1
|
Epithelial Membrane Protein 1 Promotes Sensitivity to RSL3-Induced Ferroptosis and Intensifies Gefitinib Resistance in Head and Neck Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4750671. [PMID: 35432717 PMCID: PMC9007691 DOI: 10.1155/2022/4750671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/01/2022] [Accepted: 03/19/2022] [Indexed: 12/17/2022]
Abstract
Epithelial membrane protein (EMP1), a member of the peripheral myelin protein (PMP22) family, is involved in the development of various human malignancies. However, the expression level of EMP1 and its functional role in head and neck squamous cell carcinoma (HNSCC) remain unclear to date. Ferroptosis, a newly characterized form of regulated cell death, plays an essential role in tumorigenesis. In this study, we aimed to investigate the expression levels of EMP1 in HNSCC and normal tissues, as well as to identify the function of EMP1 in regulating ferroptosis during the progression of HNSCC. To further explore the biological function of EMP1 in vitro, transient transfection was used to overexpress EMP1 in the HNSCC cell lines Hep2 and Detroit562. Functionally, our results indicated that EMP1 overexpression could not affect the initiation of ferroptosis directly but reinforced RSL3-induced ferroptosis on HNSCC cells. Furthermore, mechanical study indicated that EMP1 mediated the ferroptosis via cell density-regulated Hippo-TAZ pathway and regulated the expression of Rac1 and NOX1. In addition, our study demonstrated that EMP1 overexpression could promote gefitinib resistance by targeting the MAPK pathway. In summary, our findings indicate that EMP1 may act as an oncogene and serve as a therapeutic target against malignant progression of HNSCC.
Collapse
|
2
|
New Insights into the Link between Melanoma and Thyroid Cancer: Role of Nucleocytoplasmic Trafficking. Cells 2021; 10:cells10020367. [PMID: 33578751 PMCID: PMC7916461 DOI: 10.3390/cells10020367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer remains a major public health concern, mainly because of the incompletely understood dynamics of molecular mechanisms for progression and resistance to treatments. The link between melanoma and thyroid cancer (TC) has been noted in numerous patients. Nucleocytoplasmic transport of oncogenes and tumor suppressor proteins is a common mechanism in melanoma and TC that promotes tumorigenesis and tumor aggressiveness. However, this mechanism remains poorly understood. Papillary TC (PTC) patients have a 1.8-fold higher risk for developing cutaneous malignant melanoma than healthy patients. Our group and others showed that patients with melanoma have a 2.15 to 2.3-fold increased risk of being diagnosed with PTC. The BRAF V600E mutation has been reported as a biological marker for aggressiveness and a potential genetic link between malignant melanoma and TC. The main mechanistic factor in the connection between these two cancer types is the alteration of the RAS-RAF-MEK-ERK signaling pathway activation and translocation. The mechanisms of nucleocytoplasmic trafficking associated with RAS, RAF, and Wnt signaling pathways in melanoma and TC are reviewed. In addition, we discuss the roles of tumor suppressor proteins such as p53, p27, forkhead O transcription factors (FOXO), and NF-KB within the nuclear and cytoplasmic cellular compartments and their association with tumor aggressiveness. A meticulous English-language literature analysis was performed using the PubMed Central database. Search parameters included articles published up to 2021 with keyword search terms melanoma and thyroid cancer, BRAF mutation, and nucleocytoplasmic transport in cancer.
Collapse
|
3
|
Wang J, Xiao T, Zhao M. MicroRNA-675 directly targets MAPK1 to suppress the oncogenicity of papillary thyroid cancer and is sponged by long non-coding RNA RMRP. Onco Targets Ther 2019; 12:7307-7321. [PMID: 31564913 PMCID: PMC6735657 DOI: 10.2147/ott.s213371] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022] Open
Abstract
Background MicroRNA-675-5p (miR-675-5p) is dysregulated in multiple human cancers, but its involvement in papillary thyroid cancer (PTC) remains to be investigated. This study aimed to examine the expression pattern of miR-675 in PTC, determine the effects of miR-675 on regulating the progression of PTC, and to explore the underlying molecular mechanisms. Methods The expression profile of miR-675 in PTC tissues and cell lines was determined using RT-qPCR. CCK-8, transwell migration and invasion assays, and xenograft tumors in nude mice were employed to analyze proliferation, in vitro migration and invasion, and in vivo tumor growth of PTC cells, respectively. The putative target of miR-675 was predicted using bioinformatic algorithms and was confirmed using luciferase reporter assays, RT-qPCR, and Western blotting. Results miR-675 expression was decreased in PTC tissues and cell lines. A low level of miR-675 expression was significantly correlated with lymphatic metastasis and TNM stage in PTC patients. Ectopic miR-675 expression suppressed PTC cell proliferation, migration, and invasion in vitro and hindered tumor growth in vivo. Mitogen-activated protein kinase 1 (MAPK1) was found to be the direct target gene of miR-675 in PTC cells. MAPK1 reintroduction negated the tumor-suppressing effect of miR-675 overexpression in PTC cells. Furthermore, the lncRNA mitochondrial RNA processing endoribonuclease (RMRP) functioned as a ceRNA of miR-675 in PTC cells. Silencing RMRP expression inhibited the growth and metastasis of PTC cells by sponging miR-675 and regulating MAPK1. Conclusion These findings revealed that miR-675 directly targets MAPK1 and is sponged by lncRNA RMRP to inhibit the oncogenicity of PTC, suggesting the RMRP-miR-675-MAPK1 pathway is an effective target for the treatment of PTC patients.
Collapse
Affiliation(s)
- Junyi Wang
- Department of Endocrinology, Geriatric Research Center, JinLing Hospital, Nanjing, Medical School of Nanjing University, Jiangsu 210002, People's Republic of China
| | - Tiantian Xiao
- Department of Endocrinology, Geriatric Research Center, JinLing Hospital, Nanjing, Medical School of Nanjing University, Jiangsu 210002, People's Republic of China
| | - Ming Zhao
- Department of Endocrinology, Geriatric Research Center, JinLing Hospital, Nanjing, Medical School of Nanjing University, Jiangsu 210002, People's Republic of China
| |
Collapse
|
4
|
Ban MJ, Byeon HK, Yang YJ, An S, Kim JW, Kim JH, Kim DH, Yang J, Kee H, Koh YW. Fibroblast growth factor receptor 3-mediated reactivation of ERK signaling promotes head and neck squamous cancer cell insensitivity to MEK inhibition. Cancer Sci 2018; 109:3816-3825. [PMID: 30343534 PMCID: PMC6272115 DOI: 10.1111/cas.13839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
Recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) has been a longstanding challenge for head and neck oncologists, and current treatments still have limited efficacy. ERK is aberrantly overexpressed and activated in HNSCC. Herein, we aimed to investigate the cause of the limited therapeutic effect of selumetinib, a selective inhibitor of MEK in HNSCC, as MEK/ERK reactivation inevitably occurs. We assessed the effects of combining selumetinib with fibroblast growth factor receptor 3 (FGFR3) inhibitor (PD173074) on tumor growth. Selumetinib transiently inhibited MAPK signaling and reactivated ERK signaling in HNSCC cells. Rebound in the ERK and Akt pathways in HNSCC cells was accompanied by increased FGFR3 signaling after selumetinib treatment. Feedback activation of FGFR3 was a result of autocrine secretion of the FGF2 ligand. The FGFR3 inhibitor PD173074 prevented MAPK rebound and sensitized the response of HNSCC cells to selumetinib. These results provided rational therapeutic strategies for clinical studies of this subtype of patients that show a poor prognosis with selumetinib. Our data provide a rationale for combining a MEK inhibitor with inhibitors of feedback activation of FGFR3 signaling in HNSCC cells. ERK rebound as a result of the upregulation of FGFR3 and the ligand FGF2 diminished the antitumor effects of selumetinib, which was overcome by combination treatment with the FGFR3 inhibitor.
Collapse
Affiliation(s)
- Myung Jin Ban
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea.,Department of Medicine, The Graduate School of Yonsei University, Seoul, Korea
| | - Hyung Kwon Byeon
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Korea
| | - Yeon Ju Yang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Sojung An
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Wook Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Ji-Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Da Hee Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Jaemoon Yang
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea.,Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hyunjung Kee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Woo Koh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Qi M, Tian Y, Li W, Li D, Zhao T, Yang Y, Li Q, Chen S, Yang Y, Zhang Z, Tang L, Liu Z, Su B, Li F, Feng Y, Fei K, Zhang P, Zhang F, Zhang L. ERK inhibition represses gefitinib resistance in non-small cell lung cancer cells. Oncotarget 2018; 9:12020-12034. [PMID: 29552290 PMCID: PMC5844726 DOI: 10.18632/oncotarget.24147] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023] Open
Abstract
Gefitinib, an EGFR tyrosine kinase inhibitor, is used to treat non-small cell lung cancer (NSCLC) patients with activating EGFR mutations. However, the resistance to gefitinib eventually emerges in most of the patients. To understand its mechanism, we generated two acquired gefitinib-resistant NSCLC cell lines. The resistant cells have slower growth rates, but are more resistant to apoptosis in the presence of gefitinib, compared with their sensitive counterparts. In addition, our genome-wide transcriptome analysis reveals unexpected pathways, particularly autophagy, are dysregulated in the gefitinib-resistant cells. Autophagy is significantly enhanced in resistant cells. Importantly, inhibition of autophagy reduces gefitinib resistance. Furthermore, the phosphorylation of ERK, the extracellular signal-regulated kinase, is activated in resistant cells. Inhibition of ERK phosphorylation abrogates gefitinib resistance by suppressing autophagy both in vitro and in vivo. These findings establish a link between ERK and autophagy in gefitinib resistance, and suggest that the ERK signaling may serve as the potentially therapeutic target for treating gefitinib resistance in NSCLC patients.
Collapse
Affiliation(s)
- Mengfan Qi
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Ye Tian
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Wang Li
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Dan Li
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tian Zhao
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yuxin Yang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Qiwen Li
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Sujun Chen
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yan Yang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Zhixiong Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Liang Tang
- The Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zhonghua Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Bo Su
- The Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Fei Li
- Department of Biology, New York University, New York, NY 10003, USA
| | - Yonghong Feng
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Ke Fei
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Fan Zhang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.,School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
6
|
Iacobas DA, Tuli NY, Iacobas S, Rasamny JK, Moscatello A, Geliebter J, Tiwari RK. Gene master regulators of papillary and anaplastic thyroid cancers. Oncotarget 2017; 9:2410-2424. [PMID: 29416781 PMCID: PMC5788649 DOI: 10.18632/oncotarget.23417] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/09/2017] [Indexed: 12/13/2022] Open
Abstract
We hypothesize that distinct cell phenotypes are governed by different sets of gene master regulators (GMRs) whose strongly protected (by the homeostatic mechanisms) abundance modulates most cell processes by coordinating the expression of numerous genes from the corresponding functional pathways. Gene Commanding Height (GCH), a composite measure of gene expression control and coordination, is introduced to establish the gene hierarchy in each phenotype. If the hypothesis is true, than one can selectively destroy cancer nodules from a heterogeneous tissue by altering the expression of genes whose GCHs are high in cancer but low in normal cell phenotype. Here, we test the hypothesis and show its utility for the thyroid cancer (TC) gene therapy. First, we prove that malignant and cancer free surrounding areas of a surgically removed papillary TC (PTC) tumor are governed by different GMRs. Second, we show that stable transfection of a gene induces larger transcriptomic alterations in the cells where it has higher GCH than in other cells. For this, we profiled the transcriptomes of the papillary BCPAP and anaplastic 8505C TC cell lines before and after stable transfection with NEMP1, DDX19B, PANK2 or UBALD1. The four genes were selected to have similar expression levels but significantly different GCH scores in the two cell lines before transfection. Indeed, each of the four genes triggered larger alterations in the cells where they had larger GCH. Our results prove the feasibility of a personalized gene therapy approach that selectively targets the cancer cells from a tissue.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA.,Center for Computational Systems Biology at Prairie View A&M University, Prairie View, TX, USA
| | - Neha Y Tuli
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - John K Rasamny
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA.,Department of Otolaryngology, New York Medical College, Valhalla, NY, USA
| | - Augustine Moscatello
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA.,Department of Otolaryngology, New York Medical College, Valhalla, NY, USA
| | - Jan Geliebter
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
| | - Raj K Tiwari
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
7
|
Antonello ZA, Hsu N, Bhasin M, Roti G, Joshi M, Van Hummelen P, Ye E, Lo AS, Karumanchi SA, Bryke CR, Nucera C. Vemurafenib-resistance via de novo RBM genes mutations and chromosome 5 aberrations is overcome by combined therapy with palbociclib in thyroid carcinoma with BRAF V600E. Oncotarget 2017; 8:84743-84760. [PMID: 29156680 PMCID: PMC5689570 DOI: 10.18632/oncotarget.21262] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/15/2017] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Papillary thyroid carcinoma (PTC) is the most frequent endocrine tumor. BRAFV600E represents the PTC hallmark and is targeted with selective inhibitors (e.g. vemurafenib). Although there have been promising results in clinical trials using these inhibitors, most patients develop resistance and progress. Tumor clonal diversity is proposed as one mechanism underlying drug resistance. Here we have investigated mechanisms of primary and secondary resistance to vemurafenib in BRAFWT/V600E-positive PTC patient-derived cells with P16-/- (CDKN2A-/-). EXPERIMENTAL DESIGN Following treatment with vemurafenib, we expanded a sub-population of cells with primary resistance and characterized them genetically and cytogenetically. We have used exome sequencing, metaphase chromosome analysis, FISH and oligonucleotide SNP-microarray assays to assess clonal evolution of vemurafenib-resistant cells. Furthermore, we have validated our findings by networks and pathways analyses using PTC clinical samples. RESULTS Vemurafenib-resistant cells grow similarly to naïve cells but are refractory to apoptosis upon treatment with vemurafenib, and accumulate in G2-M phase. We find that vemurafenib-resistant cells show amplification of chromosome 5 and de novo mutations in the RBM (RNA-binding motifs) genes family (i.e. RBMX, RBM10). RBMX knockdown in naïve-cells contributes to tetraploidization, including expansion of clones with chromosome 5 aberrations (e.g. isochromosome 5p). RBMX elicits gene regulatory networks with chromosome 5q cancer-associated genes and pathways for G2-M and DNA damage-response checkpoint regulation in BRAFWT/V600E-PTC. Importantly, combined therapy with vemurafenib plus palbociclib (inhibitor of CDK4/6, mimicking P16 functions) synergistically induces stronger apoptosis than single agents in resistant-cells and in anaplastic thyroid tumor cells harboring the heterozygous BRAFWT/V600E mutation. CONCLUSIONS Critically, our findings suggest for the first time that targeting BRAFWT/V600E and CDK4/6 represents a novel therapeutic strategy to treat vemurafenib-resistant or vemurafenib-naïve radioiodine-refractory BRAFWT/V600E-PTC. This combined therapy could prevent selection and expansion of aggressive PTC cell sub-clones with intrinsic resistance, targeting tumor cells either with primary or secondary resistance to BRAFV600E inhibitor.
Collapse
Affiliation(s)
- Zeus A. Antonello
- Laboratory of human thyroid cancers preclinical and translational research, Division of Experimental Pathology, Cancer Research Institute, Cancer Center, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nancy Hsu
- Cytogenetics Laboratory, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Manoj Bhasin
- Bioinformatic and Systems Biology Unit, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mukta Joshi
- Bioinformatic and Systems Biology Unit, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Paul Van Hummelen
- Center for Cancer Genome Discovery, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Emily Ye
- Laboratory of human thyroid cancers preclinical and translational research, Division of Experimental Pathology, Cancer Research Institute, Cancer Center, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Agnes S. Lo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - S. Ananth Karumanchi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christine R. Bryke
- Cytogenetics Laboratory, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Carmelo Nucera
- Laboratory of human thyroid cancers preclinical and translational research, Division of Experimental Pathology, Cancer Research Institute, Cancer Center, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Ye J, Dong X, Jiang X, Jiang H, Li CZ, Wang X. Genome-wide functional analysis on the molecular mechanism of specifically biosynthesized fluorescence Eu complex. Oncotarget 2017; 8:72082-72095. [PMID: 29069770 PMCID: PMC5641113 DOI: 10.18632/oncotarget.18914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 06/18/2017] [Indexed: 11/25/2022] Open
Abstract
Fluorescence imaging as an attractive diagnostic technique is widely employed for early diagnosis of cancer. Self-biosynthesized fluorescent Eu complex in situ in Hela cells have realized specifically and accurately fluorescence imaging for cancer cells. But the molecular mechanism of the in situ biosynthesized process is still unclear. In order to reveal this mechanism, we have investigated whole-genome expression profiles with cDNA microarray, incubated with Eu solution in Hela cells for 24 h. Methylthiazoltetrazolium (MTT) assay and laser confocal fluorescence microscopy study showed the low cytotoxicity and specifically fluorescence imaging of Eu complex in Hela cells. It is observed that 563 up-regulated genes and 274 down-regulated genes were differentially expressed. Meanwhile, quantitative RT-PCR was utilized to measure the expression of some important genes, which validated the results of microarray data analysis. Besides, GO analysis showed that a wide range of differential expression functional genes involved in three groups, including cellular component, molecular function and cellular biological process. It was evident that some important biological pathways were apparently affected through KEGG pathway analysis, including focal adhesion pathway and PI3K (phosphatidylinositol 3' -kinase)-Akt signaling pathway, which can influence glycolytic metabolism and NAD(P)H-oxidases metabolic pathway.
Collapse
Affiliation(s)
- Jing Ye
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Xiawei Dong
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Xuerui Jiang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Chen-Zhong Li
- Nanobioengineering/Bioelectronics Lab, Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Xuemei Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|