1
|
Li L, Li W, Wu C, Xi Y, Guo L, Ji Y, Jiang L, Li J, Yun J, Chen G, Li Y, Liu Y, Mu D, Han Y, Sun L, Xia Q, Teng X, Che N, Wu W, Qiu X, Liu C, Yan X, Li D, Zhang Z, Wang Z, Li Y, Wang Z, Guo L, Nie X, Geng J, Zhou J, Ying J. Real-world data on ALK rearrangement test in Chinese advanced non-small cell lung cancer (RATICAL): a nationwide multicenter retrospective study. Cancer Commun (Lond) 2024; 44:992-1004. [PMID: 39016057 PMCID: PMC11492361 DOI: 10.1002/cac2.12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/16/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase (ALK) test in advanced non-small cell lung cancer (NSCLC) can help physicians provide target therapies for patients harboring ALK gene rearrangement. This study aimed to investigate the real-world test patterns and positive rates of ALK gene rearrangements in advanced NSCLC. METHODS In this real-world study (ChiCTR2000030266), patients with advanced NSCLC who underwent an ALK rearrangement test in 30 medical centers in China between October 1, 2018 and December 31, 2019 were retrospectively analyzed. Interpretation training was conducted before the study was initiated. Quality controls were performed at participating centers using immunohistochemistry (IHC)-VENTANA-D5F3. The positive ALK gene rearrangement rate and consistency rate were calculated. The associated clinicopathological characteristics of ALK gene rearrangement were investigated as well. RESULTS The overall ALK gene rearrangement rate was 6.7% in 23,689 patients with advanced NSCLC and 8.2% in 17,436 patients with advanced lung adenocarcinoma. The quality control analysis of IHC-VENTANA-D5F3 revealed an intra-hospital consistency rate of 98.2% (879/895) and an inter-hospital consistency rate of 99.2% (646/651). IHC-VENTANA-D5F3 was used in 53.6%, real-time polymerase chain reaction (RT-PCR) in 25.4%, next-generation sequencing (NGS) in 18.3%, and fluorescence in-situ hybridization (FISH) in 15.9% in the adenocarcinoma subgroup. For specimens tested with multiple methods, the consistency rates confirmed by IHC-VENTANA-D5F3 were 98.0% (822/839) for FISH, 98.7% (1,222/1,238) for NGS, and 91.3% (146/160) for RT-PCR. The overall ALK gene rearrangement rates were higher in females, patients of ≤ 35 years old, never smokers, tumor cellularity of > 50, and metastatic specimens used for testing in the total NSCLC population and adenocarcinoma subgroup (all P < 0.05). CONCLUSIONS This study highlights the real-world variability and challenges of ALK test in advanced NSCLC, demonstrating a predominant use of IHC-VENTANA-D5F3 with high consistency and distinct clinicopathological features in ALK-positive patients. These findings underscore the need for a consensus on optimal test practices and support the development of refined ALK test strategies to enhance diagnostic accuracy and therapeutic decision-making in NSCLC.
Collapse
Affiliation(s)
- Lin Li
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Wencai Li
- Department of Pathologythe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanP. R. China
| | - Chunyan Wu
- Department of PathologyShanghai Pulmonary Hospital, School of Medicine, Tongji UniversityShanghaiP. R. China
| | - Yanfeng Xi
- Department of PathologyCancer Hospital Affiliated to Shanxi Medical UniversityShanxi Province Cancer HospitalShanxi Hospital Affiliated to Cancer HospitalChinese Academy of Medical SciencesTaiyuanShanxiP. R. China
| | - Lei Guo
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Yuan Ji
- Department of PathologyZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Lili Jiang
- Department of PathologyWest China Hospital of Sichuan UniversityChengduSichuanP. R. China
| | - Ji Li
- Department of PathologyPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| | - Jingping Yun
- Department of PathologySun Yat‐sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer MedicineGuangzhouGuangdongP. R. China
| | - Gang Chen
- Department of PathologyFujian Cancer HospitalFujian Medical University Cancer HospitalFuzhouFujianP. R. China
| | - Yuan Li
- Department of PathologyDepartment of OncologyFudan University Cancer CenterShanghai Medical College of Fudan UniversityShanghaiP. R. China
| | - Yueping Liu
- Department of PathologyThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiP. R. China
| | - Dianbin Mu
- Department of PathologyShandong Cancer HospitalJinanShandongP. R. China
| | - Yuchen Han
- Department of PathologyShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Leina Sun
- Department of PathologyTianjin Medical University Cancer Institute and HospitalTianjinP. R. China
| | - Qingxin Xia
- Department of Pathologythe Affiliated Cancer Hospital of Zhengzhou UniversityHenan Provincial Cancer HospitalZhengzhouHenanP. R. China
| | - Xiaodong Teng
- Department of Pathologythe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhouZhejiangP. R. China
| | - Nanying Che
- Department of PathologyBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingP. R. China
| | - Wei Wu
- Department of PathologyCancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital)HangzhouZhejiangP. R. China
| | - Xueshan Qiu
- Department of Pathologythe First Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Chao Liu
- Department of PathologyGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouGuangdongP. R. China
| | - Xiaochu Yan
- Institute of PathologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingP. R. China
| | - Daiqiang Li
- Department of Pathologythe Second Xiangya Hospital of Central South UniversityChangshaHunanP. R. China
| | - Zhihong Zhang
- Department of Pathologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
| | - Zhe Wang
- Department of PathologyXijing HospitalFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Yujun Li
- Department of Pathologythe Affiliated Hospital of Qingdao UniversityQingdaoShandongP. R. China
| | - Zheng Wang
- Department of PathologyBeijing Hospital, National Center of GerontologyBeijingP. R. China
| | - Lingchuan Guo
- Department of Pathologythe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| | - Xiu Nie
- Department of PathologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Jingshu Geng
- Department of PathologyHarbin Medical University Cancer HospitalHarbinHeilongjiangP. R. China
| | - Jianhua Zhou
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Jianming Ying
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingP. R. China
| |
Collapse
|
2
|
Li W, Zhang J, Wang Z, Li L, Ma J, Zhou X, Wang J, Liang Z, Ying J. Guidelines for clinical practice of ALK fusion detection in non-small-cell lung cancer: a proposal from the Chinese RATICAL study group. JOURNAL OF THE NATIONAL CANCER CENTER 2021; 1:123-131. [PMID: 39036803 PMCID: PMC11256616 DOI: 10.1016/j.jncc.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
The presence of anaplastic lymphoma kinase (ALK) rearrangement defines a molecular subtype of non-small cell lung cancer (NSCLC). ALK inhibitors (ALKIs) confer significant clinical benefits in patients with ALK-positive advanced NSCLC; therefore, it is of great clinical significance to select accurate, rapid, and appropriate ALK testing methods to screen for patients who are suitable for anti-ALK treatment. In recent years, great progress has been made in the development and clinical application of ALKIs, as well as in our understanding of acquired drug resistance mechanisms. Meanwhile, new ALK companion diagnostic platforms have been developed and applied in clinical practice. Although many studies have shown that there is a high rate of concordance among these platforms, new problems continue to appear during testing. To maximize the benefit for patients, accurate testing results can be obtained by first selecting the appropriate testing method and then formulating, optimizing, and complying with the standardized testing process in accordance with the testing population and specimen types. With the ongoing accumulation of clinical practice data, experience from quality control of ALK testing, and results from multicenter research, an updated expert consensus is necessary. The experts who participated in the discussion and development of this guideline have a rich background in theoretical and clinical testing experience, which ensures the practical value of the information presented in this guideline.
Collapse
Affiliation(s)
- Wenbin Li
- Departments of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jing Zhang
- Departments of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhijie Wang
- Departments of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Li
- Departments of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Ma
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450000, China
| | - Xiaoyang Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jie Wang
- Departments of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Jianming Ying
- Departments of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Experts from the RATICAL study
- Departments of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Departments of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450000, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
3
|
Zhou F, Shum E, Moreira AL. Molecular cytology of the respiratory tract and pleura. Cytopathology 2021; 33:14-22. [PMID: 34333812 DOI: 10.1111/cyt.13045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/06/2021] [Accepted: 07/24/2021] [Indexed: 01/01/2023]
Abstract
There is growing evidence that molecular testing is feasible on all types of cytological preparation, which is fortunate as more diagnostic markers and biomarkers for targeted therapies are discovered for use in pulmonary and pleural malignancies. In this article we will discuss the pre-analytic, analytic, and post-analytic (interpretive) considerations for successful implementation of molecular tests for diagnostic and predictive markers in respiratory and pleural cytology. The vast majority of laboratories are familiar with, and have validated their molecular protocols for, formalin-fixed paraffin-embedded surgical specimens, which are not directly applicable to cytology specimens. Thus, rigorous validation must be performed for each type of fixative and cytology preparation before it is implemented in the clinical setting.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Pathology, New York University Langone Health, New York, NY, USA
| | - Elaine Shum
- Division of Hematology and Medical Oncology, Department of Medicine, New York University Langone Health, New York, NY, USA
| | - Andre L Moreira
- Department of Pathology, New York University Langone Health, New York, NY, USA
| |
Collapse
|
4
|
Schmitt F, Di Lorito A, Vielh P. Molecular Testing on Cytology for Gene Fusion Detection. Front Med (Lausanne) 2021; 8:643113. [PMID: 34295907 PMCID: PMC8289888 DOI: 10.3389/fmed.2021.643113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/31/2021] [Indexed: 12/26/2022] Open
Abstract
Cytology samples are suitable for the study of genotypic and phenotypic changes observed in different tumors. Being a minimally invasive technique, cytology sampling has been used as an acceptable alternative to track the alterations associated with tumor progression. Although the detection of gene mutations is well-established on cytology, in the last few years, gene fusion detections are becoming mandatory, especially in some tumor types such as lung cancer. Different technologies are available such as immunocytochemistry, fluorescence in situ hybridization, reverse transcription-polymerase chain reaction, and massive parallel sequencing approaches. Considering that many new drugs targeted fusion proteins, cytological samples can be of use to detect gene fusions in solid and lymphoproliferative tumor patients. In this article, we revised the use of several techniques utilized to check gene fusions in cytological material.
Collapse
Affiliation(s)
- Fernando Schmitt
- Medical Faculty of Porto University, Porto, Portugal.,Unit of Molecular Pathology of Institute of Molecular Pathology and Immunology of University of Porto, Porto, Portugal.,CIntesis@RISE, Porto, Portugal
| | | | | |
Collapse
|
5
|
Siemanowski J, Heydt C, Merkelbach-Bruse S. Predictive molecular pathology of lung cancer in Germany with focus on gene fusion testing: Methods and quality assurance. Cancer Cytopathol 2021; 128:611-621. [PMID: 32885916 DOI: 10.1002/cncy.22293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
Predictive molecular testing has become an important part of the diagnosis of any patient with lung cancer. Using reliable methods to ensure timely and accurate results is inevitable for guiding treatment decisions. In the past few years, parallel sequencing has been established for mutation testing, and its use is currently broadened for the detection of other genetic alterations, such as gene fusion and copy number variations. In addition, conventional methods such as immunohistochemistry and in situ hybridization are still being used, either for formalin-fixed, paraffin-embedded tissue or for cytological specimens. For the development and broad implementation of such complex technologies, interdisciplinary and regional networks are needed. The Network Genomic Medicine (NGM) has served as a model of centralized testing and decentralized treatment of patients and incorporates all German comprehensive cancer centers. Internal quality control, laboratory accreditation, and participation in external quality assessment is mandatory for the delivery of reliable results. Here, we provide a summary of current technologies used to identify patients who have lung cancer with gene fusions, briefly describe the structures of NGM and the national NGM (nNGM), and provide recommendations for quality assurance.
Collapse
Affiliation(s)
- Janna Siemanowski
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Carina Heydt
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | | |
Collapse
|
6
|
Grigoriadou GΙ, Esagian SM, Ryu HS, Nikas IP. Molecular Profiling of Malignant Pleural Effusions with Next Generation Sequencing (NGS): Evidence that Supports Its Role in Cancer Management. J Pers Med 2020; 10:jpm10040206. [PMID: 33139621 PMCID: PMC7712846 DOI: 10.3390/jpm10040206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
Malignant pleural effusions (MPEs) often develop in advanced cancer patients and confer significant morbidity and mortality. In this review, we evaluated whether molecular profiling of MPEs with next generation sequencing (NGS) could have a role in cancer management, focusing on lung cancer. We reviewed and compared the diagnostic performance of pleural fluid liquid biopsy with other types of samples. When applied in MPEs, NGS may have comparable performance with corresponding tissue biopsies, yield higher DNA amount, and detect more genetic aberrations than blood-derived liquid biopsies. NGS in MPEs may also be preferable to plasma liquid biopsy in advanced cancer patients with a MPE and a paucicellular or it could be difficult to obtain tissue/fine-needle aspiration biopsy. Of interest, post-centrifuge supernatant NGS may exhibit superior results compared to cell pellet, cell block or other materials. NGS in MPEs can also guide clinicians in tailoring established therapies and identifying therapy resistance. Evidence is still premature regarding the role of NGS in MPEs from patients with cancers other than lung. We concluded that MPE processing could provide useful prognostic and theranostic information, besides its diagnostic role.
Collapse
Affiliation(s)
- Georgia Ι. Grigoriadou
- 1st Department of Medical Oncology, Theageneio Anticancer Hospital, 54007 Thessaloniki, Greece;
| | - Stepan M. Esagian
- Department of Medicine, School of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Ilias P. Nikas
- School of Medicine, European University of Cyprus, 2404 Nicosia, Cyprus
- Correspondence:
| |
Collapse
|
7
|
Steinfort DP, Kranz S, Dowers A, Leas L, Dimitriadis V, Pham K, Hsu A, Bozinovski S, Irving LB, Loveland P, Christie M. Sensitive molecular testing methods can demonstrate NSCLC driver mutations in malignant pleural effusion despite non-malignant cytology. Transl Lung Cancer Res 2019; 8:513-518. [PMID: 31555523 DOI: 10.21037/tlcr.2019.07.05] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Malignant pleural effusion (MPE) may be diagnosed by cytologic evaluation of pleural fluid, though false negative results can occur. Pleural effusions may provide a source of tumour material for genotyping in lung cancer patients. Detection of MPE may be improved through use of highly sensitive molecular techniques. We identified five patients with non-small cell lung cancer (NSCLC) with initial pleural fluid samples that were non-malignant on cytology, but were subsequently clinically confirmed to have MPE. Tumour mutation status was confirmed via routine testing of diagnostic clinical specimens. Cytologically negative pleural fluid cell-block specimens were analysed by amplicon-based parallel sequencing (APS) for somatic mutations commonly detected in NSCLC, and selected cases by improved and complete enrichment CO-amplification at lower denaturation temperature PCR (ICECOLD PCR) for known mutations. Mutations were detected in three out of three (sensitivity 100%) cytologically non-malignant pleural fluids from patients with a known mutation: two patients with known Kirsten rat sarcoma (KRAS) mutation demonstrated the same KRAS mutation in their pleural fluids by APS, both at approximately 2% mutant allele frequency. In one patient with a known KRAS mutation, ICECOLD PCR detected the same KRAS variant at 0.7% frequency. No mutations were detected in patients with wild-type findings from reference samples (specificity 100%). Sensitive DNA sequencing methods can detect cancer-driver mutations in cytologically non-malignant pleural fluid specimens from NSCLC patients with MPE. Our findings demonstrate the feasibility of sensitive molecular diagnostic techniques for improvement of diagnostic assessment of pleural effusions in patients with lung cancer.
Collapse
Affiliation(s)
- Daniel P Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Parkville, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - Sevastjan Kranz
- Department of Pathology, Royal Melbourne Hospital, Parkville, Australia
| | - Anthony Dowers
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Leakhena Leas
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Voula Dimitriadis
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Kym Pham
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Arthur Hsu
- Department of Pathology, University of Melbourne, Parkville, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Louis B Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Parkville, Australia
| | - Paula Loveland
- Department of Respiratory Medicine, Royal Melbourne Hospital, Parkville, Australia
| | - Michael Christie
- Department of Pathology, Royal Melbourne Hospital, Parkville, Australia.,Department of Pathology, University of Melbourne, Parkville, Australia
| |
Collapse
|
8
|
Comparison of Epidermal Growth Factor Receptor Gene Mutations Identified Using Pleural Effusion and Primary Tumor Tissue Samples in Non-Small Cell Lung Cancer. Appl Immunohistochem Mol Morphol 2019; 26:e44-e51. [PMID: 28800007 DOI: 10.1097/pai.0000000000000543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although the use of pleural effusion samples for epidermal growth factor receptor (EGFR) testing in lung cancer is increasing, the accuracy rate and effectiveness of identifying EGFR mutations using these samples, rather than primary tumor tissue samples, is not established. MATERIALS AND METHODS One hundred ninety-two advanced, non-small cell lung cancer patients were enrolled into this study. All patients had primary tumor tissue and corresponding pleural effusion samples, and we employed the Amplification Refractory Mutation System to detect EGFR gene mutations in these samples. RESULT The number of EGFR mutations detected in primary tumor tissue and pleural effusion samples was 119 (61.98%) and 113 (58.85%), respectively. The EGFR-mutation rate was significantly higher in female than in male patients, and in adenocarcinoma than in nonadenocarcinoma patients (P=0.000). Single mutations in exons 19 and 21 were the predominant observed mutation type, and the overall concordance rate of EGFR-mutation status between the 192 matched pleural effusion and primary tumor tissue samples was 86.98%. CONCLUSIONS We observed a high concordance rate between EGFR mutations identified using primary tumor tissue and corresponding pleural effusion samples by Amplification Refractory Mutation System. Thus, it is likely that pleural effusion sampling from advanced non-small cell lung cancer patients, especially those with adenocarcinoma, may be effective in EGFR-mutation screening.
Collapse
|
9
|
Lin O, Rudomina D, Feratovic R, Sirintrapun SJ. Rapid on-site evaluation using telecytology: A major cancer center experience. Diagn Cytopathol 2019; 47:15-19. [PMID: 29575752 PMCID: PMC8059101 DOI: 10.1002/dc.23925] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Rapid on-site evaluation (ROSE) with cytology preparations plays a critical role in minimally invasive procedures. The time spent by a pathologist performing ROSE is unpredictable and could be used for more cost-effective activities. The solution encountered by several institutions to address this issue is the use of telecytology (TC). This study analyzes the experience of using telecytology for ROSE in a major cancer center over a period of over 2 years. METHODS A retrospective analysis of all remote TC evaluations for adequacy on fine needle aspiration (FNA) and touch preparations (TP) of core biopsies (CB) performed at a major cancer center was performed. The preliminary adequacy assessment was then compared to the adequacy assessment at final diagnosis. RESULTS A total of 12 949 adequacy assessments were analyzed. The most common sites biopsied in our institution were lymph node, lung, and liver. There were 7725 adequacy assessments for CB (59.7%), while adequacy assessment for FNA specimens represented 40.3% (n = 5224) of the total number of specimens evaluated by ROSE. Perfect concordance between initial adequacy assessment and the adequacy assessment at final cytologic diagnosis was 93% (12 049/12 949). The final diagnosis adequacy upgrade rate was 6.7% (n = 863), and the adequacy downgrade (a specimen considered adequate on-site that was determined to be nondiagnostic on final examination) was 0.3% (n = 37). CONCLUSIONS TC can be easily implemented with the current technologies available. It is cost-effective and allows for better patient care with a more efficient use of the pathologist's time and laboratory resources.
Collapse
Affiliation(s)
- Oscar Lin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Dorota Rudomina
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Rusmir Feratovic
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - S Joseph Sirintrapun
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
10
|
Pawlikowska P, Faugeroux V, Oulhen M, Aberlenc A, Tayoun T, Pailler E, Farace F. Circulating tumor cells (CTCs) for the noninvasive monitoring and personalization of non-small cell lung cancer (NSCLC) therapies. J Thorac Dis 2019; 11:S45-S56. [PMID: 30775027 DOI: 10.21037/jtd.2018.12.80] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Growing evidences for tumor heterogeneity confirm that single-tumor biopsies frequently fail to reveal the widespread mutagenic profile of tumor. Repeated biopsies are in most cases unfeasible, especially in advanced cancers. We describe here how circulating tumor cells (CTCs) isolated from minimally invasive blood sample might inform us about intratumor heterogeneity, tumor evolution and treatment resistance. We also discuss the advances of CTCs research, most notably in molecularly selected non-small cell lung cancer (NSCLC) patients, highlighting challenges and opportunities related to personalized therapy.
Collapse
Affiliation(s)
- Patrycja Pawlikowska
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", Villejuif, France.,Gustave Roussy, Université Paris-Saclay, "Circulating Tumor Cells" Translational Platform, Villejuif, France
| | - Vincent Faugeroux
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", Villejuif, France.,Gustave Roussy, Université Paris-Saclay, "Circulating Tumor Cells" Translational Platform, Villejuif, France
| | - Marianne Oulhen
- Gustave Roussy, Université Paris-Saclay, "Circulating Tumor Cells" Translational Platform, Villejuif, France
| | - Agathe Aberlenc
- Gustave Roussy, Université Paris-Saclay, "Circulating Tumor Cells" Translational Platform, Villejuif, France
| | - Tala Tayoun
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", Villejuif, France.,Gustave Roussy, Université Paris-Saclay, "Circulating Tumor Cells" Translational Platform, Villejuif, France
| | - Emma Pailler
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", Villejuif, France.,Gustave Roussy, Université Paris-Saclay, "Circulating Tumor Cells" Translational Platform, Villejuif, France
| | - Françoise Farace
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", Villejuif, France.,Gustave Roussy, Université Paris-Saclay, "Circulating Tumor Cells" Translational Platform, Villejuif, France
| |
Collapse
|
11
|
Guo HQ, Jia J, Zhao LL, Zhao H, Wang C, Sun Y, Ying JM, Guo L, Cao J, Zhang ZH. Application of Ventana immunocytochemical analysis on ThinPrep cytology slides for detection of ALK rearrangement in patients with advanced non-small-cell lung cancer. BMC Cancer 2018; 18:1277. [PMID: 30572846 PMCID: PMC6302402 DOI: 10.1186/s12885-018-5184-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
Background Ventana ALK (D5F3) screening of anaplastic lymphoma kinase (ALK) gene rearrangement in tissue specimens has been approved by US FDA (Food and Drug Administration) to select treatment for non–small-cell lung carcinoma (NSCLC). However, tumor tissues are often not readily obtainable, and cytology specimens and may be the only tumor material available for diagnosis and molecular marker analysis. In this study, we evaluated the feasibility of ALK immunocytochemistry (ICC) on ThinPrep slides and determined a suitable scoring system for interpretation of the results. Methods One hundred twenty-one fine-needle aspirate (FNA) specimens from metastatic lesions of NSCLC were analyzed. ALK rearrangement was detected on ThinPrep cytology slides using the Ventana immunocytochemistry ALK-D5F3 system, which adopts two scoring systems for interpretation of the ICC results. The results were subsequently confirmed by reverse transcription polymerase chain reaction (RT-PCR) analysis and fluorescence in situ hybridization (FISH). Results Among the 121 ICC specimens, 16 that were considered ALK-positive by either scoring system were referred for PCR analysis. Among the ALK ICC-negative cases, 33 had correlated FISH ALK results. A total of 49 specimens that exhibited either a positive or negative ICC result with a correlated ALK status were analyzed statistically. ICC results showed a high concordance rate with the results of PCR/FISH analysis. The sensitivity and specificity of ALK ICC by the binary scoring algorithm were 68.75 and 96.97%, respectively. These values increased to 93.75 and 96.97%, respectively, when interpreted by the semiquantified interpretation system. Conclusions ALK ICC analysis on ThinPrep slides is a reliable ALK testing method, and the semiquantified interpretation system on cytology specimens is recommended rather than the binary scoring algorithm on tissue specimens.
Collapse
Affiliation(s)
- Hui Qin Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan 17 in the South, Beijing, 100021, China
| | - Jia Jia
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan 17 in the South, Beijing, 100021, China
| | - Lin Lin Zhao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan 17 in the South, Beijing, 100021, China
| | - Huan Zhao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan 17 in the South, Beijing, 100021, China
| | - Cong Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan 17 in the South, Beijing, 100021, China
| | - Yue Sun
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan 17 in the South, Beijing, 100021, China
| | - Jian Ming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan 17 in the South, Beijing, 100021, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan 17 in the South, Beijing, 100021, China
| | - Jian Cao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan 17 in the South, Beijing, 100021, China
| | - Zhi Hui Zhang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Panjiayuan 17 in the South, Beijing, 100021, China.
| |
Collapse
|
12
|
Li Y, Zhang T, Zhang J, Li W, Yuan P, Xing P, Zhang Z, Chuai S, Li J, Ying J. Response to crizotinib in advanced ALK-rearranged non-small cell lung cancers with different ALK-fusion variants. Lung Cancer 2018; 118:128-133. [PMID: 29571990 DOI: 10.1016/j.lungcan.2018.01.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Anaplastic lymphoma kinase (ALK) rearrangements are present in approximately 5% of non-small-cell lung cancers (NSCLCs). NSCLCs with ALK-rearrangement can be effectively treated with crizotinib. However, magnitude and duration of responses are found to be heterogeneous. This study explored the clinical efficacy of crizotinib in different ALK variants. METHODS Among 96 ALK-rearrangement patients treated with crizotinib, 60 patients were identified with tumor specimens that could be evaluated by next-generation sequencing (NGS). We retrospectively evaluated the efficacy of crizotinib in different ALK variants. RESULTS The median Progression-free survival (PFS) of the 96 ALK-rearrangement patients was 14.17 months. Among the 60 patients with NGS results, the most frequent variants were variant 3a/b (33.33%), variant 1 (23.33%) and variant 2 (15.00%). The percentage of rare EML4-ALK variants and non EML4-ALK variants were 10.00% and 18.33%. Survival analysis showed that patients with variant 2 appeared to have longer PFS than others (P = .021); also, patients with TP53 mutation seemed to have an unfavorable PFS than those with TP53 wild-type with a borderline p value (P = .068). After adjusting for other baseline characteristics, EML4-ALK variant 2 was identified as an important factor for a better PFS of crizotinib. We also found that patients with variant 3a/b had shorter duration of response to crizotinib; however, no significant difference of PFS was observed between the PFS of variant3a/b and non-v3 EML4-ALK variants. CONCLUSIONS Our results indicate prolonged PFS in patients with EML4-ALK variant 2.
Collapse
Affiliation(s)
- Yan Li
- Departments of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tongtong Zhang
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen Center, Shenzhen, China
| | - Jing Zhang
- Departments of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Li
- Departments of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Yuan
- Departments of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Puyuan Xing
- Departments of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | - Junling Li
- Departments of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jianming Ying
- Departments of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
13
|
Comparison of small biopsy specimens and surgical specimens for the detection of EGFR mutations and EML4-ALK in non-small-cell lung cancer. Oncotarget 2018; 7:59049-59057. [PMID: 27322143 PMCID: PMC5312294 DOI: 10.18632/oncotarget.10011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/29/2016] [Indexed: 12/22/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) fusion genes represent novel oncogenes that are associated with non-small-cell lung cancers (NSCLC). The feasibility of detecting EGFR mutations and ALK fusion genes in small biopsy specimens or surgical specimens was determined. Of the 721 NSCLC patients, a total of 305 cases were positive for EGFR mutations (42.3%). The rate of EGFR mutations in women was significantly higher than that in men. Histologically, the EGFR mutation rate in adenocarcinomas was significantly higher than that in squamous cell carcinomas. No difference in the EGFR mutation rate was observed between surgical specimens (42.1%) and small biopsy specimens (42.4%), which indicated that the EGFR mutation ratios in surgical specimens and small biopsy specimens were not different. In 385 NSCLC patients, 26 cases were positive for EML4-ALK (6.8%). However, 11.7% of the surgical specimens were EML4-ALK-positive, whereas the positive proportion in the small biopsy specimens was only 4.7%, which indicated that EML4-ALK-positive rate in the surgical specimens was significantly higher than that in the small biopsy specimens. Detection of EGFR gene mutations was feasible in small biopsy specimens, and screening for EML4-ALK expression in small biopsy specimens can be used to guide clinical treatments.
Collapse
|
14
|
[Ru(pipe)(dppb)(bipy)]PF 6: A novel ruthenium complex that effectively inhibits ERK activation and cyclin D1 expression in A549 cells. Toxicol In Vitro 2017; 44:382-391. [PMID: 28774850 DOI: 10.1016/j.tiv.2017.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 11/22/2022]
Abstract
Lung cancer is the most frequent type of cancer worldwide. In Brazil, only 14% of the patients diagnosed with lung cancer survived 5years in the last decades. Although improvements in the therapeutic approach, it is relevant to identify new chemotherapeutic agents. In this framework, ruthenium metal compounds emerge as a promising alternative to platinum-based compounds once they displayed lower cytotoxicity and more selectivity for tumor cells. The present study aimed to evaluate the antitumor potential of innovative ruthenium(II) complex, [Ru(pipe)(dppb)(bipy)]PF6 (PIPE) on A549 cells, which is derived from non-small cell lung cancer. Results demonstrated that PIPE effectively reduced the viability and proliferation rate of A549 cells. When PIPE was used at 9μM there was increase in G0/G1 cell population with concomitant reduction in frequency of cells in S-phase, indicating cell cycle arrest in G1/S transition. Antiproliferative activity of PIPE was associated to its ability of reducing cyclin D1 expression and ERK phosphorylation levels. Cytotoxic activity of PIPE on A549 cells was observed when PIPE was used at 18μM, which was associated to its ability of inducing apoptosis by intrinsic pathway. Taken together, the data demonstrated that PIPE is a promising antitumor agent and further in vivo studies should be performed.
Collapse
|
15
|
Pisapia P, Lozano MD, Vigliar E, Bellevicine C, Pepe F, Malapelle U, Troncone G. ALK and ROS1 testing on lung cancer cytologic samples: Perspectives. Cancer Cytopathol 2017; 125:817-830. [DOI: 10.1002/cncy.21899] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Pasquale Pisapia
- Department of Public Health; University of Naples Federico II; Naples Italy
| | - Maria D. Lozano
- Department of Pathology; University Clinic of Navarra; Pamplona Spain
| | - Elena Vigliar
- Department of Public Health; University of Naples Federico II; Naples Italy
| | | | - Francesco Pepe
- Department of Public Health; University of Naples Federico II; Naples Italy
| | - Umberto Malapelle
- Department of Public Health; University of Naples Federico II; Naples Italy
| | - Giancarlo Troncone
- Department of Public Health; University of Naples Federico II; Naples Italy
| |
Collapse
|
16
|
Li W, Zhang J, Guo L, Chuai S, Shan L, Ying J. Combinational Analysis of FISH and Immunohistochemistry Reveals Rare Genomic Events in ALK Fusion Patterns in NSCLC that Responds to Crizotinib Treatment. J Thorac Oncol 2017; 12:94-101. [DOI: 10.1016/j.jtho.2016.08.145] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/12/2016] [Accepted: 08/24/2016] [Indexed: 11/16/2022]
|