% CI: 0.321–0.575, P < 0.0001) and 0.976 (95% CI: 0.916–0.993, P < 0.0001), respectively. These results suggested that APC promoter methylation was associated with breast cancer risk, and it could be a valuable biomarker for diagnosis, treatment and prognosis of breast cancer.
Collapse
Affiliation(s)
- Keli He
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Department of Clinical Laboratory, The First People's Hospital of Changde City, Changde, 415003, China
| | - Li Zhang
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinghua Long
- Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
24
|
Zhang Y, Wu H, Yang F, Ning J, Li M, Zhao C, Zhong S, Gu K, Wang H. Prognostic Value of the Expression of DNA Repair-Related Biomarkers Mediated by Alcohol in Gastric Cancer Patients. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:367-377. [PMID: 29331492 DOI: 10.1016/j.ajpath.2017.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
Alcohol consumption likely induces gastric carcinogenesis through deregulation of RNA polymerase (Pol) III genes and oxidative damage. Transcription factor IIB-related factor 1 (BRF1) overexpression alleviates RNA Pol III transcription inhibition through breast cancer susceptibility gene 1 (BRCA1). Myeloperoxidase (MPO) involvement in cancer is induced by alcohol-mediated oxidative damage. BRCA1/2 and MPO play key roles in DNA repair. BRCA1 and BRCA2 exert different roles in homologous recombination repair. By using human gastric cancer (GC) biopsies, we investigated the prognostic value of these proteins upon alcohol induction. In total, high expression of BRF1 (P = 0.010) and positive cell infiltration of MPO (P = 0.004) in tumor tissues as well as positive expression of BRCA1 (P < 0.001) in para-tumor tissues were more frequent in GC patients with hazardous or harmful alcohol consumption habits. BRF1 (P = 0.021), BRCA2 (P < 0.001), and MPO (P = 0.039) were independent prognostic factors for disease-free survival. BRCA1 (P = 0.005) and BRCA2 (P < 0.001) also were identified as independent prognostic factors for overall survival. Furthermore, BRCA2 was an independent unfavorable prognostic factor for disease-free survival and overall survival (P < 0.001) in GC patients who underwent platinum-based adjuvant chemotherapy. BRF1, BRCA1/2, and MPO are DNA repair-related biomarkers, induced by alcohol with prognostic value in GC patients.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongyang Wu
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Feng Yang
- Department of Pathology, Basic Medical School of Anhui Medical University, Hefei, China
| | - Jie Ning
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Li
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenchen Zhao
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kangsheng Gu
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
25
|
Yi Y, Lei J, Shi G, Chen S, Zhang Y, Hong Z, He Z, Zhong S. The Effects of Liquor Spirits on RNA Pol III Genes and Cell Growth of Human Cancer Lines. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/fns.2018.93016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Fang Z, Yi Y, Shi G, Li S, Chen S, Lin Y, Li Z, He Z, Li W, Zhong S. Role of Brf1 interaction with ERα, and significance of its overexpression, in human breast cancer. Mol Oncol 2017; 11:1752-1767. [PMID: 28972307 PMCID: PMC5709663 DOI: 10.1002/1878-0261.12141] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/06/2017] [Accepted: 09/17/2017] [Indexed: 02/05/2023] Open
Abstract
TFIIB-related factor 1 (Brf1) modulates the transcription of RNA Pol III genes (polymerase-dependent genes). Upregulation of Pol III genes enhances tRNA and 5S RNA production and increases the translational capacity of cells to promote cell transformation and tumor development. However, the significance of Brf1 overexpression in human breast cancer (HBC) remains to be investigated. Here, we investigate whether Brf1 expression is increased in the samples of HBC, and we explore its molecular mechanism and the significance of Brf1 expression in HBC. Two hundred and eighteen samples of HBC were collected to determine Brf1 expression by cytological and molecular biological approaches. We utilized colocalization, coimmunoprecipitation, and chromatin immunoprecipitation methods to explore the interaction of Brf1 with estrogen receptor alpha (ERα). We determined how Brf1 and ERα modulate Pol III genes. The results indicated that Brf1 is overexpressed in most cases of HBC, which is associated with an ER-positive status. The survival period of the cases with high Brf1 expression is significantly longer than those with low levels of Brf1 after hormone treatment. ERα mediates Brf1 expression. Brf1 and ERα are colocalized in the nucleus. These results indicate an interaction between Brf1 and ERα, which synergistically regulates the transcription of Pol III genes. Inhibition of ERα by its siRNA or tamoxifen reduces cellular levels of Brf1 and Pol III gene expression and decreases the rate of colony formation of breast cancer cells. Together, these studies demonstrate that Brf1 is a good biomarker for the diagnosis and prognosis of HBC. This interaction of Brf1 with ERα and Brf1 itself are potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Zeng Fang
- Laboratory of General SurgeryFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Yunfeng Yi
- Department of Cardiothoracic SurgeryXiamen University Affiliated Southeast HospitalZhangzhouChina
| | - Ganggang Shi
- Department of PharmacologyShantou University Medical CollegeChina
| | - Songqi Li
- Laboratory of General SurgeryFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Songlin Chen
- Department of Cardiothoracic SurgeryXiamen University Affiliated Southeast HospitalZhangzhouChina
| | - Ying Lin
- Laboratory of General SurgeryFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Zhi Li
- Laboratory of General SurgeryFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Zhimin He
- Cancer Center of Guangzhou Medical UniversityGuangzhouChina
| | - Wen Li
- Laboratory of General SurgeryFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Shuping Zhong
- Department of PharmacologyShantou University Medical CollegeChina
- Cancer Center of Guangzhou Medical UniversityGuangzhouChina
- Department of Biochemistry and Molecular MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngeleCAUSA
| |
Collapse
|
27
|
WITHDRAWN: Abnormal expression of TFIIIB subunits and RNA Pol III genes is associated with hepatocellular carcinoma. LIVER RESEARCH 2017. [DOI: 10.1016/j.livres.2017.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Park JL, Lee YS, Kunkeaw N, Kim SY, Kim IH, Lee YS. Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics 2017; 9:171-187. [PMID: 28112569 DOI: 10.2217/epi-2016-0108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA polymerase III (Pol III) synthesizes a range of medium-sized noncoding RNAs (collectively 'Pol III genes') whose early established biological roles were so essential that they were considered 'housekeeping genes'. Besides these fundamental functions, diverse unconventional roles of mammalian Pol III genes have recently been recognized and their expression must be exquisitely controlled. In this review, we summarize the epigenetic regulation of Pol III genes by chromatin structure, histone modification and CpG DNA methylation. We also recapitulate the association between dysregulation of Pol III genes and diseases such as cancer and neurological disorders. Additionally, we will discuss why in-depth molecular studies of Pol III genes have not been attempted and how nc886, a Pol III gene, may resolve this issue.
Collapse
Affiliation(s)
- Jong-Lyul Park
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 305-806, Korea.,Department of Functional Genomics, University of Science & Technology, Daejeon 305-806, Korea
| | - Yeon-Su Lee
- Cancer Genomics Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Nawapol Kunkeaw
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1072, USA.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, KRIBB, Daejeon 305-806, Korea.,Department of Functional Genomics, University of Science & Technology, Daejeon 305-806, Korea
| | - In-Hoo Kim
- Graduate School of Cancer Science & Policy, National Cancer Center, Goyang 10408, Korea
| | - Yong Sun Lee
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1072, USA.,Graduate School of Cancer Science & Policy, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
29
|
Lei J, Chen S, Zhong S. Abnormal expression of TFIIIB subunits and RNA Pol III genes is associated with hepatocellular carcinoma. LIVER RESEARCH 2017; 1:112-120. [PMID: 29276645 PMCID: PMC5739085 DOI: 10.1016/j.livres.2017.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The levels of the products of RNA polymerase III-dependent genes (Pol III genes), including tRNAs and 5S rRNA, are elevated in transformed and tumor cells, which potentiate tumorigenesis. TFIIB-related factor 1 (Brf1) is a key transcription factor and specifically regulates the transcription of Pol III genes. In vivo and in vitro studies have demonstrated that a decrease in Brf1 reduces Pol III gene transcription and is sufficient for inhibiting cell transformation and tumor formation. Emerging evidence indicates that dysregulation of Brf1 and Pol III genes is linked to the development of hepatocellular carcinoma (HCC) in humans and animals. We have reported that Brf1 is overexpressed in human liver cancer patients and that those with high Brf1 levels have shorter survivals. This review summarizes the effects of dysregulation of these genes on HCC and their regulation by signaling pathways and epigenetics. These novel data should help us determine the molecular mechanisms of HCC from a different perspective and guide the development of therapeutic approaches for HCC patients.
Collapse
Affiliation(s)
- Junxia Lei
- School of medicine, South china university of technology, China
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Songlin Chen
- Department of Cardiothoracic Surgery, Xiamen University Affiliated Southeast Hospital, China
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Corresponding author. Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. (S. Zhong)
| |
Collapse
|
30
|
Yi Y, Huang C, Zhang Y, Tian S, Lei J, Chen S, Shi G, Wu Z, Xia N, Zhong S. Exploring a common mechanism of alcohol-induced deregulation of RNA Pol III genes in liver and breast cells. Gene 2017; 626:309-318. [PMID: 28552569 PMCID: PMC5521807 DOI: 10.1016/j.gene.2017.05.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/10/2017] [Accepted: 05/24/2017] [Indexed: 02/07/2023]
Abstract
Alcohol intake is associated with numbers of different human cancers, such as hepatocellular carcinoma (HCC) and breast cancer. However, the molecular mechanism remains to be elucidated. RNA polymerase III-dependent genes (Pol III genes) deregulation elevates cellular production of tRNAs and 5S rRNA, resulting in an increase in translational capacity, which promote cell transformation and tumor formation. To explore a common mechanism of alcohol-associated human cancers, we have comparably analyzed that alcohol causes deregulation of Pol III genes in liver and breast cells. Our results reveal that alcohol enhances RNA Pol III gene transcription in both liver and breast cells. The induction of Pol III genes caused by alcohol in ER+ breast cancer lines or liver tumor lines are significantly higher than in their non-tumor cell lines. Alcohol increases cellular levels of Brf1 mRNA and protein, (which depeted) Brf1 is a key transcription factor and specifically regulate Pol III gene activity. Alcohol activates JNK1 to upregulate transcription of Brf1 and Pol III genes, whereas inhibition of JNK1 by SP600125 or its siRNA significantly decreases the induction of these genes. Furthermore, alcohol increases the rates of transformation of liver and breast cells, repressed JNK1 and Brf1 expression decrease transcription of Pol III genes and reduce the rates of colony formation of AML-12 and MCF-10 cells. Together, these studies support the idea that alcohol induces deregulation of Brf1 and RNA Pol III genes in liver and breast cells, which share a common signaling pathway to promote cell transformation. Through the common mechanism, alcohol-induced deregulation of RNA Pol III genes brings about greater phenotypic changes.
Collapse
Affiliation(s)
- Yunfeng Yi
- Department of Cardiothoracic Surgery, Xiamen University Affiliated Southeast Hospital, China
| | - Chenghao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, China
| | - Suke Tian
- Department of Cardiothoracic Surgery, Xiamen University Affiliated Southeast Hospital, China
| | - Junxia Lei
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, China
| | - Songlin Chen
- Department of Cardiothoracic Surgery, Xiamen University Affiliated Southeast Hospital, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Shuping Zhong
- Department of Pharmacology, Shantou University Medical College, China; Cancer Center of Guangzhou Medical University, China; Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
31
|
Shi G, Zhong S. Alcohol-associated cancer and deregulation of Pol III genes. Gene 2017; 612:25-28. [PMID: 27697617 PMCID: PMC5374039 DOI: 10.1016/j.gene.2016.09.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 02/05/2023]
Abstract
Emerging evidence indicates that alcohol intake is associated with human cancers in different organs. However, the molecular mechanism of alcohol-associated human cancers remains to be elucidated. Here, this paper aimed to clarify a novel mechanism of alcohol-promoted cell transformation and tumor development. Alcohol induces JNK1 activation and increases cellular levels of c-Jun to upregulate Brf1 expression and Pol III gene transcription, leading to an enhancement of rates of cell transformation and tumor formation.
Collapse
Affiliation(s)
- Ganggang Shi
- Shantou University Medical College, Shantou, Guangdong Province, China
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|